Persistent Link:
http://hdl.handle.net/10150/183815
Title:
REUSE SYSTEM DESIGN FOR BORDER IRRIGATION.
Author:
YITAYEW, MULUNEH.
Issue Date:
1982
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Advances in mathematical modelling and the availability of high speed computers with considerable memory size is making it possible to study the hydraulics of border irrigation in a greater depth than every before. A zero inertia mathematical model was found to be reliable and inexpensive among the models available in border irrigation hydraulics and was used for this study to simulate free outflow flowing border irrigation. Special emphasis was given to the runoff produced from such a system. This study dealt particularly with, the identification of pertinent open channel variables affecting runoff in border irrigation, presentation of predictive graphical and mathematical solution to quantify runoff, and with utilization of these solutions in developing reuse system design criteria. Inflow rate, surface resistance, border slope, soil infiltration characteristics, application time (time of cutoff and length of run of the border) were among other variables studied. As one might expect, runoff was found to increase with slope, flow rate, application time and decrease with increase in infiltration rate, length of run and bed and vegetation drag. Considering the number of variables affecting runoff characteristics from a given irrigation, it was obvious to see a thorough examination of each variable in dimensional terms was practically impossible. Also, presentation of the results would have required too many graphs. Dimensional anslysis was used to solve this problem and in developing dimensionless runoff curves. The ability to quantify runoff made it possible to develop reuse system design formula for proper sizing of reuse systems under several operational requirements. Shape function for the ultimate infiltrated depth profile was used to get times of runoff and also calculate various efficiencies which are useful for evaluating the system. The study shows, through the use of reuse system, the potential application efficiency can be changed from present values of 60 percent to 90 percent in Arizona. It also can be used to demonstrate the saving in energy that can be realized through such system. Step by step procedures for the design of reuse system using graphical and mathematical solutions are presented with a sample problem worked out. It is expected that the result of this study can be used by designers as well as operators of border irrigation systems without any difficulty with the aid of a simple pocket calculator. Other uses of the study include getting optimal design for the system itself by evaluating various possible designs and classroom instruction on the application of dimensional analysis to open channel hydraulics problems and design of reuse systems.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Irrigation water -- Return flow -- Mathematical models.; Irrigation -- Tailwater recovery systems -- Mathematical models.; Water reuse.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Civil Engineering and Engineering Mechanics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Ince, Simon

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleREUSE SYSTEM DESIGN FOR BORDER IRRIGATION.en_US
dc.creatorYITAYEW, MULUNEH.en_US
dc.contributor.authorYITAYEW, MULUNEH.en_US
dc.date.issued1982en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAdvances in mathematical modelling and the availability of high speed computers with considerable memory size is making it possible to study the hydraulics of border irrigation in a greater depth than every before. A zero inertia mathematical model was found to be reliable and inexpensive among the models available in border irrigation hydraulics and was used for this study to simulate free outflow flowing border irrigation. Special emphasis was given to the runoff produced from such a system. This study dealt particularly with, the identification of pertinent open channel variables affecting runoff in border irrigation, presentation of predictive graphical and mathematical solution to quantify runoff, and with utilization of these solutions in developing reuse system design criteria. Inflow rate, surface resistance, border slope, soil infiltration characteristics, application time (time of cutoff and length of run of the border) were among other variables studied. As one might expect, runoff was found to increase with slope, flow rate, application time and decrease with increase in infiltration rate, length of run and bed and vegetation drag. Considering the number of variables affecting runoff characteristics from a given irrigation, it was obvious to see a thorough examination of each variable in dimensional terms was practically impossible. Also, presentation of the results would have required too many graphs. Dimensional anslysis was used to solve this problem and in developing dimensionless runoff curves. The ability to quantify runoff made it possible to develop reuse system design formula for proper sizing of reuse systems under several operational requirements. Shape function for the ultimate infiltrated depth profile was used to get times of runoff and also calculate various efficiencies which are useful for evaluating the system. The study shows, through the use of reuse system, the potential application efficiency can be changed from present values of 60 percent to 90 percent in Arizona. It also can be used to demonstrate the saving in energy that can be realized through such system. Step by step procedures for the design of reuse system using graphical and mathematical solutions are presented with a sample problem worked out. It is expected that the result of this study can be used by designers as well as operators of border irrigation systems without any difficulty with the aid of a simple pocket calculator. Other uses of the study include getting optimal design for the system itself by evaluating various possible designs and classroom instruction on the application of dimensional analysis to open channel hydraulics problems and design of reuse systems.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectIrrigation water -- Return flow -- Mathematical models.en_US
dc.subjectIrrigation -- Tailwater recovery systems -- Mathematical models.en_US
dc.subjectWater reuse.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineCivil Engineering and Engineering Mechanicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorInce, Simonen_US
dc.identifier.proquest8217491en_US
dc.identifier.oclc681978885en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.