Persistent Link:
http://hdl.handle.net/10150/184087
Title:
KINEMATIC SIGNIFICANCE OF MYLONITIC FOLIATION (METAMORPHIC).
Author:
NARUK, STEPHEN JOHN.
Issue Date:
1987
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Geometric analyses of three mylonite zones, including two metamorphic-core-complex SC-mylonite zones, show that the mylonitic foliation surfaces (S-surfaces) are consistently discordant to the margins of the shear zones. Finite-strain analyses show that the foliation surfaces in each zone are consistently oriented parallel to the XY-plane of the finite strain ellipsoid. The shear bands within the mylonites (C-surfaces, C'-surfaces, extensional crenulations, and shear-band cleavages) are uniformly oriented subparallel to the margins of the shear zones. The finite lengths and discontinuous natures of the shear bands require that the displacement along them be accommodated by the S-surfaces at the tips of the shear bands. Thus the S-surface elongations and orientations represent the total bulk rock strain, rather than some minimum measure of inter-C-surface strain. General stress and strain considerations indicate that the shear bands are planes of maximum shear stress, and that they are not only simple-shear slip planes. This interpretation implies that in simple-shear deformation, a single, irrotational set of shear bands will develop parallel to the shear-zone boundaries. In deformations involving significant components of coaxial strain, however, shear bands may develop in other orientations or in conjugate sets and rotate with progressive deformation.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Rocks -- Cleavage.; Schistosity.; Kinematics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Geosciences; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleKINEMATIC SIGNIFICANCE OF MYLONITIC FOLIATION (METAMORPHIC).en_US
dc.creatorNARUK, STEPHEN JOHN.en_US
dc.contributor.authorNARUK, STEPHEN JOHN.en_US
dc.date.issued1987en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractGeometric analyses of three mylonite zones, including two metamorphic-core-complex SC-mylonite zones, show that the mylonitic foliation surfaces (S-surfaces) are consistently discordant to the margins of the shear zones. Finite-strain analyses show that the foliation surfaces in each zone are consistently oriented parallel to the XY-plane of the finite strain ellipsoid. The shear bands within the mylonites (C-surfaces, C'-surfaces, extensional crenulations, and shear-band cleavages) are uniformly oriented subparallel to the margins of the shear zones. The finite lengths and discontinuous natures of the shear bands require that the displacement along them be accommodated by the S-surfaces at the tips of the shear bands. Thus the S-surface elongations and orientations represent the total bulk rock strain, rather than some minimum measure of inter-C-surface strain. General stress and strain considerations indicate that the shear bands are planes of maximum shear stress, and that they are not only simple-shear slip planes. This interpretation implies that in simple-shear deformation, a single, irrotational set of shear bands will develop parallel to the shear-zone boundaries. In deformations involving significant components of coaxial strain, however, shear bands may develop in other orientations or in conjugate sets and rotate with progressive deformation.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectRocks -- Cleavage.en_US
dc.subjectSchistosity.en_US
dc.subjectKinematics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGeosciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.proquest8712901en_US
dc.identifier.oclc698474101en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.