Genetic and molecular analyses of mitochondrial inheritance and cytoplasmic male sterility in alfalfa.

Persistent Link:
http://hdl.handle.net/10150/184575
Title:
Genetic and molecular analyses of mitochondrial inheritance and cytoplasmic male sterility in alfalfa.
Author:
Fairbanks, Daniel Justin.
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Biparental inheritance of plastids has been demonstrated in approximately one-third of angiosperm species examined, although the species studied may not be representative of angiosperms in general. Biparental inheritance of mitochondria in angiosperms has been observed in only one case. Since essential cellular functions, as well as several important agronomic traits, are encoded by plant extranuclear genomes, biparental inheritance of organelles has important implications for plant genetics and breeding. Evidence of biparental inheritance of plastids in alfalfa (Medicago sativa L.) suggests the possibility that mitochondria may likewise be inherited biparentally. The objectives of this dissertation were to determine: (1) the inheritance of mitochondria in alfalfa (uniparental or biparental), and (2) the inheritance of cytoplasmic male sterility and the extent of male fertility restoration in single and population crosses of alfalfa. Several large RNA molecules observed in alfalfa mitochondrial preparations were inherited biparentally. These molecules were unaffected by RNase A added to preparations of intact mitochondria indicating that the RNA's were contained within an RNase impermeable compartment. Linear sucrose gradient purification failed to separate the RNA's from mitochondria and examination of sucrose gradient fractions using transmission electron microscopy (performed by J. K. Brown, Dept. of Plant Pathology, Univ. of Arizona) revealed that mitochondrial preparations were free of contamination by virus-like particles and other organelles. These results indicated that the large RNA's were contained within the mitochondrion. The inheritance of large mitochondrial RNA's in alfalfa provided evidence that mitochondria are inherited biparentally in this species. Association of cytoplasmic male sterility with a particular organelle has not been determined in alfalfa, although the mitochondrion has been implicated in several other species. Analysis of progeny from single and population crosses provided evidence of biparental inheritance of cytoplasmic male sterility. Biparental cytoplasmic inheritance as well as nuclear inheritance may influence male fertility restoration.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Alfalfa -- Microbiology.; Alfalfa -- Genetics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Plant Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Smith, Steven

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleGenetic and molecular analyses of mitochondrial inheritance and cytoplasmic male sterility in alfalfa.en_US
dc.creatorFairbanks, Daniel Justin.en_US
dc.contributor.authorFairbanks, Daniel Justin.en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractBiparental inheritance of plastids has been demonstrated in approximately one-third of angiosperm species examined, although the species studied may not be representative of angiosperms in general. Biparental inheritance of mitochondria in angiosperms has been observed in only one case. Since essential cellular functions, as well as several important agronomic traits, are encoded by plant extranuclear genomes, biparental inheritance of organelles has important implications for plant genetics and breeding. Evidence of biparental inheritance of plastids in alfalfa (Medicago sativa L.) suggests the possibility that mitochondria may likewise be inherited biparentally. The objectives of this dissertation were to determine: (1) the inheritance of mitochondria in alfalfa (uniparental or biparental), and (2) the inheritance of cytoplasmic male sterility and the extent of male fertility restoration in single and population crosses of alfalfa. Several large RNA molecules observed in alfalfa mitochondrial preparations were inherited biparentally. These molecules were unaffected by RNase A added to preparations of intact mitochondria indicating that the RNA's were contained within an RNase impermeable compartment. Linear sucrose gradient purification failed to separate the RNA's from mitochondria and examination of sucrose gradient fractions using transmission electron microscopy (performed by J. K. Brown, Dept. of Plant Pathology, Univ. of Arizona) revealed that mitochondrial preparations were free of contamination by virus-like particles and other organelles. These results indicated that the large RNA's were contained within the mitochondrion. The inheritance of large mitochondrial RNA's in alfalfa provided evidence that mitochondria are inherited biparentally in this species. Association of cytoplasmic male sterility with a particular organelle has not been determined in alfalfa, although the mitochondrion has been implicated in several other species. Analysis of progeny from single and population crosses provided evidence of biparental inheritance of cytoplasmic male sterility. Biparental cytoplasmic inheritance as well as nuclear inheritance may influence male fertility restoration.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectAlfalfa -- Microbiology.en_US
dc.subjectAlfalfa -- Genetics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePlant Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSmith, Stevenen_US
dc.contributor.committeememberMcCoy, Thomas J.en_US
dc.contributor.committeememberRay, Dennist T.en_US
dc.identifier.proquest8906386en_US
dc.identifier.oclc701552698en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.