A high-accuracy, DC-calibrated, monolithic, delta-sigma analog-to-digital converter.

Persistent Link:
http://hdl.handle.net/10150/185072
Title:
A high-accuracy, DC-calibrated, monolithic, delta-sigma analog-to-digital converter.
Author:
Early, Adrian Bruce.
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Delta-Sigma Analog-to Digital Converters have recently become important for providing high resolution with monotonicity and reasonable signal-to-distortion ratings without the need for laser trimming techniques. This has come about because of the recent ability to combine both extensive digital computation power, and switched-capacitor analog circuitry on a monolithic chip. Delta-Sigma converters have primarily been used, however, in signal processing applications, notably digital audio, but not for instrumentation. The purpose of this dissertation is to provide a high accuracy, DC-accurate, Delta-Sigma Analog-to-Digital converter in monolithic form. Autocalibration gives endpoint correction, and chopper stabilization minimizes the effect of parameter shifts, drift, and flicker noise. A digital filter, needed for all Delta-Sigma converters, serves as a signal processor to reject out-of-band noise and resonant responses of the external system. A 3-micron, double-poly CMOS process is used. Power requirements are +/- 5 Volts. A six-pole Gaussian IIR digital filter is chosen for good transient response and no overshoot. The filter algorithm and hardware solve the difference equations of a low-pass switched-capacitor prototype filter in digital form. Due to the low bandwidth needed, an area-efficient shift-and-add architecture is used. The area is further reduced with a novel multiplication algorithm, and the logic is reused to perform the calculations required for calibration. The system level device performance is verified in FORTRAN. The analog subcircuits are simulated over process and temperature corners in HSPICE. Measurements show differential and integral linearlity, DC accuracy and noise near the 20-bit level. Power supply rejection, and out-of-band signal attenuation are good, and the step response is monotonic. The circuit is marketed as Crystal Semiconductor CSC5503 and CSC5501 (20 and 16-bit resolutions, respectively).
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Digital-to-analog converters -- Design; Engineering, Electronics and Electrical.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Electrical and Computer Engineering; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Hamilton, Douglas J.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleA high-accuracy, DC-calibrated, monolithic, delta-sigma analog-to-digital converter.en_US
dc.creatorEarly, Adrian Bruce.en_US
dc.contributor.authorEarly, Adrian Bruce.en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractDelta-Sigma Analog-to Digital Converters have recently become important for providing high resolution with monotonicity and reasonable signal-to-distortion ratings without the need for laser trimming techniques. This has come about because of the recent ability to combine both extensive digital computation power, and switched-capacitor analog circuitry on a monolithic chip. Delta-Sigma converters have primarily been used, however, in signal processing applications, notably digital audio, but not for instrumentation. The purpose of this dissertation is to provide a high accuracy, DC-accurate, Delta-Sigma Analog-to-Digital converter in monolithic form. Autocalibration gives endpoint correction, and chopper stabilization minimizes the effect of parameter shifts, drift, and flicker noise. A digital filter, needed for all Delta-Sigma converters, serves as a signal processor to reject out-of-band noise and resonant responses of the external system. A 3-micron, double-poly CMOS process is used. Power requirements are +/- 5 Volts. A six-pole Gaussian IIR digital filter is chosen for good transient response and no overshoot. The filter algorithm and hardware solve the difference equations of a low-pass switched-capacitor prototype filter in digital form. Due to the low bandwidth needed, an area-efficient shift-and-add architecture is used. The area is further reduced with a novel multiplication algorithm, and the logic is reused to perform the calculations required for calibration. The system level device performance is verified in FORTRAN. The analog subcircuits are simulated over process and temperature corners in HSPICE. Measurements show differential and integral linearlity, DC accuracy and noise near the 20-bit level. Power supply rejection, and out-of-band signal attenuation are good, and the step response is monotonic. The circuit is marketed as Crystal Semiconductor CSC5503 and CSC5501 (20 and 16-bit resolutions, respectively).en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDigital-to-analog converters -- Designen_US
dc.subjectEngineering, Electronics and Electrical.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHamilton, Douglas J.en_US
dc.contributor.committeememberKerwin, William J.en_US
dc.contributor.committeememberWait, John V.en_US
dc.identifier.proquest9028146en_US
dc.identifier.oclc704699756en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.