Model identification and parameter estimation of stochastic linear models.

Persistent Link:
http://hdl.handle.net/10150/185037
Title:
Model identification and parameter estimation of stochastic linear models.
Author:
Vazirinejad, Shamsedin.
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
It is well known that when the input variables of the linear regression model are subject to noise contamination, the model parameters can not be estimated uniquely. This, in the statistical literature, is referred to as the identifiability problem of the errors-in-variables models. Further, in linear regression there is an explicit assumption of the existence of a single linear relationship. The statistical properties of the errors-in-variables models under the assumption that the noise variances are either known or that they can be estimated are well documented. In many situations, however, such information is neither available nor obtainable. Although under such circumstances one can not obtain a unique vector of parameters, the space, Ω, of the feasible solutions can be computed. Additionally, assumption of existence of a single linear relationship may be presumptuous as well. A multi-equation model similar to the simultaneous-equations models of econometrics may be more appropriate. The goals of this dissertation are the following: (1) To present analytical techniques or algorithms to reduce the solution space, Ω, when any type of prior information, exact or relative, is available; (2) The data covariance matrix, Σ, can be examined to determine whether or not Ω is bounded. If Ω is not bounded a multi-equation model is more appropriate. The methodology for identifying the subsets of variables within which linear relations can feasibly exist is presented; (3) Ridge regression technique is commonly employed in order to reduce the ills caused by collinearity. This is achieved by perturbing the diagonal elements of Σ. In certain situations, applying ridge regression causes some of the coefficients to change signs. An analytical technique is presented to measure the amount of perturbation required to render such variables ineffective. This information can assist the analyst in variable selection as well as deciding on the appropriate model; (4) For the situations when Ω is bounded, a new weighted regression technique based on the computed upper bounds on the noise variances is presented. This technique will result in identification of a unique estimate of the model parameters.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Linear models (Statistics); Parameter estimation.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Systems and Industrial Engineering; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Sorooshian, Soroosh

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleModel identification and parameter estimation of stochastic linear models.en_US
dc.creatorVazirinejad, Shamsedin.en_US
dc.contributor.authorVazirinejad, Shamsedin.en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIt is well known that when the input variables of the linear regression model are subject to noise contamination, the model parameters can not be estimated uniquely. This, in the statistical literature, is referred to as the identifiability problem of the errors-in-variables models. Further, in linear regression there is an explicit assumption of the existence of a single linear relationship. The statistical properties of the errors-in-variables models under the assumption that the noise variances are either known or that they can be estimated are well documented. In many situations, however, such information is neither available nor obtainable. Although under such circumstances one can not obtain a unique vector of parameters, the space, Ω, of the feasible solutions can be computed. Additionally, assumption of existence of a single linear relationship may be presumptuous as well. A multi-equation model similar to the simultaneous-equations models of econometrics may be more appropriate. The goals of this dissertation are the following: (1) To present analytical techniques or algorithms to reduce the solution space, Ω, when any type of prior information, exact or relative, is available; (2) The data covariance matrix, Σ, can be examined to determine whether or not Ω is bounded. If Ω is not bounded a multi-equation model is more appropriate. The methodology for identifying the subsets of variables within which linear relations can feasibly exist is presented; (3) Ridge regression technique is commonly employed in order to reduce the ills caused by collinearity. This is achieved by perturbing the diagonal elements of Σ. In certain situations, applying ridge regression causes some of the coefficients to change signs. An analytical technique is presented to measure the amount of perturbation required to render such variables ineffective. This information can assist the analyst in variable selection as well as deciding on the appropriate model; (4) For the situations when Ω is bounded, a new weighted regression technique based on the computed upper bounds on the noise variances is presented. This technique will result in identification of a unique estimate of the model parameters.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectLinear models (Statistics)en_US
dc.subjectParameter estimation.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineSystems and Industrial Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSorooshian, Sorooshen_US
dc.contributor.committeememberSzidarovszky, Ferencen_US
dc.contributor.committeememberDietrich, Duaneen_US
dc.contributor.committeememberStrickland, Robinen_US
dc.identifier.proquest9024656en_US
dc.identifier.oclc704370978en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.