Constitutive modeling and plastic analysis with application to beam-to-column connections.

Persistent Link:
http://hdl.handle.net/10150/184486
Title:
Constitutive modeling and plastic analysis with application to beam-to-column connections.
Author:
Islam, Mohammad Aminul.
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Analysis and design of connections, such as beam-to-column connections, pose various complexities such as nonlinear behavior of material and geometric condition, irregularities in geometry and boundary condition. The main purpose of these types of connections is to provide adequate structural strength and a sufficiently stiff structure at working loads, and to possess sufficient ductility and strength at overloads such as may occur during a major earthquake. At present the design profession does not have established guidelines for estimating the ultimate moment and shear capacity of these connections. The assumption of linear elastic material behavior of the connections is no longer valid when the elements are stressed beyond the yield stress of the material. For such problems encountered in the design of typical structures, either the closed-form analytical solutions are extremely complex or cannot be obtained at all. Thus, numerical techniques such as finite difference, finite element and boundary integral methods are used. In this study, a finite element program is developed for plastic analysis of connections such as beam-to-column connection using a constitutive law of the material, a three parameter stress-strain relationship, which gives stress explicitly in terms of strain. One hundred and fifteen cases of beam-to-column connections subjected to moment are analysed with the finite element program developed in this study, and the results are compared with the existing approximate solution by yield line theory to propose a simple formula to correlate actual ultimate capacity to the approximate solution.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Joints (Engineering); Strains and stresses.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Civil Engineering and Engineering Mechanics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Richard, R. M.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleConstitutive modeling and plastic analysis with application to beam-to-column connections.en_US
dc.creatorIslam, Mohammad Aminul.en_US
dc.contributor.authorIslam, Mohammad Aminul.en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAnalysis and design of connections, such as beam-to-column connections, pose various complexities such as nonlinear behavior of material and geometric condition, irregularities in geometry and boundary condition. The main purpose of these types of connections is to provide adequate structural strength and a sufficiently stiff structure at working loads, and to possess sufficient ductility and strength at overloads such as may occur during a major earthquake. At present the design profession does not have established guidelines for estimating the ultimate moment and shear capacity of these connections. The assumption of linear elastic material behavior of the connections is no longer valid when the elements are stressed beyond the yield stress of the material. For such problems encountered in the design of typical structures, either the closed-form analytical solutions are extremely complex or cannot be obtained at all. Thus, numerical techniques such as finite difference, finite element and boundary integral methods are used. In this study, a finite element program is developed for plastic analysis of connections such as beam-to-column connection using a constitutive law of the material, a three parameter stress-strain relationship, which gives stress explicitly in terms of strain. One hundred and fifteen cases of beam-to-column connections subjected to moment are analysed with the finite element program developed in this study, and the results are compared with the existing approximate solution by yield line theory to propose a simple formula to correlate actual ultimate capacity to the approximate solution.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectJoints (Engineering)en_US
dc.subjectStrains and stresses.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineCivil Engineering and Engineering Mechanicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorRichard, R. M.en_US
dc.contributor.committeememberDaDeppo, D. A.en_US
dc.contributor.committeememberEhsani, M. R.en_US
dc.contributor.committeememberSaadatmanesh, H.en_US
dc.identifier.proquest8824278en_US
dc.identifier.oclc701366654en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.