Dynamic management of multichannel interfaces for human interaction with computer-based intelligent assistants.

Persistent Link:
http://hdl.handle.net/10150/184793
Title:
Dynamic management of multichannel interfaces for human interaction with computer-based intelligent assistants.
Author:
Strickland, Ted John, Jr.
Issue Date:
1989
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
For complex man-machine tasks where multi-media interaction with computer-based assistants is appropriate, a portion of the assistant's intelligence must be devoted to managing its communication processes with the user. Since people often serve the role of assistants, the conventions of human communication provide a basis for designing the communication processes of the computer-based assistant. Human decision making for communication requires knowledge of the user's style, the task demands, and communication practices, and knowledge of the current situation. Decisions necessary for effective communication, when, how, and what to communicate, can be expressed using these knowledge sources. A system based on human communication rules was developed to manage the communication decisions of an intelligent assistant. The Dynamic Communication Management (DCM) system consists of four components, three models and a manager. The model of the user describes the user's communication preferences for different task situations. The model of the task is used to establish the user's current activity and to describe how communication should be conducted for this activity. The communication model provides the rules needed to make decisions: when to communicate the message, how to present the message to the user, and what information should be communicated. The Communication Manager controls and coordinates these models to conduct all communication with the user. Performance with DCM as the interface to a simulated Flexible Manufacturing System (FMS) control task was established to learn about the potential benefits of the concept. An initial comparison showed no improvement over a keyboard and monitor interface, but provided performance data which exposed the differences in information needed for decision making using auditory and visual communication. This knowledge and related performance data were used to redesign features of the DCM. The redesigned DCM significantly improved all aspects of system performance compared to the keyboard and monitor interface. The FMS performance measures and performance on a secondary task improved, user communication behavior was changed favorably, and users preferred the advanced features of DCM. These types of benefits can potentially accrue for a variety of tasks where multi-media communication with computer-based intelligent assistants is managed with DCM.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Human-machine systems.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Systems and Industrial Engineering; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Ferrell, W. R.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDynamic management of multichannel interfaces for human interaction with computer-based intelligent assistants.en_US
dc.creatorStrickland, Ted John, Jr.en_US
dc.contributor.authorStrickland, Ted John, Jr.en_US
dc.date.issued1989en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractFor complex man-machine tasks where multi-media interaction with computer-based assistants is appropriate, a portion of the assistant's intelligence must be devoted to managing its communication processes with the user. Since people often serve the role of assistants, the conventions of human communication provide a basis for designing the communication processes of the computer-based assistant. Human decision making for communication requires knowledge of the user's style, the task demands, and communication practices, and knowledge of the current situation. Decisions necessary for effective communication, when, how, and what to communicate, can be expressed using these knowledge sources. A system based on human communication rules was developed to manage the communication decisions of an intelligent assistant. The Dynamic Communication Management (DCM) system consists of four components, three models and a manager. The model of the user describes the user's communication preferences for different task situations. The model of the task is used to establish the user's current activity and to describe how communication should be conducted for this activity. The communication model provides the rules needed to make decisions: when to communicate the message, how to present the message to the user, and what information should be communicated. The Communication Manager controls and coordinates these models to conduct all communication with the user. Performance with DCM as the interface to a simulated Flexible Manufacturing System (FMS) control task was established to learn about the potential benefits of the concept. An initial comparison showed no improvement over a keyboard and monitor interface, but provided performance data which exposed the differences in information needed for decision making using auditory and visual communication. This knowledge and related performance data were used to redesign features of the DCM. The redesigned DCM significantly improved all aspects of system performance compared to the keyboard and monitor interface. The FMS performance measures and performance on a secondary task improved, user communication behavior was changed favorably, and users preferred the advanced features of DCM. These types of benefits can potentially accrue for a variety of tasks where multi-media communication with computer-based intelligent assistants is managed with DCM.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectHuman-machine systems.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineSystems and Industrial Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorFerrell, W. R.en_US
dc.contributor.committeememberBahill, A. T.en_US
dc.contributor.committeememberAskin, Ronald G.en_US
dc.contributor.committeememberVogel, D. R.en_US
dc.identifier.proquest9000784en_US
dc.identifier.oclc703254607en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.