Nonlinear etalons and nonlinear waveguides as decision-making elements in photonic switching.

Persistent Link:
http://hdl.handle.net/10150/184807
Title:
Nonlinear etalons and nonlinear waveguides as decision-making elements in photonic switching.
Author:
Jin, Ruxiang.
Issue Date:
1989
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation describes our recent results in the study of various types of photonic switches. Special attention is given to the devices with Fabry-Perot etalon or planar waveguide structures based on dispersive optical nonlinearities. Basic optical logic functions, such as digital pattern recognition, symbolic substitution, and all-optical compare-and-exchange operation are demonstrated using ZnS and ZnSe nonlinear interference filters. Differential gain, cascading, and optical latching circuits are demonstrated using GaAs/AlGaAs multiple-quantum-well nonlinear etalons that are compatible with diode-laser sources, and the relationship between differential gain and device response time is established through a thorough investigation of the switching dynamics. Preliminary results also indicate that optical fibers can be used as interconnects between optical logic gates. Picosecond all-optical switching with good (> 3:1) contrast is demonstrated for the first time in single-mode strip-loaded GaAs/AlGaAs nonlinear directional couplers (NLDC's). The anisotropy of quantum-well structure to light polarization is used to achieve polarization-dependent two-beam switching, and the optical Stark effect is used to demonstrate all-optical modulation in an NLDC with subpicosecond recovery time.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Switching circuits.; Optical data processing.; Computers, Optical.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Gibbs, Hyatt M.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleNonlinear etalons and nonlinear waveguides as decision-making elements in photonic switching.en_US
dc.creatorJin, Ruxiang.en_US
dc.contributor.authorJin, Ruxiang.en_US
dc.date.issued1989en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation describes our recent results in the study of various types of photonic switches. Special attention is given to the devices with Fabry-Perot etalon or planar waveguide structures based on dispersive optical nonlinearities. Basic optical logic functions, such as digital pattern recognition, symbolic substitution, and all-optical compare-and-exchange operation are demonstrated using ZnS and ZnSe nonlinear interference filters. Differential gain, cascading, and optical latching circuits are demonstrated using GaAs/AlGaAs multiple-quantum-well nonlinear etalons that are compatible with diode-laser sources, and the relationship between differential gain and device response time is established through a thorough investigation of the switching dynamics. Preliminary results also indicate that optical fibers can be used as interconnects between optical logic gates. Picosecond all-optical switching with good (> 3:1) contrast is demonstrated for the first time in single-mode strip-loaded GaAs/AlGaAs nonlinear directional couplers (NLDC's). The anisotropy of quantum-well structure to light polarization is used to achieve polarization-dependent two-beam switching, and the optical Stark effect is used to demonstrate all-optical modulation in an NLDC with subpicosecond recovery time.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectSwitching circuits.en_US
dc.subjectOptical data processing.en_US
dc.subjectComputers, Optical.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGibbs, Hyatt M.en_US
dc.contributor.committeememberKoch, Stephan W.en_US
dc.contributor.committeememberKhitrova, Galinaen_US
dc.contributor.committeememberJones, Roger C.en_US
dc.identifier.proquest9003488en_US
dc.identifier.oclc703263192en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.