Persistent Link:
http://hdl.handle.net/10150/185383
Title:
Nitrogen oxide abatement by distributed fuel addition.
Author:
Mereb, Jamal Bocher.
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Reburning is examined as a means of NOₓ destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone are explored. The effect of reburning on N₂O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated. The parametric study allowed the effects of significant reburning variables to be identified and examined, but these effects could not be quantified. Detailed experiments identified optimum reburn zone stoichiometry between 0.8 and 0.9, depending on mixing in the reburn zone. Overall NO reductions, as high as 80%, were possible and depended mainly on reburn zone variables, namely, temperature, residence time and stoichiometry. Exhaust N₂O emissions increased after air addition in the final stage of reburning, but were less than 10 ppm. Lower reductions in NO emissions were obtained when the primary flame was of the diffusion type, rather than of the premixed type, but final NO emissions below 250 ppm (dry, 0% O₂) were still possible. Reburning fuel introduction in multiple streams did not enhance NO destruction, relative to single stream injections. Within the reburn zone, reburning mechanisms occurred in two regimes. One regime was in the vicinity of the reburning fuel flame and was distinguished by fast reactions between NO and hydrocarbons that were limited by mixing. The other regime covered the remainder of the reburn zone and was distinguished by slower reactions, without mixing complications. For the latter regime, a simplified model based on detailed gas phase chemical kinetic mechanisms and known rate coefficients was able to predict temporal profiles of NO, HCN and NH₃. Reactions involving hydrocarbons played important roles in both regimes and N₂ fixation by hydrocarbons limited reburning effectiveness at low primary NO values. Appropriate corrections for mixing effects in early time scales of the reburn zone allowed the prediction of nitrogenous species profiles from primary NO values, as well as overall reburning effectiveness.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic; Chemical engineering; Environmental sciences
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Chemical Engineering; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Wendt, Jost O.L.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleNitrogen oxide abatement by distributed fuel addition.en_US
dc.creatorMereb, Jamal Bocher.en_US
dc.contributor.authorMereb, Jamal Bocher.en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractReburning is examined as a means of NOₓ destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone are explored. The effect of reburning on N₂O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated. The parametric study allowed the effects of significant reburning variables to be identified and examined, but these effects could not be quantified. Detailed experiments identified optimum reburn zone stoichiometry between 0.8 and 0.9, depending on mixing in the reburn zone. Overall NO reductions, as high as 80%, were possible and depended mainly on reburn zone variables, namely, temperature, residence time and stoichiometry. Exhaust N₂O emissions increased after air addition in the final stage of reburning, but were less than 10 ppm. Lower reductions in NO emissions were obtained when the primary flame was of the diffusion type, rather than of the premixed type, but final NO emissions below 250 ppm (dry, 0% O₂) were still possible. Reburning fuel introduction in multiple streams did not enhance NO destruction, relative to single stream injections. Within the reburn zone, reburning mechanisms occurred in two regimes. One regime was in the vicinity of the reburning fuel flame and was distinguished by fast reactions between NO and hydrocarbons that were limited by mixing. The other regime covered the remainder of the reburn zone and was distinguished by slower reactions, without mixing complications. For the latter regime, a simplified model based on detailed gas phase chemical kinetic mechanisms and known rate coefficients was able to predict temporal profiles of NO, HCN and NH₃. Reactions involving hydrocarbons played important roles in both regimes and N₂ fixation by hydrocarbons limited reburning effectiveness at low primary NO values. Appropriate corrections for mixing effects in early time scales of the reburn zone allowed the prediction of nitrogenous species profiles from primary NO values, as well as overall reburning effectiveness.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academicen_US
dc.subjectChemical engineeringen_US
dc.subjectEnvironmental sciencesen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineChemical Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorWendt, Jost O.L.en_US
dc.contributor.committeememberPeterson, Thomas W.en_US
dc.contributor.committeememberShadman, Farhangen_US
dc.contributor.committeememberVemulapalli, G. Krishnaen_US
dc.contributor.committeememberAdamowicz, Ludwiken_US
dc.identifier.proquest9123156en_US
dc.identifier.oclc709747636en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.