Persistent Link:
http://hdl.handle.net/10150/185235
Title:
Development of potentially implantable glucose sensors.
Author:
Bindra, Dilbir Singh.
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A novel glucose oxidase based needle-type glucose microsensor has been developed for subcutaneous glucose monitoring. The new configuration greatly facilitates the deposition of uniform enzyme and polymer films so that sensors with satisfactory in vitro characteristics (upper limit of linear range (>15 mM) and response time (<5 min) can be prepared in high yield (>60%). The sensor is equivalent in size to a 26 gauge needle (0.45 mm o.d.) and can be implanted with ease without any incision. The insertion of the sensor causes minimal trauma to the tissue and to the sensor itself. The multilayer structure of the sensor ensures satisfactory performance in subcutaneous tissue over extended periods of time (up to 20 days). The sensor response is largely independent of oxygen tension in the normal physiological range. It also exhibits the desired sensitivity and selectivity. A two-point in vivo calibration procedure is adapted for in vivo evaluation of the sensors. Both short-term and long-term implantation experiments are described. The methods of cell culture toxicity testing are modified and applied to locate the source of toxicity in a multi-component glucose sensor. It is shown that a non-toxic sensor can be readily obtained by removing the leachable toxic substances through extraction in phosphate buffer. A nonenzymatic glucose sensor that utilizes permselective membranes to achieve the selectivity required for screening glucose in biological fluids has been described. Interference from endogenous oxidizable substances such as amino acids, urea, ascorbic acid, and uric acid, as well as the effect of chloride and proteins on glucose response, is studied by using flow injection analysis. A set of membranes made of Nafion perfluorinated membrane and collagen, when arranged in front of the working electrode (gold), result in significant improvement in the system selectivity and sensitivity.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Chemistry
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Chemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Wilson, G.S.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDevelopment of potentially implantable glucose sensors.en_US
dc.creatorBindra, Dilbir Singh.en_US
dc.contributor.authorBindra, Dilbir Singh.en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA novel glucose oxidase based needle-type glucose microsensor has been developed for subcutaneous glucose monitoring. The new configuration greatly facilitates the deposition of uniform enzyme and polymer films so that sensors with satisfactory in vitro characteristics (upper limit of linear range (>15 mM) and response time (<5 min) can be prepared in high yield (>60%). The sensor is equivalent in size to a 26 gauge needle (0.45 mm o.d.) and can be implanted with ease without any incision. The insertion of the sensor causes minimal trauma to the tissue and to the sensor itself. The multilayer structure of the sensor ensures satisfactory performance in subcutaneous tissue over extended periods of time (up to 20 days). The sensor response is largely independent of oxygen tension in the normal physiological range. It also exhibits the desired sensitivity and selectivity. A two-point in vivo calibration procedure is adapted for in vivo evaluation of the sensors. Both short-term and long-term implantation experiments are described. The methods of cell culture toxicity testing are modified and applied to locate the source of toxicity in a multi-component glucose sensor. It is shown that a non-toxic sensor can be readily obtained by removing the leachable toxic substances through extraction in phosphate buffer. A nonenzymatic glucose sensor that utilizes permselective membranes to achieve the selectivity required for screening glucose in biological fluids has been described. Interference from endogenous oxidizable substances such as amino acids, urea, ascorbic acid, and uric acid, as well as the effect of chloride and proteins on glucose response, is studied by using flow injection analysis. A set of membranes made of Nafion perfluorinated membrane and collagen, when arranged in front of the working electrode (gold), result in significant improvement in the system selectivity and sensitivity.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectChemistryen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorWilson, G.S.en_US
dc.contributor.committeememberBurke, M.F.en_US
dc.contributor.committeememberPemberton, J.en_US
dc.contributor.committeememberByers, J.M.en_US
dc.contributor.committeememberMiller, W.B.en_US
dc.identifier.proquest9111924en_US
dc.identifier.oclc710154083en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.