CHARACTERIZATION OF RECEPTORS AND BINDING PROTEINS FOR THE ACTIVE METABOLITES OF VITAMINS A AND D IN NORMAL AND RESISTANT CELLS (PRIMATE RESEARCH).

Persistent Link:
http://hdl.handle.net/10150/183919
Title:
CHARACTERIZATION OF RECEPTORS AND BINDING PROTEINS FOR THE ACTIVE METABOLITES OF VITAMINS A AND D IN NORMAL AND RESISTANT CELLS (PRIMATE RESEARCH).
Author:
KELLY, MICHAEL ALAN.
Issue Date:
1986
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Involvement of Cellular Retinoic Acid (CRABP) or Retinol (CRBP) Binding Proteins and 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) receptors in the response of cultured cells to retinoic acid and 1,25(OH)₂D₃ was examined. A new method for saturation analysis of CRABP and CRBP was applied to human tumors, human neuroblastoma cells, which retinoic acid causes to differentiate, and a bioselected subline resistant to retinoic acid. These data suggest that CRABP may not mediate cell differentiation by retinoic acid. In other studies, 1,25(OH)₂D₃ receptors and bioresponses were characterized in cultured primate cells. Rhesus monkey kidney cells (LLC-MK₂) were resistant to 1,25(OH)₂D₃-dependent induction of 25(OH)D-24-hydroxylase enzyme. The ED₅₀ in LLC-MK₂ cells was 10-100 fold higher than in other cultured cells. This resistance resulted from a low affinity receptor. Since the LLC-MK₂ variant receptor did not differ in size from the wild type rhesus 1,25(OH)₂D₃ receptor, (Mᵣ = 52 kDa) a subtle alteration in the receptor likely caused the decreased ligand affinity. Also of interest was the possible cellular resistance to 1,25(OH)₂D₃, in the owl monkey (Aotus trivurgatus), which generally occurs in new world primates. Owl monkey kidney (OMK) cells had the same content of receptors for 1,25(OH)₂D₃ and sensitivity to this hormone as cells from the rhesus monkey (old world primate). The ED₅₀ for induction of 24hydroxylase was 2-3 nM in both the OMK cells and the rhesus monkey fibroblasts. Both cells contained 2300 high affinity receptor molecules per cell, which bound DNA and were characterized by immunoblot as 52 kDa proteins. 1,25(OH)₂D₃ treatment increased the content of 1,25(OH)₂D₃ receptors in OMK cells, by increasing the synthesis of receptor mRNA. These data indicate the owl monkey is not resistant to 1,25(OH)₂D₃, unlike other new world primates. This finding was confirmed independently by demonstration that the owl monkey maintained mean serum 1,25(OH)₂D₃ levels (29 pg/ml) in the range of old world primates (33 pg/ml) and humans, in contrast to the elevated 1,25(OH)₂D₃ in other new world primates (97-129 pg/ml). This result suggests the alteration of 1,25(OH)₂D₃-endocrine dynamics in new world primates occurred subsequent to the evolutionary divergence of the owl monkey.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Vitamin A -- Metabolism.; Vitamin D -- Metabolism.; Biochemistry.; Nutrition.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Biochemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Haussler, Mark R.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleCHARACTERIZATION OF RECEPTORS AND BINDING PROTEINS FOR THE ACTIVE METABOLITES OF VITAMINS A AND D IN NORMAL AND RESISTANT CELLS (PRIMATE RESEARCH).en_US
dc.creatorKELLY, MICHAEL ALAN.en_US
dc.contributor.authorKELLY, MICHAEL ALAN.en_US
dc.date.issued1986en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractInvolvement of Cellular Retinoic Acid (CRABP) or Retinol (CRBP) Binding Proteins and 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) receptors in the response of cultured cells to retinoic acid and 1,25(OH)₂D₃ was examined. A new method for saturation analysis of CRABP and CRBP was applied to human tumors, human neuroblastoma cells, which retinoic acid causes to differentiate, and a bioselected subline resistant to retinoic acid. These data suggest that CRABP may not mediate cell differentiation by retinoic acid. In other studies, 1,25(OH)₂D₃ receptors and bioresponses were characterized in cultured primate cells. Rhesus monkey kidney cells (LLC-MK₂) were resistant to 1,25(OH)₂D₃-dependent induction of 25(OH)D-24-hydroxylase enzyme. The ED₅₀ in LLC-MK₂ cells was 10-100 fold higher than in other cultured cells. This resistance resulted from a low affinity receptor. Since the LLC-MK₂ variant receptor did not differ in size from the wild type rhesus 1,25(OH)₂D₃ receptor, (Mᵣ = 52 kDa) a subtle alteration in the receptor likely caused the decreased ligand affinity. Also of interest was the possible cellular resistance to 1,25(OH)₂D₃, in the owl monkey (Aotus trivurgatus), which generally occurs in new world primates. Owl monkey kidney (OMK) cells had the same content of receptors for 1,25(OH)₂D₃ and sensitivity to this hormone as cells from the rhesus monkey (old world primate). The ED₅₀ for induction of 24hydroxylase was 2-3 nM in both the OMK cells and the rhesus monkey fibroblasts. Both cells contained 2300 high affinity receptor molecules per cell, which bound DNA and were characterized by immunoblot as 52 kDa proteins. 1,25(OH)₂D₃ treatment increased the content of 1,25(OH)₂D₃ receptors in OMK cells, by increasing the synthesis of receptor mRNA. These data indicate the owl monkey is not resistant to 1,25(OH)₂D₃, unlike other new world primates. This finding was confirmed independently by demonstration that the owl monkey maintained mean serum 1,25(OH)₂D₃ levels (29 pg/ml) in the range of old world primates (33 pg/ml) and humans, in contrast to the elevated 1,25(OH)₂D₃ in other new world primates (97-129 pg/ml). This result suggests the alteration of 1,25(OH)₂D₃-endocrine dynamics in new world primates occurred subsequent to the evolutionary divergence of the owl monkey.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectVitamin A -- Metabolism.en_US
dc.subjectVitamin D -- Metabolism.en_US
dc.subjectBiochemistry.en_US
dc.subjectNutrition.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineBiochemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHaussler, Mark R.en_US
dc.contributor.committeememberTischler, Marcen_US
dc.contributor.committeememberDieckmann, Carolen_US
dc.contributor.committeememberHewlett, Martinez J.en_US
dc.contributor.committeememberHall, Jennifer D.en_US
dc.identifier.proquest8702347en_US
dc.identifier.oclc697836173en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.