Electrochemical and Raman spectroscopic investigations of in situ and emersed silver-alcohol electrochemical interfaces.

Persistent Link:
http://hdl.handle.net/10150/185476
Title:
Electrochemical and Raman spectroscopic investigations of in situ and emersed silver-alcohol electrochemical interfaces.
Author:
Sobocinski, Raymond Louis.
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The overall goal of this research is to characterize the potential-dependent structure and composition of the alcohol-Ag electrochemical interface. The approach involves the use of a variety of electrochemical and spectroscopic tools to arrive at a consistent model for a series of straight-chain alcohols (methanol, ethanol, 1-propanol, and 1-pentanol) at Ag electrodes. There are essentially four areas of investigation presented in this dissertation. The first portion of this work has been directed at the development of charge coupled device detection in Raman spectroscopy so that many of the interface investigations could be performed. The advantages and limitations of these detectors in Raman spectroscopy are addressed. The second area involves the characterization of in-situ alcohol-Ag electrochemical interfaces using Raman spectroscopy and associated surface selection rules for the evaluation of solvent orientation and bonding. Since the series of alcohols offers a systematic variation in solvent properties, these studies provide substantial insight regarding some of the chemical interactions which can dictate orientation. The development of emersed electrode technologies is also presented as a means to improve selectivity for surface molecular species over bulk molecular species. The utility of this approach is demonstrated for a variety of straight-chain alcohols at both rough and smooth Ag electrodes. Conditions for emersing the molecular interface, intact, under potential control are presented. Finally, double layer capacitance measurements are performed to offer additional insight regarding alcohol solvent structure and interfacial composition as a function of electrode potential. In addition, capacitance-potential plots are used along with the Hurwitz-Parsons analysis to determine absolute surface coverage of Br⁻ as a function of electrode potential. These results are correlated with the Raman spectroscopic results to obtain a consistent model for the structure and composition of the alcohol-Ag electrochemical interface.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic; Electrochemical analysis; Chemistry, Analytic -- Quantitative.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Chemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Pemberton, Jeanne

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleElectrochemical and Raman spectroscopic investigations of in situ and emersed silver-alcohol electrochemical interfaces.en_US
dc.creatorSobocinski, Raymond Louis.en_US
dc.contributor.authorSobocinski, Raymond Louis.en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe overall goal of this research is to characterize the potential-dependent structure and composition of the alcohol-Ag electrochemical interface. The approach involves the use of a variety of electrochemical and spectroscopic tools to arrive at a consistent model for a series of straight-chain alcohols (methanol, ethanol, 1-propanol, and 1-pentanol) at Ag electrodes. There are essentially four areas of investigation presented in this dissertation. The first portion of this work has been directed at the development of charge coupled device detection in Raman spectroscopy so that many of the interface investigations could be performed. The advantages and limitations of these detectors in Raman spectroscopy are addressed. The second area involves the characterization of in-situ alcohol-Ag electrochemical interfaces using Raman spectroscopy and associated surface selection rules for the evaluation of solvent orientation and bonding. Since the series of alcohols offers a systematic variation in solvent properties, these studies provide substantial insight regarding some of the chemical interactions which can dictate orientation. The development of emersed electrode technologies is also presented as a means to improve selectivity for surface molecular species over bulk molecular species. The utility of this approach is demonstrated for a variety of straight-chain alcohols at both rough and smooth Ag electrodes. Conditions for emersing the molecular interface, intact, under potential control are presented. Finally, double layer capacitance measurements are performed to offer additional insight regarding alcohol solvent structure and interfacial composition as a function of electrode potential. In addition, capacitance-potential plots are used along with the Hurwitz-Parsons analysis to determine absolute surface coverage of Br⁻ as a function of electrode potential. These results are correlated with the Raman spectroscopic results to obtain a consistent model for the structure and composition of the alcohol-Ag electrochemical interface.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academicen_US
dc.subjectElectrochemical analysisen_US
dc.subjectChemistry, Analytic -- Quantitative.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPemberton, Jeanneen_US
dc.contributor.committeememberBurke, Michael F.en_US
dc.contributor.committeememberWigley, David E.-
dc.identifier.proquest9125454en_US
dc.identifier.oclc710442439en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.