Persistent Link:
http://hdl.handle.net/10150/183933
Title:
POLYNOMIALS WITH SMALL VALUE SET OVER FINITE FIELDS.
Author:
GOMEZ-CALDERON, JAVIER.
Issue Date:
1986
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Let K(q) be the finite field with q elements and characteristic p. Let f(x) be a monic polynomial of degree d with coefficients in K(q). Let C(f) denote the number of distinct values of f(x) as x ranges over K(q). It is easy to show that C(f) ≤ [|(q - 1)/d|] + 1. Now, there is a characterization of polynomials of degree d < √q for which C(f) = [|(q - 1)/d|] +1. The main object of this work is to give a characterization for polynomials of degree d < ⁴√q for which C(f) < 2q/d. Using two well known theorems: Hurwitz genus formula and Andre Weil's theorem, the Riemann Hypothesis for Algebraic Function Fields, it is shown that if d < ⁴√q and C(f) < 2q/d then f(x) - f(y) factors into at least d/2 absolutely irreducible factors and f(x) has one of the following forms: (UNFORMATTED TABLE FOLLOWS) f(x - λ) = D(d,a)(x) + c, d|(q² - 1), f(x - λ) = D(r,a)(∙ ∙ ∙ ((x²+b₁)²+b₂)²+ ∙ ∙ ∙ +b(m)), d|(q² - 1), d=2ᵐ∙r, and (2,r) = 1 f(x - λ) = (x² + a)ᵈ/² + b, d/2|(q - 1), f(x - λ) = (∙ ∙ ∙((x²+b₁)²+b₂)² + ∙ ∙ ∙ +b(m))ʳ+c, d|(q - 1), d=2ᵐ∙r, f(x - λ) = xᵈ + a, d|(q - 1), f(x - λ) = x(x³ + ax + b) + c, f(x - λ) = x(x³ + ax + b) (x² + a) + e, f(x - λ) = D₃,ₐ(x² + c), c² ≠ 4a, f(x - λ) = (x³ + a)ⁱ + b, i = 1, 2, 3, or 4, f(x - λ) = x³(x³ + a)³ +b, f(x - λ) = x⁴(x⁴ + a)² +b or f(x - λ) = (x⁴ + a) ⁱ + b, i = 1,2 or 3, where D(d,a)(x) denotes the Dickson’s polynomial of degree d. Finally to show other polynomials with small value set, the following equation is obtained C((fᵐ + b)ⁿ) = αq/d + O(√q) where α = (1 – (1 – 1/m)ⁿ)m and the constant implied in O(√q) is independent of q.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Polynomials.; Finite fields (Algebra)
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Mathematics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Madden, Daniel J.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titlePOLYNOMIALS WITH SMALL VALUE SET OVER FINITE FIELDS.en_US
dc.creatorGOMEZ-CALDERON, JAVIER.en_US
dc.contributor.authorGOMEZ-CALDERON, JAVIER.en_US
dc.date.issued1986en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractLet K(q) be the finite field with q elements and characteristic p. Let f(x) be a monic polynomial of degree d with coefficients in K(q). Let C(f) denote the number of distinct values of f(x) as x ranges over K(q). It is easy to show that C(f) ≤ [|(q - 1)/d|] + 1. Now, there is a characterization of polynomials of degree d < √q for which C(f) = [|(q - 1)/d|] +1. The main object of this work is to give a characterization for polynomials of degree d < ⁴√q for which C(f) < 2q/d. Using two well known theorems: Hurwitz genus formula and Andre Weil's theorem, the Riemann Hypothesis for Algebraic Function Fields, it is shown that if d < ⁴√q and C(f) < 2q/d then f(x) - f(y) factors into at least d/2 absolutely irreducible factors and f(x) has one of the following forms: (UNFORMATTED TABLE FOLLOWS) f(x - λ) = D(d,a)(x) + c, d|(q² - 1), f(x - λ) = D(r,a)(∙ ∙ ∙ ((x²+b₁)²+b₂)²+ ∙ ∙ ∙ +b(m)), d|(q² - 1), d=2ᵐ∙r, and (2,r) = 1 f(x - λ) = (x² + a)ᵈ/² + b, d/2|(q - 1), f(x - λ) = (∙ ∙ ∙((x²+b₁)²+b₂)² + ∙ ∙ ∙ +b(m))ʳ+c, d|(q - 1), d=2ᵐ∙r, f(x - λ) = xᵈ + a, d|(q - 1), f(x - λ) = x(x³ + ax + b) + c, f(x - λ) = x(x³ + ax + b) (x² + a) + e, f(x - λ) = D₃,ₐ(x² + c), c² ≠ 4a, f(x - λ) = (x³ + a)ⁱ + b, i = 1, 2, 3, or 4, f(x - λ) = x³(x³ + a)³ +b, f(x - λ) = x⁴(x⁴ + a)² +b or f(x - λ) = (x⁴ + a) ⁱ + b, i = 1,2 or 3, where D(d,a)(x) denotes the Dickson’s polynomial of degree d. Finally to show other polynomials with small value set, the following equation is obtained C((fᵐ + b)ⁿ) = αq/d + O(√q) where α = (1 – (1 – 1/m)ⁿ)m and the constant implied in O(√q) is independent of q.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPolynomials.en_US
dc.subjectFinite fields (Algebra)en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMadden, Daniel J.en_US
dc.identifier.proquest8704751en_US
dc.identifier.oclc698227146en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.