Persistent Link:
http://hdl.handle.net/10150/183854
Title:
TWO-PHOTON MULTIWAVE MIXING (DOPPLER-FREE SPECTROSCOPY).
Author:
CAPRON, BARBARA ANNE.
Issue Date:
1986
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation examines aspects of the interaction of multiple coherent light fields for the two-photon two-level model. In this model the interacting energy levels are not connected by an atomic dipole and a two-photon transition between them is necessary. We employ the density matrix formalism allowing easy comparison between the one- and two-photon two-level models. Significant differences are found due to dynamic Stark shifts and conjugate scattering off the pump-induced two-photon coherence. Averages over Doppler broadening are performed and the new upper-level relaxation mechanisms of decay to an intermediate nonresonant level and ionization from the upper state are included. The new relaxation mechanisms, introduced to the theory to better model experiments, are similar except that ionization is intensity dependent. They cause the resulting probe absorption spectra to become more complex and in general asymmetric. Doppler broadening is also important in experiments using gases. We analytically average over a Lorentzian velocity distribution for both co- and counterpropagating pump and probe beams. For copropagating fields the results are similar to those for the one-photon case averaged over inhomogeneous broadening, whereas counterpropagating pump and probe fields yield the so-called Doppler-free configuration that is normally only modelled to third order in the pump amplitude. We consider the pump field amplitude to all orders and find that as long as the width of the Doppler velocity distribution is significantly larger than the two-photon Rabi frequency the results are Doppler-free. The final part of the dissertation treats the question of two-photon squeezed states. This requires quantized sidemodes. Squeezed states are minimum uncertainty states with unequal variances in the two quadratures of the electromagnetic field amplitude. One way to generate these states is via multiwave mixing and we present here the first calculation for nondegenerate two-photon multiwave mixing as it applies to squeezed states. We find that in general two-photon squeezed states require lower intensities and detuning than those predicted by the one-photon model.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Multiphoton processes.; Quantum optics.; Electromagnetic fields.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Sargent, Murray

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleTWO-PHOTON MULTIWAVE MIXING (DOPPLER-FREE SPECTROSCOPY).en_US
dc.creatorCAPRON, BARBARA ANNE.en_US
dc.contributor.authorCAPRON, BARBARA ANNE.en_US
dc.date.issued1986en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation examines aspects of the interaction of multiple coherent light fields for the two-photon two-level model. In this model the interacting energy levels are not connected by an atomic dipole and a two-photon transition between them is necessary. We employ the density matrix formalism allowing easy comparison between the one- and two-photon two-level models. Significant differences are found due to dynamic Stark shifts and conjugate scattering off the pump-induced two-photon coherence. Averages over Doppler broadening are performed and the new upper-level relaxation mechanisms of decay to an intermediate nonresonant level and ionization from the upper state are included. The new relaxation mechanisms, introduced to the theory to better model experiments, are similar except that ionization is intensity dependent. They cause the resulting probe absorption spectra to become more complex and in general asymmetric. Doppler broadening is also important in experiments using gases. We analytically average over a Lorentzian velocity distribution for both co- and counterpropagating pump and probe beams. For copropagating fields the results are similar to those for the one-photon case averaged over inhomogeneous broadening, whereas counterpropagating pump and probe fields yield the so-called Doppler-free configuration that is normally only modelled to third order in the pump amplitude. We consider the pump field amplitude to all orders and find that as long as the width of the Doppler velocity distribution is significantly larger than the two-photon Rabi frequency the results are Doppler-free. The final part of the dissertation treats the question of two-photon squeezed states. This requires quantized sidemodes. Squeezed states are minimum uncertainty states with unequal variances in the two quadratures of the electromagnetic field amplitude. One way to generate these states is via multiwave mixing and we present here the first calculation for nondegenerate two-photon multiwave mixing as it applies to squeezed states. We find that in general two-photon squeezed states require lower intensities and detuning than those predicted by the one-photon model.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectMultiphoton processes.en_US
dc.subjectQuantum optics.en_US
dc.subjectElectromagnetic fields.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSargent, Murrayen_US
dc.contributor.committeememberGibbs, Hyatten_US
dc.contributor.committeememberMeystre, Pierreen_US
dc.identifier.proquest8623842en_US
dc.identifier.oclc697641903en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.