The development of a near-infrared polarimeter and its application to the continuum polarization of magnetic white dwarfs.

Persistent Link:
http://hdl.handle.net/10150/184285
Title:
The development of a near-infrared polarimeter and its application to the continuum polarization of magnetic white dwarfs.
Author:
West, Steven Charles
Issue Date:
1987
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A new type of astronomical polarimeter is presented that incorporates a fused silica stress-birefringent modulator which simultaneously allows the selection of chopping frequency (≤ 5 Hz) and spectral tuning (1 ≤ λ ≤ 2.5 μm) with very high modulation efficiency. Two integrating detector packages are discussed. The first uses a single germanium photodiode and HR polaroid analyzer and achieves σᵥ = 1% for a J = 14.5 object in 0.5 hr with the MMT. The second package uses a 12 x 30 pixel HgCdTe array and MgF₂ Wollaston prism to provide four simultaneous polarimetric channels that properly eliminate the systematic errors resulting from "staring" mode operation. The instrumental polarizations of the MMT are calculated using Mueller calculus and experimentally verified. It is found that the hexagonal symmetry of the telescope cancels the large amplitude spurious polarizations that arise from the single "arms" and results in a polarimetric efficiency term that is a function only of spectral bandpass and not sky position. Therefore, the MMT behaves essentially like a clean Cassegrain telescope. The continuum polarizations of five isolated highly magnetic white dwarfs are investigated both observationally and theoretically. The most complete broad-band polarimetric survey throughout the spectral region 0.35 ≤ λ ≤ 1.65 μm is performed. An apparent correlation in the linear polarizations of Grw + 70°8247, GD229, and G240-72 is discovered. In addition, no evidence for time-dependent rotation of position angle is found for any of the stars. Hydrogen Balmer photoionization occurring from the magnetically-perturbed bound states into the Coulomb-Lorentz mixed quasi-Landau continuum is investigated with the aid of recent high field calculations. Finally, the continuum polarization of Grw + 70°8247 is compared to models for cyclotron and inverse magnetobremsstrahlung absorptions in a dipolar field. The conclusion is that the continuum polarizations of these objects still eludes an exact description. New observations of BG C Mi reveal the first definitive discovery of polarized cyclotron emission in any intermediate polar and confirms that the long-held basic model of a magnetically accreting white dwarf is correct. The wavelength dependence of circular polarization is found to increase rapidly into the near-infrared, from V(I) = -0.25±0.06% to V(J) = -1.74±0.26% and suggests a field strength in the cyclotron emission region near 5-10 MG if the system scales directly with the AM Her stars.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Polariscope.; White dwarf stars -- Measurement.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Astronomy; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Schmidt, Gary D.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleThe development of a near-infrared polarimeter and its application to the continuum polarization of magnetic white dwarfs.en_US
dc.creatorWest, Steven Charlesen_US
dc.contributor.authorWest, Steven Charlesen_US
dc.date.issued1987en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA new type of astronomical polarimeter is presented that incorporates a fused silica stress-birefringent modulator which simultaneously allows the selection of chopping frequency (≤ 5 Hz) and spectral tuning (1 ≤ λ ≤ 2.5 μm) with very high modulation efficiency. Two integrating detector packages are discussed. The first uses a single germanium photodiode and HR polaroid analyzer and achieves σᵥ = 1% for a J = 14.5 object in 0.5 hr with the MMT. The second package uses a 12 x 30 pixel HgCdTe array and MgF₂ Wollaston prism to provide four simultaneous polarimetric channels that properly eliminate the systematic errors resulting from "staring" mode operation. The instrumental polarizations of the MMT are calculated using Mueller calculus and experimentally verified. It is found that the hexagonal symmetry of the telescope cancels the large amplitude spurious polarizations that arise from the single "arms" and results in a polarimetric efficiency term that is a function only of spectral bandpass and not sky position. Therefore, the MMT behaves essentially like a clean Cassegrain telescope. The continuum polarizations of five isolated highly magnetic white dwarfs are investigated both observationally and theoretically. The most complete broad-band polarimetric survey throughout the spectral region 0.35 ≤ λ ≤ 1.65 μm is performed. An apparent correlation in the linear polarizations of Grw + 70°8247, GD229, and G240-72 is discovered. In addition, no evidence for time-dependent rotation of position angle is found for any of the stars. Hydrogen Balmer photoionization occurring from the magnetically-perturbed bound states into the Coulomb-Lorentz mixed quasi-Landau continuum is investigated with the aid of recent high field calculations. Finally, the continuum polarization of Grw + 70°8247 is compared to models for cyclotron and inverse magnetobremsstrahlung absorptions in a dipolar field. The conclusion is that the continuum polarizations of these objects still eludes an exact description. New observations of BG C Mi reveal the first definitive discovery of polarized cyclotron emission in any intermediate polar and confirms that the long-held basic model of a magnetically accreting white dwarf is correct. The wavelength dependence of circular polarization is found to increase rapidly into the near-infrared, from V(I) = -0.25±0.06% to V(J) = -1.74±0.26% and suggests a field strength in the cyclotron emission region near 5-10 MG if the system scales directly with the AM Her stars.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPolariscope.en_US
dc.subjectWhite dwarf stars -- Measurement.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineAstronomyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSchmidt, Gary D.en_US
dc.contributor.committeememberAngel, J. Roger P.en_US
dc.contributor.committeememberLiebert, James W.en_US
dc.contributor.committeememberRieke, George H.en_US
dc.contributor.committeememberStrittmatter, Peter A.en_US
dc.identifier.proquest8804193en_US
dc.identifier.oclc700071050en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.