Electrochemical and structural studies of one-dimensional copper charge transfer complexes.

Persistent Link:
http://hdl.handle.net/10150/184493
Title:
Electrochemical and structural studies of one-dimensional copper charge transfer complexes.
Author:
Pyrka, Gloria Jean.
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The electrochemistry of solid electrodes of charge transfer complexes of tetracyanoquinodimethane (TCNQ) and copper complexes with nitrogen containing chelates, such and dipyridylamine (dpaH), bipyridyl (bpy) and 1,10-dimethyl-2,9-phenanthroline (dmp), has been investigated with cyclic voltammetry. Pressed pellet electrodes of these complexes exhibit a broad electrochemically stable region. The oxidative and reductive breakdown reactions involve solid state reactions into the bulk electrode. These materials also act as electron mediators for glucose oxidation in glucose oxidase modified electrodes. The structure of the model compound, copper(I)(dpaH)₂Cl has been determined to have a distorted tetrahedral coordination sphere. The electrochemistry of solid electrodes of charge transfer complexes of tetrathiafulvalene (TTF) with copper chloride and copper bromide has been investigated with cyclic voltammetry. Pressed pellet electrodes do not exhibit a broad stable region, as do the TCNQ complexes. A preliminary structure of the organic part of tetramethyltetraselenafulvalene copper chloride has been determined from the solution of the Patterson function and exhibits a displacive modulation with a repeat unit of seven TMTSF molecules. (TTF)(SCN)₀ͺ₆₆ and (TTF)Cu(SCN)₂ have been investigated by infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. (TTF)(SCN)₀ͺ₆₆ crystallized in a tetragonal space group with a disordered column of thiocyanate anions. (TTF)Cu(SCN)₂ is an insulator with a two-dimensional network of Cu(SCN)₂⁻ ions. X-ray crystal structures of four compounds prepared in association with copper complex chemistry have been determined; (1) 5,5'-dibromo-2,2'-bithiophene, (2) 3,5,5'-tribromo-2,2'-bithiophene, (3) Cu(dmp)(CN)₂ ⁻ · Bu₄N⁺ and (4) the 1:2 adduct of dimercaptosuccinic acid and dimethylformamide.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Copper compounds -- Structure.; Copper compounds -- Spectra.; Complex compounds -- Structure.; Complex compounds -- Spectra.; Complex compounds -- Electric properties.; Electrochemistry.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Chemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Fernando, Quintus

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleElectrochemical and structural studies of one-dimensional copper charge transfer complexes.en_US
dc.creatorPyrka, Gloria Jean.en_US
dc.contributor.authorPyrka, Gloria Jean.en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe electrochemistry of solid electrodes of charge transfer complexes of tetracyanoquinodimethane (TCNQ) and copper complexes with nitrogen containing chelates, such and dipyridylamine (dpaH), bipyridyl (bpy) and 1,10-dimethyl-2,9-phenanthroline (dmp), has been investigated with cyclic voltammetry. Pressed pellet electrodes of these complexes exhibit a broad electrochemically stable region. The oxidative and reductive breakdown reactions involve solid state reactions into the bulk electrode. These materials also act as electron mediators for glucose oxidation in glucose oxidase modified electrodes. The structure of the model compound, copper(I)(dpaH)₂Cl has been determined to have a distorted tetrahedral coordination sphere. The electrochemistry of solid electrodes of charge transfer complexes of tetrathiafulvalene (TTF) with copper chloride and copper bromide has been investigated with cyclic voltammetry. Pressed pellet electrodes do not exhibit a broad stable region, as do the TCNQ complexes. A preliminary structure of the organic part of tetramethyltetraselenafulvalene copper chloride has been determined from the solution of the Patterson function and exhibits a displacive modulation with a repeat unit of seven TMTSF molecules. (TTF)(SCN)₀ͺ₆₆ and (TTF)Cu(SCN)₂ have been investigated by infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. (TTF)(SCN)₀ͺ₆₆ crystallized in a tetragonal space group with a disordered column of thiocyanate anions. (TTF)Cu(SCN)₂ is an insulator with a two-dimensional network of Cu(SCN)₂⁻ ions. X-ray crystal structures of four compounds prepared in association with copper complex chemistry have been determined; (1) 5,5'-dibromo-2,2'-bithiophene, (2) 3,5,5'-tribromo-2,2'-bithiophene, (3) Cu(dmp)(CN)₂ ⁻ · Bu₄N⁺ and (4) the 1:2 adduct of dimercaptosuccinic acid and dimethylformamide.en_US
dc.description.noteDigitization note: p.90 and 126 missing from paper original.-
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectCopper compounds -- Structure.en_US
dc.subjectCopper compounds -- Spectra.en_US
dc.subjectComplex compounds -- Structure.en_US
dc.subjectComplex compounds -- Spectra.en_US
dc.subjectComplex compounds -- Electric properties.en_US
dc.subjectElectrochemistry.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorFernando, Quintusen_US
dc.identifier.proquest8824285en_US
dc.identifier.oclc701369951en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.