Persistent Link:
http://hdl.handle.net/10150/185040
Title:
The ecology of bacteriophage T4.
Author:
Abedon, Stephen Tobias.
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In this dissertation I explore the ecology of bacteriophage T4, a virus of Escherichia coli. In particular, I argue that the life history of bacteriophage T4 can be divided into the growth and survival of T4 phages in three distinct environments. I argue that these environments are distinguished by at least two T4 phage sensory systems. These include (i) the sensing of secondary adsorption by infecting phages and (ii) the determination of the concentration of monovalent cations and free tryptophan in solution about free T4 phage particles. The first environment consists of high concentrations of uninfected, logarithmic phase E. coli cells. These concentrations are approximately 10⁶ E. coli cells/ml and greater. This environment occurs in the prefecal colonic lumen of animals. Here T4 phages exhibit unimpeded logarithmic growth. The second environment contains high concentrations of infected E. coli cells, low concentrations of uninfected E. coli cells, and high concentrations of free T4 phage particles. This second environment also occurs in the prefecal colonic lumen of animals and represents the maturation of environments supporting logarithmic T4 phage population growth. Such phage phenotypes as secondary exclusion and lysis inhibition characterize T4 phage growth in this environment. The third environment consists of extra-colonic waters. Here T4 phages avoid infecting E. coli cells and exhibit strategies that maximize their stability. These strategies in extra-colonic waters increase the potential of T4 phages to disseminate successfully from colon to colon. I employ this enhanced understanding of T4 phage ecology, outlined above, in an exploration of the ecology of the repair of DNA damage by T4 phages.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Bacteriophage T4; Microbial ecology; Escherichia coli -- Physiology; DNA repair.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Microbiology and Immunology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Bernstein, Harris

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleThe ecology of bacteriophage T4.en_US
dc.creatorAbedon, Stephen Tobias.en_US
dc.contributor.authorAbedon, Stephen Tobias.en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn this dissertation I explore the ecology of bacteriophage T4, a virus of Escherichia coli. In particular, I argue that the life history of bacteriophage T4 can be divided into the growth and survival of T4 phages in three distinct environments. I argue that these environments are distinguished by at least two T4 phage sensory systems. These include (i) the sensing of secondary adsorption by infecting phages and (ii) the determination of the concentration of monovalent cations and free tryptophan in solution about free T4 phage particles. The first environment consists of high concentrations of uninfected, logarithmic phase E. coli cells. These concentrations are approximately 10⁶ E. coli cells/ml and greater. This environment occurs in the prefecal colonic lumen of animals. Here T4 phages exhibit unimpeded logarithmic growth. The second environment contains high concentrations of infected E. coli cells, low concentrations of uninfected E. coli cells, and high concentrations of free T4 phage particles. This second environment also occurs in the prefecal colonic lumen of animals and represents the maturation of environments supporting logarithmic T4 phage population growth. Such phage phenotypes as secondary exclusion and lysis inhibition characterize T4 phage growth in this environment. The third environment consists of extra-colonic waters. Here T4 phages avoid infecting E. coli cells and exhibit strategies that maximize their stability. These strategies in extra-colonic waters increase the potential of T4 phages to disseminate successfully from colon to colon. I employ this enhanced understanding of T4 phage ecology, outlined above, in an exploration of the ecology of the repair of DNA damage by T4 phages.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectBacteriophage T4en_US
dc.subjectMicrobial ecologyen_US
dc.subjectEscherichia coli -- Physiologyen_US
dc.subjectDNA repair.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMicrobiology and Immunologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBernstein, Harrisen_US
dc.contributor.committeememberMichod, Richarden_US
dc.contributor.committeememberZegura, Stephenen_US
dc.contributor.committeememberSpizizen, Johnen_US
dc.identifier.proquest9025060en_US
dc.identifier.oclc704420349en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.