DNA SEQUENCE ANALYSIS OF BACILLUS PHAGE PHI29 RIGHT EARLY REGION AND LATE GENES 14, 15 AND 16 (LYSOZYME).

Persistent Link:
http://hdl.handle.net/10150/183839
Title:
DNA SEQUENCE ANALYSIS OF BACILLUS PHAGE PHI29 RIGHT EARLY REGION AND LATE GENES 14, 15 AND 16 (LYSOZYME).
Author:
GARVEY, KEVIN JAMES.
Issue Date:
1986
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The sequence of the rightmost 4,626 bp of the Bacillus phage φ29 genome is presented and analyzed. Nine large open reading frames (ORF's) have been found. Three of these ORF's are correlated with the late genes 14, 15 and 16. The remaining six ORF's are in the right early region. One of these early ORF's has been identified as gene 17 (g17), the only early gene to have been genetically mapped in this region. The remaining ORF's (16.5, 16.6, 16.7, 16.8 and 16.9) were previously unknown. The biological efficacies of some of these putative early ORF's were demonstrated using an in vitro E. coli transcription-translation system. The primary amino acid sequences, molecular weights, translational initiation sequences and genetic organization of these nine genes are presented and discussed. Gene product 15 (gp15) was found to have strong homology with Salmonella phage P22 gp19, a lysozyme. gp15 also has a lesser but possibly significant homology with T4 gene product e (gpe), also a lysozyme. Using a clone containing φ29 g15 it was shown that gp15 can complement T4 gene e (ge) mutant infections, leading to the conclusion that φ29 g15 encodes a lysozyme. Three transcriptional initiation sites (P(E)3, P(EC)3 and B2) were previously mapped in this region. The sequences of the putative P(EC)3 and B2 promoter sites are presented and shown to have homology with the Bacillus σ⁵⁵ concensus sequence. Sequences having homology to a minor Bacillus sigma factor recognition site, σ³², are also presented and discussed. The region between the last late gene (g16) and the last early gene (ORF-16.5) consists of only 30 bp. Analysis of potential secondary structures of transcripts across this region suggests that the same sequences may be involved in the termination of both late and early transcription.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Bacillus (Bacteria) -- Genetics.; Bacteriophages -- Genetics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Molecular and Cellular Biology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Ito, Junetsu

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDNA SEQUENCE ANALYSIS OF BACILLUS PHAGE PHI29 RIGHT EARLY REGION AND LATE GENES 14, 15 AND 16 (LYSOZYME).en_US
dc.creatorGARVEY, KEVIN JAMES.en_US
dc.contributor.authorGARVEY, KEVIN JAMES.en_US
dc.date.issued1986en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe sequence of the rightmost 4,626 bp of the Bacillus phage φ29 genome is presented and analyzed. Nine large open reading frames (ORF's) have been found. Three of these ORF's are correlated with the late genes 14, 15 and 16. The remaining six ORF's are in the right early region. One of these early ORF's has been identified as gene 17 (g17), the only early gene to have been genetically mapped in this region. The remaining ORF's (16.5, 16.6, 16.7, 16.8 and 16.9) were previously unknown. The biological efficacies of some of these putative early ORF's were demonstrated using an in vitro E. coli transcription-translation system. The primary amino acid sequences, molecular weights, translational initiation sequences and genetic organization of these nine genes are presented and discussed. Gene product 15 (gp15) was found to have strong homology with Salmonella phage P22 gp19, a lysozyme. gp15 also has a lesser but possibly significant homology with T4 gene product e (gpe), also a lysozyme. Using a clone containing φ29 g15 it was shown that gp15 can complement T4 gene e (ge) mutant infections, leading to the conclusion that φ29 g15 encodes a lysozyme. Three transcriptional initiation sites (P(E)3, P(EC)3 and B2) were previously mapped in this region. The sequences of the putative P(EC)3 and B2 promoter sites are presented and shown to have homology with the Bacillus σ⁵⁵ concensus sequence. Sequences having homology to a minor Bacillus sigma factor recognition site, σ³², are also presented and discussed. The region between the last late gene (g16) and the last early gene (ORF-16.5) consists of only 30 bp. Analysis of potential secondary structures of transcripts across this region suggests that the same sequences may be involved in the termination of both late and early transcription.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectBacillus (Bacteria) -- Genetics.en_US
dc.subjectBacteriophages -- Genetics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMolecular and Cellular Biologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorIto, Junetsuen_US
dc.contributor.committeememberSpizizen, Johnen_US
dc.contributor.committeememberBernstein, Harrisen_US
dc.contributor.committeememberLittle, Johnen_US
dc.contributor.committeememberMount, Daviden_US
dc.identifier.proquest8623827en_US
dc.identifier.oclc697631698en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.