Persistent Link:
http://hdl.handle.net/10150/185283
Title:
Dynamics of a coherently driven micromaser.
Author:
Slosser, John Jason.
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation considers both a lossless and a dissipative micromaser in which a monoenergetic beam of two-level atoms in a coherent superposition of their upper and lower states is injected inside a single mode, high-Q cavity. In the lossless case, we find that under appropriate conditions a field initially in a mixed state will evolve to previously unknown pure states, which we call the tangent and cotangent states. In various limits, these states exhibit interesting properties such as sub-Poissonian photon statistics and squeezing, and most importantly they acquire the characteristics of "macroscopic" quantum superpositions. When dissipation of the cavity mode is incorporated into the model, we find that although the field no longer evolves to a pure state, the mixed steady-state field may still retain the properties of a macroscopic superposition under experimentally realizable damping rates. We then evaluate the experimental conditions necessary for the preparation and detection of such macroscopic superpositions.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Physics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Meystre, Pierre

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDynamics of a coherently driven micromaser.en_US
dc.creatorSlosser, John Jason.en_US
dc.contributor.authorSlosser, John Jason.en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation considers both a lossless and a dissipative micromaser in which a monoenergetic beam of two-level atoms in a coherent superposition of their upper and lower states is injected inside a single mode, high-Q cavity. In the lossless case, we find that under appropriate conditions a field initially in a mixed state will evolve to previously unknown pure states, which we call the tangent and cotangent states. In various limits, these states exhibit interesting properties such as sub-Poissonian photon statistics and squeezing, and most importantly they acquire the characteristics of "macroscopic" quantum superpositions. When dissipation of the cavity mode is incorporated into the model, we find that although the field no longer evolves to a pure state, the mixed steady-state field may still retain the properties of a macroscopic superposition under experimentally realizable damping rates. We then evaluate the experimental conditions necessary for the preparation and detection of such macroscopic superpositions.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysicsen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMeystre, Pierre-
dc.contributor.committeememberBurrows, Adam-
dc.contributor.committeememberMcIntyre, L.-
dc.contributor.committeememberDonahue, D.-
dc.contributor.committeememberKoch, Stephen-
dc.identifier.proquest9111968en_US
dc.identifier.oclc710824275en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.