Adaptation, history, and development in the evolution of a desert annual life history.

Persistent Link:
http://hdl.handle.net/10150/184710
Title:
Adaptation, history, and development in the evolution of a desert annual life history.
Author:
Fox, Gordon Allen.
Issue Date:
1989
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Individuals of Eriogonum abertianum Torr. (Polygonaceae) flower in spring, or following onset of summer rains, or both. Within populations flowering time is mainly environmentally determined: there is little genetic variance for flowering time, and experimental moisture limitation significantly delays flowering. In the field a Sonoran Desert population experienced significantly more mortality during the foresummer droughts, and had a significantly greater proportion of spring-flowering plants, than a Chihuahuan Desert population. Greenhouse experiments suggest a genetic basis for differences in size and time of flowering between these populations. Fossil and biogeographic evidence support an adaptive interpretation of earlier flowering in the Sonoran Desert. A model of selection comparing spring-plus-summer flowering with spring-only flowering suggests that expected summer fecundity may not offset the risk of foresummer mortality in the Sonoran population. Rather than switching to a spring-only habit as predicted by the model, the species' range ends where summer rainfall declines abruptly. The invariance of the spring-plus-summer habit is not explained by the demographic, historical, or genetic data. Plants which live for more than a year in the wild have offspring which, in the greenhouse, live longer than the offspring of the general population. This suggests a genetic basis for the occasional observed perennation. Analysis of a quantitative genetic model suggests that when adult survivorship is low, selection will generally reduce perennation. The annual habit is thus likely to persist even in the presence of genetic variation for perennation. Optimal control models of plant carbon allocation are extended to include within-season mortality and allometric growth constraints. When parameters are varied in numerical experiments, resulting predictions for easily measurable characters (e.g., time to first flower) often vary only slightly; most differences are in fitness, suggesting that satisfactory empirical tests may be difficult to conduct. Arbitrary mortality functions can optimally lead to multiple flowering episodes, and this can depend sensitively on parameter values. Optimal trajectories with allometric constraints are divided into a period of vegetative growth and another period of mixed growth.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Desert plants.; Plants -- Evolution.; Plants -- Adaptation.; Eriogonum -- Arizona -- Flowering.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Ecology and Evolutionary Biology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Schaffer, William M.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleAdaptation, history, and development in the evolution of a desert annual life history.en_US
dc.creatorFox, Gordon Allen.en_US
dc.contributor.authorFox, Gordon Allen.en_US
dc.date.issued1989en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIndividuals of Eriogonum abertianum Torr. (Polygonaceae) flower in spring, or following onset of summer rains, or both. Within populations flowering time is mainly environmentally determined: there is little genetic variance for flowering time, and experimental moisture limitation significantly delays flowering. In the field a Sonoran Desert population experienced significantly more mortality during the foresummer droughts, and had a significantly greater proportion of spring-flowering plants, than a Chihuahuan Desert population. Greenhouse experiments suggest a genetic basis for differences in size and time of flowering between these populations. Fossil and biogeographic evidence support an adaptive interpretation of earlier flowering in the Sonoran Desert. A model of selection comparing spring-plus-summer flowering with spring-only flowering suggests that expected summer fecundity may not offset the risk of foresummer mortality in the Sonoran population. Rather than switching to a spring-only habit as predicted by the model, the species' range ends where summer rainfall declines abruptly. The invariance of the spring-plus-summer habit is not explained by the demographic, historical, or genetic data. Plants which live for more than a year in the wild have offspring which, in the greenhouse, live longer than the offspring of the general population. This suggests a genetic basis for the occasional observed perennation. Analysis of a quantitative genetic model suggests that when adult survivorship is low, selection will generally reduce perennation. The annual habit is thus likely to persist even in the presence of genetic variation for perennation. Optimal control models of plant carbon allocation are extended to include within-season mortality and allometric growth constraints. When parameters are varied in numerical experiments, resulting predictions for easily measurable characters (e.g., time to first flower) often vary only slightly; most differences are in fitness, suggesting that satisfactory empirical tests may be difficult to conduct. Arbitrary mortality functions can optimally lead to multiple flowering episodes, and this can depend sensitively on parameter values. Optimal trajectories with allometric constraints are divided into a period of vegetative growth and another period of mixed growth.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDesert plants.en_US
dc.subjectPlants -- Evolution.en_US
dc.subjectPlants -- Adaptation.en_US
dc.subjectEriogonum -- Arizona -- Flowering.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineEcology and Evolutionary Biologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSchaffer, William M.en_US
dc.contributor.committeememberIstock, Conrad A.en_US
dc.contributor.committeememberVleck, David J.en_US
dc.contributor.committeememberTelewski, Frank W.en_US
dc.identifier.proquest8919033en_US
dc.identifier.oclc702417538en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.