Charge injection device array detection for atomic spectroscopy with applications in gas chromatography.

Persistent Link:
http://hdl.handle.net/10150/185261
Title:
Charge injection device array detection for atomic spectroscopy with applications in gas chromatography.
Author:
Lamoureux, Burton Richard.
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Very early in the history of atomic emission spectroscopy (AES) it was understood to be a powerful analytical tool. Until the 1930's the usefulness of atomic spectroscopy was not utilized very extensively even though its fundamental power was understood. The breakthrough that placed it in the standard chemistry laboratory was the discovery and implementation of the photoelectric effect. Since this discovery there has been a revolution in atomic spectroscopy which has brought it from the role of a humble servant used for primary elemental screening to an outstanding leader in applications of elemental analysis. Atomic emission spectroscopy of complex samples has long suffered from matrix effects which result in overlapping of spectral lines, fluctuating backgrounds and changing conditions in the source. Investigations employing an echelle polychromator with a two dimensional solid state array detector show great promise in minimizing the effects of these interferences on multielement analyses of complex samples. The Charge Injection Device (CID) detector used exhibits many characteristics which make it uniquely qualified for simultaneous, multielement detection in AES. With only slight modifications to the optics of a commercial spectrometer and the employment of a CID detector, detection limits for a number of elements are quite favorable. Dynamic ranges of over seven orders of magnitude are obtainable with this experimental system. The reduction of matrix effects by utilizing the huge wealth of information available from over 60,000 individual detector elements are demonstrated through results from several complex matrix standards. This CID-polychromator system was also employed for the element selective detection of gas chromatographic (GC) effluents. A microwave-induced plasma (MIP) based on the Surfatron design was built. A helium plasma from this device has shown to have resilience to organic samples and give good emission response to non-metallic atoms. A number of studies with this GC-AES-polychromator system are presented. This system is capable of monitoring atomic emissions from C, H, F, Cl, Br, I, O, N and S all simultaneously, and the selectivity of this system is unsurpassed. Elemental ratios for separated compounds are also presented as a precursor to empirical formula prediction.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Plasma jets; Chromatographic analysis -- Equipment and supplies; Atomic emission spectroscopy Electrochemical sensor.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Chemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Denton, M. Bonner

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleCharge injection device array detection for atomic spectroscopy with applications in gas chromatography.en_US
dc.creatorLamoureux, Burton Richard.en_US
dc.contributor.authorLamoureux, Burton Richard.en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractVery early in the history of atomic emission spectroscopy (AES) it was understood to be a powerful analytical tool. Until the 1930's the usefulness of atomic spectroscopy was not utilized very extensively even though its fundamental power was understood. The breakthrough that placed it in the standard chemistry laboratory was the discovery and implementation of the photoelectric effect. Since this discovery there has been a revolution in atomic spectroscopy which has brought it from the role of a humble servant used for primary elemental screening to an outstanding leader in applications of elemental analysis. Atomic emission spectroscopy of complex samples has long suffered from matrix effects which result in overlapping of spectral lines, fluctuating backgrounds and changing conditions in the source. Investigations employing an echelle polychromator with a two dimensional solid state array detector show great promise in minimizing the effects of these interferences on multielement analyses of complex samples. The Charge Injection Device (CID) detector used exhibits many characteristics which make it uniquely qualified for simultaneous, multielement detection in AES. With only slight modifications to the optics of a commercial spectrometer and the employment of a CID detector, detection limits for a number of elements are quite favorable. Dynamic ranges of over seven orders of magnitude are obtainable with this experimental system. The reduction of matrix effects by utilizing the huge wealth of information available from over 60,000 individual detector elements are demonstrated through results from several complex matrix standards. This CID-polychromator system was also employed for the element selective detection of gas chromatographic (GC) effluents. A microwave-induced plasma (MIP) based on the Surfatron design was built. A helium plasma from this device has shown to have resilience to organic samples and give good emission response to non-metallic atoms. A number of studies with this GC-AES-polychromator system are presented. This system is capable of monitoring atomic emissions from C, H, F, Cl, Br, I, O, N and S all simultaneously, and the selectivity of this system is unsurpassed. Elemental ratios for separated compounds are also presented as a precursor to empirical formula prediction.en_US
dc.description.noteDigitization note: p. 157 missing from paper original.-
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPlasma jetsen_US
dc.subjectChromatographic analysis -- Equipment and suppliesen_US
dc.subjectAtomic emission spectroscopy Electrochemical sensor.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorDenton, M. Bonneren_US
dc.identifier.proquest9111946en_US
dc.identifier.oclc706131601en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.