Simultaneous alignment and figure testing of optical system components via aberration measurement and reverse optimization.

Persistent Link:
http://hdl.handle.net/10150/185313
Title:
Simultaneous alignment and figure testing of optical system components via aberration measurement and reverse optimization.
Author:
Lundgren, Mark Andrew.
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Optical component alignment and testing using reverse optimization has been investigated for different measurement methods and optical systems. The methods discussed were ray aberration measurement and wavefront aberration measurement. The methods were applied to real and simulated optical systems and compared. A testbed was designed to measure ray aberrations by means of physical raytracing of a three-mirror telescope in order to align the telescope by means of ray aberration measurement and reverse optimization, a technique of computer aided alignment. Ray aberration measurements were used to align the three-mirror telescope. Experimental results and improvements to the technique are discussed. Wavefront aberration methods are described and compared to ray aberration measurements. The wavefront aberration method was more easily used with systems with low nominal aberrations and when figure testing is desired. The ray aberration technique is most useful with systems of large aberration when capture range may be a problem and when component figure is well known. The method of reverse optimization is shown to work for wavefront aberration measurements in computer simulations using a Cassegrainian telescope, Cooke triplet and afocal two-Petzval telescope. Component figure errors and misalignments were determined simultaneously with sufficient spatial sampling of the wavefront aberrations. Surface parameters and component alignments were used as optimization variables. The effects of gaussian noise on the wavefront data were simulated for misalignment of the two-Petzval design. Results showed that noise can be compensated by the use of large numbers of optimization targets. Wavefront aberration measurements and reverse optimization were used to align a laboratory two-Petzval system to verify the results of the simulations.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Wolfe, Bill

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleSimultaneous alignment and figure testing of optical system components via aberration measurement and reverse optimization.en_US
dc.creatorLundgren, Mark Andrew.en_US
dc.contributor.authorLundgren, Mark Andrew.en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractOptical component alignment and testing using reverse optimization has been investigated for different measurement methods and optical systems. The methods discussed were ray aberration measurement and wavefront aberration measurement. The methods were applied to real and simulated optical systems and compared. A testbed was designed to measure ray aberrations by means of physical raytracing of a three-mirror telescope in order to align the telescope by means of ray aberration measurement and reverse optimization, a technique of computer aided alignment. Ray aberration measurements were used to align the three-mirror telescope. Experimental results and improvements to the technique are discussed. Wavefront aberration methods are described and compared to ray aberration measurements. The wavefront aberration method was more easily used with systems with low nominal aberrations and when figure testing is desired. The ray aberration technique is most useful with systems of large aberration when capture range may be a problem and when component figure is well known. The method of reverse optimization is shown to work for wavefront aberration measurements in computer simulations using a Cassegrainian telescope, Cooke triplet and afocal two-Petzval telescope. Component figure errors and misalignments were determined simultaneously with sufficient spatial sampling of the wavefront aberrations. Surface parameters and component alignments were used as optimization variables. The effects of gaussian noise on the wavefront data were simulated for misalignment of the two-Petzval design. Results showed that noise can be compensated by the use of large numbers of optimization targets. Wavefront aberration measurements and reverse optimization were used to align a laboratory two-Petzval system to verify the results of the simulations.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysicsen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorWolfe, Billen_US
dc.contributor.committeememberLawrence, Georgeen_US
dc.contributor.committeememberMilster, Tomen_US
dc.identifier.proquest9114062en_US
dc.identifier.oclc710843975en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.