Characterization and evaluation of a photostimulable phosphor x ray imaging system.

Persistent Link:
http://hdl.handle.net/10150/184529
Title:
Characterization and evaluation of a photostimulable phosphor x ray imaging system.
Author:
Yocky, David Alan.
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation presents the characterization and evaluation of a new radiological imaging modality, Toshiba Computed Radiography (TCR) 201. The characteristics of the TCR storage phosphor imaging plates such as energy-dependent x-ray quantum efficiency, stored signal decay, low exposure rate signal build-up, and spontaneous and stimulated gain measures are presented. The TCR 201 system is characterized by the signal transfer curve, the total root-mean-squared (rms) output noise, the signal-to-noise ratio, the modulation transfer function (MTF), its noise power spectrum (NPS), and the detective quantum efficiency (DQE). The system rms noise is photon-limited for exposures less than 1.0 mR, but has contributions from phosphor structure and quantization noise for exposures higher than 1.0 mR. The phosphor's information factor is shown to explain deviations from ideal photon-limited noise for exposures of less than 1.0 mR. The MTF of the system is measured for standard imaging plates, 10% at 2.8 lp/mm, and for high resolution imaging plates, 10% at 4.4 lp/mm. An expression for the NPS is statistically derived, and experimental measurements confirm the expression and show an increase in uncorrelated noise power above 1.0 mR which is consistent with rms measurements. Expressions for the DQE are presented. A psychophysical study is performed to directly compare the TCR to film/screen combinations in imaging low-contrast objects. The results of this study show the TCR provides better images for detectability as a function of exposure. Also, the use of the TCR 201 as a two dimensional dosimeter and in single-shot dual energy subtraction is presented.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Diagnostic imaging -- Digital techniques.; X-rays.; Diagnosis, Radioscopic -- Equipment and supplies.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Roehrig, Hans

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleCharacterization and evaluation of a photostimulable phosphor x ray imaging system.en_US
dc.creatorYocky, David Alan.en_US
dc.contributor.authorYocky, David Alan.en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation presents the characterization and evaluation of a new radiological imaging modality, Toshiba Computed Radiography (TCR) 201. The characteristics of the TCR storage phosphor imaging plates such as energy-dependent x-ray quantum efficiency, stored signal decay, low exposure rate signal build-up, and spontaneous and stimulated gain measures are presented. The TCR 201 system is characterized by the signal transfer curve, the total root-mean-squared (rms) output noise, the signal-to-noise ratio, the modulation transfer function (MTF), its noise power spectrum (NPS), and the detective quantum efficiency (DQE). The system rms noise is photon-limited for exposures less than 1.0 mR, but has contributions from phosphor structure and quantization noise for exposures higher than 1.0 mR. The phosphor's information factor is shown to explain deviations from ideal photon-limited noise for exposures of less than 1.0 mR. The MTF of the system is measured for standard imaging plates, 10% at 2.8 lp/mm, and for high resolution imaging plates, 10% at 4.4 lp/mm. An expression for the NPS is statistically derived, and experimental measurements confirm the expression and show an increase in uncorrelated noise power above 1.0 mR which is consistent with rms measurements. Expressions for the DQE are presented. A psychophysical study is performed to directly compare the TCR to film/screen combinations in imaging low-contrast objects. The results of this study show the TCR provides better images for detectability as a function of exposure. Also, the use of the TCR 201 as a two dimensional dosimeter and in single-shot dual energy subtraction is presented.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDiagnostic imaging -- Digital techniques.en_US
dc.subjectX-rays.en_US
dc.subjectDiagnosis, Radioscopic -- Equipment and supplies.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorRoehrig, Hansen_US
dc.contributor.committeememberDallas, William J.en_US
dc.contributor.committeememberSeeley, George W.en_US
dc.contributor.committeememberDereniak, Eustace L.en_US
dc.identifier.proquest8902364en_US
dc.identifier.oclc701551733en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.