Applications of the magneto-optical Kerr effect to studies of stratified magnetic media.

Persistent Link:
http://hdl.handle.net/10150/184557
Title:
Applications of the magneto-optical Kerr effect to studies of stratified magnetic media.
Author:
Deeter, Merritt Norton.
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Three applications of Smith's model of magneto-optical effects in stratified magnetic media are presented. Each application involves the incident-angle dependence of magneto-optical effects which Smith's model treats explicitly. In addition. the three applications address current issues in magnetic and magneto-optical recording. The first problem considered is that of nonmagnetic surface layers which form on magnetic recording heads. The second is a theoretical treatment of effects which arise in magneto-optical recording when high numerical-aperture optical systems are combined with media exhibiting interference-enhanced optical properties. The final application is a novel technique for determining the entire dielectric tensor of materials used for magneto-optical recording. The incident-angle dependence of the longitudinal Kerr effect is employed to study nonmagnetic surface layers which form on ferrite recording heads. Calculations based on the Smith model show a correlation between the inert-layer thickness and the incident-angle dependence of the longitudinal Kerr effect. Experimental results confirm the shift in the angular position of the signal peak. in agreement with the theory for finite inert-layer thickness. An unambiguous determination of the inert-layer thickness for ferrite materials is prevented because of a periodic dependence of the peak angle on the inert-layer thickness. Jones-matrix algebra is used with the Smith model to quantitatively determine the effects of obliquely-incident rays on the reflectance and magneto-optical readout signals for various magneto-optical media structures. The most antireflective structure is found to be very sensitive to incident-angle effects. Structures with moderate reflectance (>10%). however. are not significantly affected by incident-angle effects. Finally. a technique for the determination of the optical and magneto-optical constants from multiple incident-angle measurements of reflectance and Kerr rotation is presented. The experimental system employs a Helium-Neon laser and a rotating differential detection system. The technique is used to investigate the optical properties of a series of Cu/Co multilayers and a comparison with a model based on the bulk optical. constants of Cu and Co is made. Anomalous behavior is observed for multilayers with very thin periods.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Kerr effect.; Magnetooptics.; Optical storage devices.; Reflectance.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Sarid, Dror

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleApplications of the magneto-optical Kerr effect to studies of stratified magnetic media.en_US
dc.creatorDeeter, Merritt Norton.en_US
dc.contributor.authorDeeter, Merritt Norton.en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThree applications of Smith's model of magneto-optical effects in stratified magnetic media are presented. Each application involves the incident-angle dependence of magneto-optical effects which Smith's model treats explicitly. In addition. the three applications address current issues in magnetic and magneto-optical recording. The first problem considered is that of nonmagnetic surface layers which form on magnetic recording heads. The second is a theoretical treatment of effects which arise in magneto-optical recording when high numerical-aperture optical systems are combined with media exhibiting interference-enhanced optical properties. The final application is a novel technique for determining the entire dielectric tensor of materials used for magneto-optical recording. The incident-angle dependence of the longitudinal Kerr effect is employed to study nonmagnetic surface layers which form on ferrite recording heads. Calculations based on the Smith model show a correlation between the inert-layer thickness and the incident-angle dependence of the longitudinal Kerr effect. Experimental results confirm the shift in the angular position of the signal peak. in agreement with the theory for finite inert-layer thickness. An unambiguous determination of the inert-layer thickness for ferrite materials is prevented because of a periodic dependence of the peak angle on the inert-layer thickness. Jones-matrix algebra is used with the Smith model to quantitatively determine the effects of obliquely-incident rays on the reflectance and magneto-optical readout signals for various magneto-optical media structures. The most antireflective structure is found to be very sensitive to incident-angle effects. Structures with moderate reflectance (>10%). however. are not significantly affected by incident-angle effects. Finally. a technique for the determination of the optical and magneto-optical constants from multiple incident-angle measurements of reflectance and Kerr rotation is presented. The experimental system employs a Helium-Neon laser and a rotating differential detection system. The technique is used to investigate the optical properties of a series of Cu/Co multilayers and a comparison with a model based on the bulk optical. constants of Cu and Co is made. Anomalous behavior is observed for multilayers with very thin periods.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectKerr effect.en_US
dc.subjectMagnetooptics.en_US
dc.subjectOptical storage devices.en_US
dc.subjectReflectance.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSarid, Droren_US
dc.contributor.committeememberFalco, Charles M.en_US
dc.contributor.committeememberBurke, James J.en_US
dc.identifier.proquest8905912en_US
dc.identifier.oclc701553140en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.