RESPONSE OF BARLEY GENOTYPES TO NON-SALINE AND SALINE ENVIRONMENTS.

Persistent Link:
http://hdl.handle.net/10150/184214
Title:
RESPONSE OF BARLEY GENOTYPES TO NON-SALINE AND SALINE ENVIRONMENTS.
Author:
ELMIGRI, MOHAMED RHUMA.
Issue Date:
1982
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A 2-year study (1976-1977) was conducted at the Safford Experiment Station, Safford, Arizona to investigate the response of barley (Hordeum vulgare L.) genotypes to both non-saline and saline environments. The soil types was a Grabe Clay Loam. One environment had received only river irrigation water for the previous 10 years and throughout the experiment (non-saline environment) and the other environment had been irrigated with only well water for the previous 10 years and throughout the experiment (saline environment). Fifteen barley genotypes were grown in each environment each year. The following data were recorded for each genotype each year: (1) plant height, (2) lodging, (3) number of heads per hill, (4) number of seeds per head, (5) seed weight, (6) grain yield, (7) straw yield, (8) grain-to-straw ratio, (9) days from planting to flowering, and (10) days from flowering to maturity. The exchange capacity, soluble ions, and ESP of the soil irrigated with well water were all much higher than the exchange capacity, soluble ions, and ESP of the soil irrigated with river water. The soluble salts, calcium, magnesium, sodium, chloride, sulfate, bicarbonate, and sodium adsorption ratio were all much higher in well irrigation water than were the same chemical properties in river irrigation water. The foregoing soil and water chemical properties indicate that the non-saline environment should be much more conducive to optimum plant growth than the saline environment. Most of the barley genotypes germinated more uniformally, grew better, and produced more forage and grain in the non-saline environment than they did in the saline environment. It required a longer period for barley to reach maturity in the saline environment than it did in the non-saline environment. When the data from the two years were combined, there were positive correlations between grain yield and plant height, number of heads per unit area, and straw yield in both non-saline and saline environments. Since there were significant differences between barley genotypes in a number of growth and yield characteristics in both environments, it should be possible to develop improved barley cultivars for both non-saline and saline environments using plant breeding techniques.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Barley -- Soils.; Soils, Salts in -- Arizona.; Saline irrigation -- Arizona.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Plant Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Day, A. D.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleRESPONSE OF BARLEY GENOTYPES TO NON-SALINE AND SALINE ENVIRONMENTS.en_US
dc.creatorELMIGRI, MOHAMED RHUMA.en_US
dc.contributor.authorELMIGRI, MOHAMED RHUMA.en_US
dc.date.issued1982en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA 2-year study (1976-1977) was conducted at the Safford Experiment Station, Safford, Arizona to investigate the response of barley (Hordeum vulgare L.) genotypes to both non-saline and saline environments. The soil types was a Grabe Clay Loam. One environment had received only river irrigation water for the previous 10 years and throughout the experiment (non-saline environment) and the other environment had been irrigated with only well water for the previous 10 years and throughout the experiment (saline environment). Fifteen barley genotypes were grown in each environment each year. The following data were recorded for each genotype each year: (1) plant height, (2) lodging, (3) number of heads per hill, (4) number of seeds per head, (5) seed weight, (6) grain yield, (7) straw yield, (8) grain-to-straw ratio, (9) days from planting to flowering, and (10) days from flowering to maturity. The exchange capacity, soluble ions, and ESP of the soil irrigated with well water were all much higher than the exchange capacity, soluble ions, and ESP of the soil irrigated with river water. The soluble salts, calcium, magnesium, sodium, chloride, sulfate, bicarbonate, and sodium adsorption ratio were all much higher in well irrigation water than were the same chemical properties in river irrigation water. The foregoing soil and water chemical properties indicate that the non-saline environment should be much more conducive to optimum plant growth than the saline environment. Most of the barley genotypes germinated more uniformally, grew better, and produced more forage and grain in the non-saline environment than they did in the saline environment. It required a longer period for barley to reach maturity in the saline environment than it did in the non-saline environment. When the data from the two years were combined, there were positive correlations between grain yield and plant height, number of heads per unit area, and straw yield in both non-saline and saline environments. Since there were significant differences between barley genotypes in a number of growth and yield characteristics in both environments, it should be possible to develop improved barley cultivars for both non-saline and saline environments using plant breeding techniques.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectBarley -- Soils.en_US
dc.subjectSoils, Salts in -- Arizona.en_US
dc.subjectSaline irrigation -- Arizona.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePlant Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorDay, A. D.en_US
dc.contributor.committeememberDennis, R. E.en_US
dc.contributor.committeememberJackson, E. B.en_US
dc.identifier.proquest8223009en_US
dc.identifier.oclc682670564en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.