Oligosaccharides of mouse immunoglobulin-M: Structural variations in hybridoma and myeloma cells.

Persistent Link:
http://hdl.handle.net/10150/184496
Title:
Oligosaccharides of mouse immunoglobulin-M: Structural variations in hybridoma and myeloma cells.
Author:
Samaraweera, Preminda.
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Many protein-linked oligosaccharides are believed to impart biological specificities to the molecules. The knowledge of detailed structural characteristics of oligosaccharides is essential for understanding their functions. In order to develop methodology for characterization of oligosaccharides of glycoproteins, and to compare glycosylation patterns of different immunoglobulins, oligosaccharides of IgM from two cell lines, MOPC 104E and PC 700, were analyzed. Homogeneous preparations of glycopeptides carrying individual glycosylation sites of the heavy chain were obtained from the two IgM's. The oligosaccharides of these glycopeptides were prepared by hydrazinolysis, and fractionated by HPLC under conditions that resolve oligosaccharides by charge and size, and by affinity chromatography on Concavalin A-Sepharose. Structures of some of these oligosaccharides were determined by 400 MHz NMR spectroscopy. HPLC fractionation by charge resolved oligosaccharides with zero, one, two, and three sialic acids. As indicated by HPLC analyses, oligosaccharides at all the glycosylation sites of both the IgM's were highly heterogeneous. A comparative study on oligosaccharides prepared by peptide-N-glycosidase F digestion of glycopeptides showed a similar degree of heterogeneity. Therefore, it was concluded that the observed heterogeneity of oligosaccharides was not an artefact caused by hydrazinolysis. Major differences between the glycosylation patterns of the two IgM's were evident from analyses of the oligosaccharides by both chromatographic techniques and NMR spectroscopy. MOPC IgM contained a high proportion of sialylated oligosaccharides when compared to PC IgM. Furthermore, the major oligosaccharide structures of MOPC IgM were of triantennary type whereas PC IgM contained biantennary oligosaccharides as its major species. In both the IgM's, a decreased trend of oligosaccharide processing was observed from the N-terminus to the C-terminus.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Oligosaccharides.; Glycoproteins.; Immunoglobulin M.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Biochemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Grimes, William J.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleOligosaccharides of mouse immunoglobulin-M: Structural variations in hybridoma and myeloma cells.en_US
dc.creatorSamaraweera, Preminda.en_US
dc.contributor.authorSamaraweera, Preminda.en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMany protein-linked oligosaccharides are believed to impart biological specificities to the molecules. The knowledge of detailed structural characteristics of oligosaccharides is essential for understanding their functions. In order to develop methodology for characterization of oligosaccharides of glycoproteins, and to compare glycosylation patterns of different immunoglobulins, oligosaccharides of IgM from two cell lines, MOPC 104E and PC 700, were analyzed. Homogeneous preparations of glycopeptides carrying individual glycosylation sites of the heavy chain were obtained from the two IgM's. The oligosaccharides of these glycopeptides were prepared by hydrazinolysis, and fractionated by HPLC under conditions that resolve oligosaccharides by charge and size, and by affinity chromatography on Concavalin A-Sepharose. Structures of some of these oligosaccharides were determined by 400 MHz NMR spectroscopy. HPLC fractionation by charge resolved oligosaccharides with zero, one, two, and three sialic acids. As indicated by HPLC analyses, oligosaccharides at all the glycosylation sites of both the IgM's were highly heterogeneous. A comparative study on oligosaccharides prepared by peptide-N-glycosidase F digestion of glycopeptides showed a similar degree of heterogeneity. Therefore, it was concluded that the observed heterogeneity of oligosaccharides was not an artefact caused by hydrazinolysis. Major differences between the glycosylation patterns of the two IgM's were evident from analyses of the oligosaccharides by both chromatographic techniques and NMR spectroscopy. MOPC IgM contained a high proportion of sialylated oligosaccharides when compared to PC IgM. Furthermore, the major oligosaccharide structures of MOPC IgM were of triantennary type whereas PC IgM contained biantennary oligosaccharides as its major species. In both the IgM's, a decreased trend of oligosaccharide processing was observed from the N-terminus to the C-terminus.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectOligosaccharides.en_US
dc.subjectGlycoproteins.en_US
dc.subjectImmunoglobulin M.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineBiochemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGrimes, William J.en_US
dc.contributor.committeememberLaw, John H.en_US
dc.contributor.committeememberLittle, John W.en_US
dc.contributor.committeememberHewlett, Martinez J.en_US
dc.contributor.committeememberMount, David W.en_US
dc.identifier.proquest8824288en_US
dc.identifier.oclc701368138en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.