Dithiafulvene (1,3-dithiole) and acrylate liquid crystals: Synthesis of monomers and polymers with possible electronic and electro-optic applications, and investigations in the synthesis of pure (meth)acrylates.

Persistent Link:
http://hdl.handle.net/10150/184777
Title:
Dithiafulvene (1,3-dithiole) and acrylate liquid crystals: Synthesis of monomers and polymers with possible electronic and electro-optic applications, and investigations in the synthesis of pure (meth)acrylates.
Author:
Evans, Stacy Alexandria Banford.
Issue Date:
1989
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In this work, using the idea of an electrically conducting "functional unit," monomers and polymers with possible electronic and electro-optic applications were synthesized. The synthesis and polymerizations were, in many cases, novel and non-trivial. Dithiafulvene (1,3-dithiole) and variations of this functional unit were synthesized and incorporated into new condensation polymers. Polyesters, polyamides and polyhydrazones were all successfully synthesized and could be cast into films. These new polymers might be applicable as processable conducting materials if compatible dopants are employed or by themselves in the area of third order non-linear optics. Using a (meth)acrylate backbone, a spacer group of six methylene units, and a phenyl-CO₂-phenyl mesogen, linked by an ester group to a strongly polar optically active center containing a methoxy group, three new novel monomers and polymers were designed to exhibit smectic C* liquid-crystal phases. The polymers exhibited liquid crystalline behavior as was shown in differential scanning calorimetry and optical microscopy. Further studies and investigations in the synthesis of pure (meth)acrylate esters and their homopolymers yielded surprising results with regard to the Schotten-Baumann reaction. Interestingly, the use of meth(acryloyl) chloride in this scheme leads to (meth)acrylic anhydride, which is not easily isolable from distillable products. This anhydride is responsible for gelation in the polymerization of glycolate esters, and cannot be removed by work-up with various nucleophiles without disrupting desired ester functions. An S(N)2 method is recommended in this work.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Monomers -- Electric properties.; Polymerization.; Polymers -- Electric properties.; Polymer liquid crystals.; Organic conductors.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Chemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Hall, H. K.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDithiafulvene (1,3-dithiole) and acrylate liquid crystals: Synthesis of monomers and polymers with possible electronic and electro-optic applications, and investigations in the synthesis of pure (meth)acrylates.en_US
dc.creatorEvans, Stacy Alexandria Banford.en_US
dc.contributor.authorEvans, Stacy Alexandria Banford.en_US
dc.date.issued1989en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn this work, using the idea of an electrically conducting "functional unit," monomers and polymers with possible electronic and electro-optic applications were synthesized. The synthesis and polymerizations were, in many cases, novel and non-trivial. Dithiafulvene (1,3-dithiole) and variations of this functional unit were synthesized and incorporated into new condensation polymers. Polyesters, polyamides and polyhydrazones were all successfully synthesized and could be cast into films. These new polymers might be applicable as processable conducting materials if compatible dopants are employed or by themselves in the area of third order non-linear optics. Using a (meth)acrylate backbone, a spacer group of six methylene units, and a phenyl-CO₂-phenyl mesogen, linked by an ester group to a strongly polar optically active center containing a methoxy group, three new novel monomers and polymers were designed to exhibit smectic C* liquid-crystal phases. The polymers exhibited liquid crystalline behavior as was shown in differential scanning calorimetry and optical microscopy. Further studies and investigations in the synthesis of pure (meth)acrylate esters and their homopolymers yielded surprising results with regard to the Schotten-Baumann reaction. Interestingly, the use of meth(acryloyl) chloride in this scheme leads to (meth)acrylic anhydride, which is not easily isolable from distillable products. This anhydride is responsible for gelation in the polymerization of glycolate esters, and cannot be removed by work-up with various nucleophiles without disrupting desired ester functions. An S(N)2 method is recommended in this work.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectMonomers -- Electric properties.en_US
dc.subjectPolymerization.en_US
dc.subjectPolymers -- Electric properties.en_US
dc.subjectPolymer liquid crystals.en_US
dc.subjectOrganic conductors.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHall, H. K.en_US
dc.identifier.proquest9000771en_US
dc.identifier.oclc702682505en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.