Persistent Link:
http://hdl.handle.net/10150/185337
Title:
ANALYTICAL APPLICATIONS OF SEMI-SYNTHETIC BIOSURFACES.
Author:
SPORTSMAN, JOHN RICHARD.
Issue Date:
1982
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Antibodies specific for insulin and human immunoglobulin G (HlgG) were attached to controlled pore glass (CPG) particles which had been silanized with a diol-bearing silane. Up to 20 mg of antibody protein could be attached covalently to 1 gram of CPG. Such immobilized antibodies, or immunosorbents, would bind specific antigens, but not unrelated proteins, when used in a high pressure liquid chromatographic configuration. This technique was given the name "high performance immunoaffinity chromatography" (HPIC). The HPIC properties of these immunosorbents were evaluated by an equilibrium theory and were found to be comparable to batch values. An immunosorbent for HIgG antigen showed an HPIC association constant of 10⁷·⁶; the batch equilibrium constant for the same immunosorbent was 10⁷·⁸. Two different anti-insulin immunosorbents retained the intrinsic affinity (10⁶ and 10⁹) of the antibody used to make them. The total active antibody concentrations of these immunosorbents were evaluated by HPIC and batch methods with good agreement between the two. The immobilization reaction was seen to result typically in the loss of 90% of the original antibody activity. HPIC was shown to be applicable to the rapid analysis of antigens at levels as low as ng/mL. This was found to be possible in part because of the rapid forward kinetics which were assessed by HPIC. A forward rate constant of 3 X 10⁷ L·mol⁻¹·sec⁻¹ for the binding of insulin by a specific HPIC column could be determined. The possibility of HPIC fluorescence immunoassays was investigated using a highly sensitive fluorescence detector. An Eimac collimated xenon arc lamp provided sufficient power to detect picomolar levels of fluorescamine labeled insulin and other compounds. The limitations of HPIC in performing picomolar immunoassays were thus shown to be immunochemical rather than instrumental. The ability of immunoaffinity purifications to overcome these limitations was demonstrated.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Immunochemistry -- Technique.; Affinity chromatography.; Immunoadsorption.; Immunoassay -- Technique.; Antigen-antibody reactions.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Chemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Wilson, George S.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleANALYTICAL APPLICATIONS OF SEMI-SYNTHETIC BIOSURFACES.en_US
dc.creatorSPORTSMAN, JOHN RICHARD.en_US
dc.contributor.authorSPORTSMAN, JOHN RICHARD.en_US
dc.date.issued1982en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAntibodies specific for insulin and human immunoglobulin G (HlgG) were attached to controlled pore glass (CPG) particles which had been silanized with a diol-bearing silane. Up to 20 mg of antibody protein could be attached covalently to 1 gram of CPG. Such immobilized antibodies, or immunosorbents, would bind specific antigens, but not unrelated proteins, when used in a high pressure liquid chromatographic configuration. This technique was given the name "high performance immunoaffinity chromatography" (HPIC). The HPIC properties of these immunosorbents were evaluated by an equilibrium theory and were found to be comparable to batch values. An immunosorbent for HIgG antigen showed an HPIC association constant of 10⁷·⁶; the batch equilibrium constant for the same immunosorbent was 10⁷·⁸. Two different anti-insulin immunosorbents retained the intrinsic affinity (10⁶ and 10⁹) of the antibody used to make them. The total active antibody concentrations of these immunosorbents were evaluated by HPIC and batch methods with good agreement between the two. The immobilization reaction was seen to result typically in the loss of 90% of the original antibody activity. HPIC was shown to be applicable to the rapid analysis of antigens at levels as low as ng/mL. This was found to be possible in part because of the rapid forward kinetics which were assessed by HPIC. A forward rate constant of 3 X 10⁷ L·mol⁻¹·sec⁻¹ for the binding of insulin by a specific HPIC column could be determined. The possibility of HPIC fluorescence immunoassays was investigated using a highly sensitive fluorescence detector. An Eimac collimated xenon arc lamp provided sufficient power to detect picomolar levels of fluorescamine labeled insulin and other compounds. The limitations of HPIC in performing picomolar immunoassays were thus shown to be immunochemical rather than instrumental. The ability of immunoaffinity purifications to overcome these limitations was demonstrated.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectImmunochemistry -- Technique.en_US
dc.subjectAffinity chromatography.en_US
dc.subjectImmunoadsorption.en_US
dc.subjectImmunoassay -- Technique.en_US
dc.subjectAntigen-antibody reactions.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorWilson, George S.en_US
dc.identifier.proquest8306459en_US
dc.identifier.oclc688242215en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.