Salinity-fertility interaction with macro and micronutrients in maize (Zea mays) plants.

Persistent Link:
http://hdl.handle.net/10150/184298
Title:
Salinity-fertility interaction with macro and micronutrients in maize (Zea mays) plants.
Author:
Helmy, Magdi Mourad Mohammed.
Issue Date:
1987
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In two greenhouse experiments, the response of maize plants (Zea mays L.) to macro and micronutrient fertilizers was studied. The first experiment was conducted in Cairo, Egypt in which maize plants were grown on saline soils with ECₑ values of 1.42, 6.12 and 12.1 dSm⁻¹ and fertilized with N, P, K alone and in combination. It was found that maize plants produced the highest dry matter when NP fertilizers were added in the Ca-form compared to the other fertilizer treatments, and this positive response decreased with increasing salinity level. Also, it was found that application of P and K fertilizers either alone or together as PK augmented the adverse effect of salinity on dry matter and nutrients uptake. In addition, the concentration and uptake of Na⁺ ions in the shoot tissues decreased with increasing salinity level up to ECₑ 12 dSm⁻¹. This could be due to Na+ exclusion or accumulation in root tissues. However, application of N and P fertilizers tended to decrease plant content of micronutrients, particularly Fe as well as Zn at high salt levels. The second experiment was conducted in a University of Arizona campus greenhouse. A Pima soil from the Marana area was artificially salinized with NaCl, Na₂SO₄, CaCl₂, and Mg₂SO₄ salts almost to the salinity levels mentioned above. Maize plants were grown and fertilized with NP fertilizer as a basic dressing. Chelated forms of Zn, Fe, and Mn were added with two different methods; soil and foliar spray application. Two pH values of spray nutrient solutions were used; pH 6 and pH 8. Data obtained showed increased dry matter and nutrient uptake in response to spraying maize plants with Zn + Fe or Zn+ Fe + Mn at pH value of 8 at the medium salt level relative to the other treatments. However, maize plants also showed high dry matter and nutrient uptake in response to Zn + Fe + Mn soil application at the high salt level, although Zn-pH 8 gave unexpectedly high dry matter production. It seems probable that this high dry matter obtained could be due to the effect of high pH spray treatment on increasing the activity of some enzymes, e.g. PEP-carboxylase and/or ribulose 1,5 diphosphate carboxylase, as well as the increase in rate of translocating the photosynthates and this effect was augmented by the nutrient(s) applied. Also, it was found that Na uptake decreased while total chlorophyll and chlorophyll a content increased with increasing salinity level. The increase in the chlorophyll content could be due to either Na exclusion by the plants and/or the decrease plant growth due high salts.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Corn -- Fertilizers.; Plants -- Effect of salts on.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Soil and Water Science; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Stroehlein, Jack L.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleSalinity-fertility interaction with macro and micronutrients in maize (Zea mays) plants.en_US
dc.creatorHelmy, Magdi Mourad Mohammed.en_US
dc.contributor.authorHelmy, Magdi Mourad Mohammed.en_US
dc.date.issued1987en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn two greenhouse experiments, the response of maize plants (Zea mays L.) to macro and micronutrient fertilizers was studied. The first experiment was conducted in Cairo, Egypt in which maize plants were grown on saline soils with ECₑ values of 1.42, 6.12 and 12.1 dSm⁻¹ and fertilized with N, P, K alone and in combination. It was found that maize plants produced the highest dry matter when NP fertilizers were added in the Ca-form compared to the other fertilizer treatments, and this positive response decreased with increasing salinity level. Also, it was found that application of P and K fertilizers either alone or together as PK augmented the adverse effect of salinity on dry matter and nutrients uptake. In addition, the concentration and uptake of Na⁺ ions in the shoot tissues decreased with increasing salinity level up to ECₑ 12 dSm⁻¹. This could be due to Na+ exclusion or accumulation in root tissues. However, application of N and P fertilizers tended to decrease plant content of micronutrients, particularly Fe as well as Zn at high salt levels. The second experiment was conducted in a University of Arizona campus greenhouse. A Pima soil from the Marana area was artificially salinized with NaCl, Na₂SO₄, CaCl₂, and Mg₂SO₄ salts almost to the salinity levels mentioned above. Maize plants were grown and fertilized with NP fertilizer as a basic dressing. Chelated forms of Zn, Fe, and Mn were added with two different methods; soil and foliar spray application. Two pH values of spray nutrient solutions were used; pH 6 and pH 8. Data obtained showed increased dry matter and nutrient uptake in response to spraying maize plants with Zn + Fe or Zn+ Fe + Mn at pH value of 8 at the medium salt level relative to the other treatments. However, maize plants also showed high dry matter and nutrient uptake in response to Zn + Fe + Mn soil application at the high salt level, although Zn-pH 8 gave unexpectedly high dry matter production. It seems probable that this high dry matter obtained could be due to the effect of high pH spray treatment on increasing the activity of some enzymes, e.g. PEP-carboxylase and/or ribulose 1,5 diphosphate carboxylase, as well as the increase in rate of translocating the photosynthates and this effect was augmented by the nutrient(s) applied. Also, it was found that Na uptake decreased while total chlorophyll and chlorophyll a content increased with increasing salinity level. The increase in the chlorophyll content could be due to either Na exclusion by the plants and/or the decrease plant growth due high salts.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectCorn -- Fertilizers.en_US
dc.subjectPlants -- Effect of salts on.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineSoil and Water Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorStroehlein, Jack L.en_US
dc.contributor.committeememberTucker, T. C.en_US
dc.contributor.committeememberBohn, H. L.en_US
dc.contributor.committeememberBriggs, R. E.en_US
dc.contributor.committeememberBartels, P. G.en_US
dc.identifier.proquest8805517en_US
dc.identifier.oclc701248722en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.