Persistent Link:
http://hdl.handle.net/10150/185335
Title:
Bacteriophage T5 DNA polymerase relationships of DNA polymerases.
Author:
Leavitt, Markley Carl.
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
T5 DNA polymerase, a highly processive single polypeptide enzyme, and PRD1 DNA polymerase, a protein-primed DNA polymerase, have been analyzed for their primary structural features. The amino acid sequence of T5 DNA polymerase reveals a high degree of homology with DNA polymerase I (Pol I) of Escherichia coli and retains many of the amino acid residues which have been implicated in the 3'-5' exonuclease and DNA polymerase activities of that enzyme. Alignment with sequences of polymerase I and T7 DNA polymerase (family A polymerases) was used to identify regions possibly involved in the high processivity of this enzyme. Further amino acid sequence comparisons of T5 DNA polymerase with a large group of DNA polymerases (family B) previously shown to exhibit little similarity to Pol I, indicate certain sequence segments are shared among distantly related DNA polymerases. These shared regions have been implicated in the 3'-5' exonuclease function of Pol I which suggests that the proofreading domains of all these enzymes may be related. Mutations in these segments in T5 DNA polymerase (family A) and PRD1 DNA polymerase (family B) greatly decrease the exonuclease activity of these enzymes but leave the polymerase activities intact. Additionally, an exonuclease deficient T5 DNA polymerase is used in DNA sequencing reactions and yields consistent results with low background contamination on autoradiographs of polyacrylamide/urea gels. PRD1 mutants defective in 3 regions which are highly conserved among family B DNA polymerases, are deficient in DNA polymerase activity but retain exonuclease activity.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic; Molecular biology.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Molecular and Cellular Biology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Ito, Junetsu

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleBacteriophage T5 DNA polymerase relationships of DNA polymerases.en_US
dc.creatorLeavitt, Markley Carl.en_US
dc.contributor.authorLeavitt, Markley Carl.en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractT5 DNA polymerase, a highly processive single polypeptide enzyme, and PRD1 DNA polymerase, a protein-primed DNA polymerase, have been analyzed for their primary structural features. The amino acid sequence of T5 DNA polymerase reveals a high degree of homology with DNA polymerase I (Pol I) of Escherichia coli and retains many of the amino acid residues which have been implicated in the 3'-5' exonuclease and DNA polymerase activities of that enzyme. Alignment with sequences of polymerase I and T7 DNA polymerase (family A polymerases) was used to identify regions possibly involved in the high processivity of this enzyme. Further amino acid sequence comparisons of T5 DNA polymerase with a large group of DNA polymerases (family B) previously shown to exhibit little similarity to Pol I, indicate certain sequence segments are shared among distantly related DNA polymerases. These shared regions have been implicated in the 3'-5' exonuclease function of Pol I which suggests that the proofreading domains of all these enzymes may be related. Mutations in these segments in T5 DNA polymerase (family A) and PRD1 DNA polymerase (family B) greatly decrease the exonuclease activity of these enzymes but leave the polymerase activities intact. Additionally, an exonuclease deficient T5 DNA polymerase is used in DNA sequencing reactions and yields consistent results with low background contamination on autoradiographs of polyacrylamide/urea gels. PRD1 mutants defective in 3 regions which are highly conserved among family B DNA polymerases, are deficient in DNA polymerase activity but retain exonuclease activity.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academicen_US
dc.subjectMolecular biology.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMolecular and Cellular Biologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorIto, Junetsuen_US
dc.contributor.committeememberBernstein, Harrisen_US
dc.contributor.committeememberBernstein, Carolen_US
dc.contributor.committeememberSpizizen, Johnen_US
dc.identifier.proquest9117461en_US
dc.identifier.oclc708624738en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.