Atmospheres of comets: Gas dynamic models and inference of kinematic parameters

Persistent Link:
http://hdl.handle.net/10150/185429
Title:
Atmospheres of comets: Gas dynamic models and inference of kinematic parameters
Author:
Hu, Hongyao.
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Cometary nuclei may be our best available probes of the physical and chemical nature of the presolar nebula. However, in situ sampling of cometary nuclei to determine their composition is generally not feasible. Instead, remote spectroscopic observations of cometary comae are used to infer cometary composition. This approach relies on one's ability to model accurately the density distributions of gas and dust in the comae and a complex network of photochemical and molecular processes. Previously, a variety of theoretical models had been developed and, unfortunately, they are applicable only to a portion of the coma or to specific problems. In the first part of this thesis we introduce a preliminary version of a gas model built upon the concepts of dilute gas theory. This model is valid over the whole coma and it incorporates all previous models as its special cases, thus providing a new theoretical foundation for future cometary studies. In the second part of the thesis we discuss a spectral outflow model. This model is a special case of the dilute gas model and is tailored specifically to retrieve kinematic properties of cometary comae from velocity-resolved spectral line profiles. We review the formation of cometary spectral line profiles and we develop an analytic expression that maps three dimensional number density distributions into synthetic spectral line profiles. After discussing simplifications and Monte Carlo computational procedures, we apply the spectral outflow model to interpret infrared observations of H₂O in comets Halley and Wilson.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic; Comets; Astrophysics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Physics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Hsieh, K.C.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleAtmospheres of comets: Gas dynamic models and inference of kinematic parametersen_US
dc.creatorHu, Hongyao.en_US
dc.contributor.authorHu, Hongyao.en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractCometary nuclei may be our best available probes of the physical and chemical nature of the presolar nebula. However, in situ sampling of cometary nuclei to determine their composition is generally not feasible. Instead, remote spectroscopic observations of cometary comae are used to infer cometary composition. This approach relies on one's ability to model accurately the density distributions of gas and dust in the comae and a complex network of photochemical and molecular processes. Previously, a variety of theoretical models had been developed and, unfortunately, they are applicable only to a portion of the coma or to specific problems. In the first part of this thesis we introduce a preliminary version of a gas model built upon the concepts of dilute gas theory. This model is valid over the whole coma and it incorporates all previous models as its special cases, thus providing a new theoretical foundation for future cometary studies. In the second part of the thesis we discuss a spectral outflow model. This model is a special case of the dilute gas model and is tailored specifically to retrieve kinematic properties of cometary comae from velocity-resolved spectral line profiles. We review the formation of cometary spectral line profiles and we develop an analytic expression that maps three dimensional number density distributions into synthetic spectral line profiles. After discussing simplifications and Monte Carlo computational procedures, we apply the spectral outflow model to interpret infrared observations of H₂O in comets Halley and Wilson.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academicen_US
dc.subjectCometsen_US
dc.subjectAstrophysics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHsieh, K.C.en_US
dc.contributor.committeememberBashkin, Stanleyen_US
dc.contributor.committeememberParmenter, Robert H.en_US
dc.contributor.committeememberMcIntyre, Laurence C.en_US
dc.contributor.committeememberLarson, Harold P.en_US
dc.identifier.proquest9123480en_US
dc.identifier.oclc709778989en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.