The optical cubic susceptibility dispersion of some transparent thin films.

Persistent Link:
http://hdl.handle.net/10150/185366
Title:
The optical cubic susceptibility dispersion of some transparent thin films.
Author:
Torruellas, William Eugene.
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The aim of this dissertation has been to investigate the third order nonlinear susceptibility dispersion of molecules and polymers in order to estimate their purely electronic nonlinear response and in particular their optical Kerr nonlinear susceptibility in the 1 to 2 μm infrared spectral region. We have been successful in modeling with a four level system the near resonant cubic susceptibility of the polydiacetylene, poly(4-BCMU). In that case tunable Third-Harmonic-Generation and Two-Photon-Absorption measurements both agreed with the result of a Near-Infrared-Three-Wave-Mixing measurement. In the case of β-carotene and polythiophenes the four level model also fits the Third-Harmonic-Generation data well. In the previously mentioned cases the spectral behavior of the Two-Photon figure of merit derived by Mizrahi et al. is calculated. The four level model, when extrapolated far off resonance predicts that an all-optical switching device constructed with these materials will be dominated by Two-Photon-Absorption. A promising new class of side-chain substituted polymers with large microscopic second order nonlinearities was also investigated. Third-Harmonic-Generation measurements indicate that no forbidden two-photon transition is present in this case and that the magnitude of the nonlinear third order susceptibility is dominated by the charge-transfer nature of the nonlinear moieties combined with cascading of second order effects at a microscopic level. In the case of Sol-Gel thin films of varying TiO₂ concentration in SiO₂, the formula derived by Boling et al., based also on a three level model, predicts successfully the magnitude of the third order susceptibility. THG is in that case an invaluable technique used for the first time to measure relatively small nonlinear susceptibilities of glass-like thin films.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic; Chemistry, Physical and theoretical.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Stegeman, George I.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleThe optical cubic susceptibility dispersion of some transparent thin films.en_US
dc.creatorTorruellas, William Eugene.en_US
dc.contributor.authorTorruellas, William Eugene.en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe aim of this dissertation has been to investigate the third order nonlinear susceptibility dispersion of molecules and polymers in order to estimate their purely electronic nonlinear response and in particular their optical Kerr nonlinear susceptibility in the 1 to 2 μm infrared spectral region. We have been successful in modeling with a four level system the near resonant cubic susceptibility of the polydiacetylene, poly(4-BCMU). In that case tunable Third-Harmonic-Generation and Two-Photon-Absorption measurements both agreed with the result of a Near-Infrared-Three-Wave-Mixing measurement. In the case of β-carotene and polythiophenes the four level model also fits the Third-Harmonic-Generation data well. In the previously mentioned cases the spectral behavior of the Two-Photon figure of merit derived by Mizrahi et al. is calculated. The four level model, when extrapolated far off resonance predicts that an all-optical switching device constructed with these materials will be dominated by Two-Photon-Absorption. A promising new class of side-chain substituted polymers with large microscopic second order nonlinearities was also investigated. Third-Harmonic-Generation measurements indicate that no forbidden two-photon transition is present in this case and that the magnitude of the nonlinear third order susceptibility is dominated by the charge-transfer nature of the nonlinear moieties combined with cascading of second order effects at a microscopic level. In the case of Sol-Gel thin films of varying TiO₂ concentration in SiO₂, the formula derived by Boling et al., based also on a three level model, predicts successfully the magnitude of the third order susceptibility. THG is in that case an invaluable technique used for the first time to measure relatively small nonlinear susceptibilities of glass-like thin films.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academicen_US
dc.subjectChemistry, Physical and theoretical.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorStegeman, George I.en_US
dc.contributor.committeememberPeyghambarian, Nasseren_US
dc.contributor.committeememberWright, Ewan M.en_US
dc.identifier.proquest9121553en_US
dc.identifier.oclc709606650en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.