TEMPERATURE DEPENDENCE OF NONLINEAR REFRACTION, AND NOVEL BISTABLE OPTICAL DEVICES IN INDIUM-ANTIMONIDE.

Persistent Link:
http://hdl.handle.net/10150/183885
Title:
TEMPERATURE DEPENDENCE OF NONLINEAR REFRACTION, AND NOVEL BISTABLE OPTICAL DEVICES IN INDIUM-ANTIMONIDE.
Author:
JAMESON, RALPH STEPHEN.
Issue Date:
1986
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation presents the results of experimental research on the nonlinear refraction in InSb and the experimental demonstration of two nonlinear etalon devices using InSb as the active material. The first portion of the dissertation considers the Dynamic Burstein-Moss Shift model for nonlinearities in narrow-gap semiconductors. The physics and the equations are reviewed, and limitations in describing intensity dependent refraction in a semiconductor are considered. These limitations arise from the nonlinear dependence of charge carrier density upon irradiance. The second portion of the dissertation presents experimental measurements made on the nonlinear refraction of InSb at temperatures between 80 K and 182 K, for wavelengths from 5.75 μm to 6.10 μm, where the photon energy lay in the band tail below 100 cm⁻¹. Measurements of the linear absorption were first made with an infrared spectrometer for temperatures from 80 K to 300 K. The nonlinearity was measured by analyzing the transmission through InSb etalons. Nonlinear transmission curves were digitized and stored with an IBM PC-XT, then a curve fit was performed using the nonlinear refractive index as a fiting parameter. Observations are reported of increasing absorption, due in part to a thermal shift of the absorption edge. The second portion of the work presents the theory and demonstration of a bistable etalon using an edge-injected control beam. Plane-wave nonlinear etalon theory is used to describe the operation of such a device, illustrating the way in which switching and logic gate operation can be obtained. Two devices based on this concept are demonstrated: the 3-port device using a single control beam, and the 2SON gate using two control beams to perform two-input logic operation. The extension of the 2SON gate to an array of pixels, and some considerations for optimizing array performance, are considered. Two appendices follow the body of the dissertation, the first describing the preparation of the InSb etalon samples, and the second detailing several procedures for maintenance and operation of the CO laser used.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Nonlinear optics.; Indium antimonide crystals.; Optical bistability.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleTEMPERATURE DEPENDENCE OF NONLINEAR REFRACTION, AND NOVEL BISTABLE OPTICAL DEVICES IN INDIUM-ANTIMONIDE.en_US
dc.creatorJAMESON, RALPH STEPHEN.en_US
dc.contributor.authorJAMESON, RALPH STEPHEN.en_US
dc.date.issued1986en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation presents the results of experimental research on the nonlinear refraction in InSb and the experimental demonstration of two nonlinear etalon devices using InSb as the active material. The first portion of the dissertation considers the Dynamic Burstein-Moss Shift model for nonlinearities in narrow-gap semiconductors. The physics and the equations are reviewed, and limitations in describing intensity dependent refraction in a semiconductor are considered. These limitations arise from the nonlinear dependence of charge carrier density upon irradiance. The second portion of the dissertation presents experimental measurements made on the nonlinear refraction of InSb at temperatures between 80 K and 182 K, for wavelengths from 5.75 μm to 6.10 μm, where the photon energy lay in the band tail below 100 cm⁻¹. Measurements of the linear absorption were first made with an infrared spectrometer for temperatures from 80 K to 300 K. The nonlinearity was measured by analyzing the transmission through InSb etalons. Nonlinear transmission curves were digitized and stored with an IBM PC-XT, then a curve fit was performed using the nonlinear refractive index as a fiting parameter. Observations are reported of increasing absorption, due in part to a thermal shift of the absorption edge. The second portion of the work presents the theory and demonstration of a bistable etalon using an edge-injected control beam. Plane-wave nonlinear etalon theory is used to describe the operation of such a device, illustrating the way in which switching and logic gate operation can be obtained. Two devices based on this concept are demonstrated: the 3-port device using a single control beam, and the 2SON gate using two control beams to perform two-input logic operation. The extension of the 2SON gate to an array of pixels, and some considerations for optimizing array performance, are considered. Two appendices follow the body of the dissertation, the first describing the preparation of the InSb etalon samples, and the second detailing several procedures for maintenance and operation of the CO laser used.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectNonlinear optics.en_US
dc.subjectIndium antimonide crystals.en_US
dc.subjectOptical bistability.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.proquest8623874en_US
dc.identifier.oclc697809782en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.