Size- and sex-related aspects of the ecology of the hermit crab Clibanarius digueti Bouvier (Decapoda: Anomura: Diogenidae).

Persistent Link:
http://hdl.handle.net/10150/184484
Title:
Size- and sex-related aspects of the ecology of the hermit crab Clibanarius digueti Bouvier (Decapoda: Anomura: Diogenidae).
Author:
Harvey, Alan Wayne.
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
I examine some of the ecological and evolutionary implications of body size in hermit crabs, with special emphasis on the upper intertidal species Clibanarius digueti. In Chapter 1 I show that body size had a far greater effect than species identity on desiccation tolerance for shell-less individuals of C. digueti, Paguristes anahuacus, Pagurus lepidus, and Phimochirus roseus. In contrast with other intertidal taxa, there was no correlation between the upper tidal limit of a species and the expected desiccation tolerance of an average-sized, shell-less individual of that species. This suggests that the gastropod shell that normally houses the hermit crab is sufficient to eliminate desiccation as a community-structuring force in this guild. Clibanarius digueti exhibits strong sexual dimorphism in body size, with almost no overlap in size between adult males and females. In Chapter 2 I show that sexual differences in the intensity of selection on size favor this dimorphism. Specifically, male mating success depended more strongly on body size than did female fecundity. In fact, the rate of increase in fecundity with body size equalled the lowest previously recorded for decapod crustaceans, suggesting that sexual size dimorphism in this species may depend more on weak fecundity selection on females than on strong sexual selection on males. Documenting contemporary selection on a character, however, is not the same as documenting that selection caused the character to evolve. Chapter 3 presents the first empirical test in a single species (C. digueti) of the hypothesis that sexual size dimorphism represents an evolutionary response to sexual differences in selection on size. The test is based on a general model that predicts crab body size as a function of shell limitations, shell fit and body size. Both males and females occupied optimally sized shells of non-preferred species, but the greater the desirability of a shell species, the greater the tendency for males to occupy tighter-fitting shells than females. Males also apparently suffere higher mortality than similarly-sized females. According to the general model, these results agree with the hypothesis that differential selection is causally involved in the evolution of sexual size dimorphism, and contradict the alternative hypothesis that energetic constraints on females produce the dimorphism.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Hermit crabs -- Mexico -- California, Gulf of.; Dimorphism (Animals); Sexual dimorphism (Animals)
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Ecology and Evolutionary Biology; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleSize- and sex-related aspects of the ecology of the hermit crab Clibanarius digueti Bouvier (Decapoda: Anomura: Diogenidae).en_US
dc.creatorHarvey, Alan Wayne.en_US
dc.contributor.authorHarvey, Alan Wayne.en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractI examine some of the ecological and evolutionary implications of body size in hermit crabs, with special emphasis on the upper intertidal species Clibanarius digueti. In Chapter 1 I show that body size had a far greater effect than species identity on desiccation tolerance for shell-less individuals of C. digueti, Paguristes anahuacus, Pagurus lepidus, and Phimochirus roseus. In contrast with other intertidal taxa, there was no correlation between the upper tidal limit of a species and the expected desiccation tolerance of an average-sized, shell-less individual of that species. This suggests that the gastropod shell that normally houses the hermit crab is sufficient to eliminate desiccation as a community-structuring force in this guild. Clibanarius digueti exhibits strong sexual dimorphism in body size, with almost no overlap in size between adult males and females. In Chapter 2 I show that sexual differences in the intensity of selection on size favor this dimorphism. Specifically, male mating success depended more strongly on body size than did female fecundity. In fact, the rate of increase in fecundity with body size equalled the lowest previously recorded for decapod crustaceans, suggesting that sexual size dimorphism in this species may depend more on weak fecundity selection on females than on strong sexual selection on males. Documenting contemporary selection on a character, however, is not the same as documenting that selection caused the character to evolve. Chapter 3 presents the first empirical test in a single species (C. digueti) of the hypothesis that sexual size dimorphism represents an evolutionary response to sexual differences in selection on size. The test is based on a general model that predicts crab body size as a function of shell limitations, shell fit and body size. Both males and females occupied optimally sized shells of non-preferred species, but the greater the desirability of a shell species, the greater the tendency for males to occupy tighter-fitting shells than females. Males also apparently suffere higher mortality than similarly-sized females. According to the general model, these results agree with the hypothesis that differential selection is causally involved in the evolution of sexual size dimorphism, and contradict the alternative hypothesis that energetic constraints on females produce the dimorphism.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectHermit crabs -- Mexico -- California, Gulf of.en_US
dc.subjectDimorphism (Animals)en_US
dc.subjectSexual dimorphism (Animals)en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineEcology and Evolutionary Biologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.committeememberBrown, Jamesen_US
dc.contributor.committeememberKodric-Brown, Astriden_US
dc.contributor.committeememberHendrickson, Johnen_US
dc.contributor.committeememberStrauss, Richarden_US
dc.contributor.committeememberVleck, Daviden_US
dc.identifier.proquest8824276en_US
dc.identifier.oclc701366638en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.