Persistent Link:
http://hdl.handle.net/10150/145741
Title:
BIOCHEMICAL CHARACTERIZATION OF ADIPONECTIN OLIGOMERIZATION
Author:
Briggs, David Blaine
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Embargo: Release after 10/6/2011
Abstract:
Adiponectin, a hormone that homo-oligomerizes into trimer, hexamer, or higher molecular weight (HMW) species, is involved in maintaining insulin sensitivity in muscle and liver. Interestingly, its functions appear to be oligomer-specific. Recent data suggest that HMW levels are decreased in obesity and insulin resistance, although, the cause for this decrease is not known. Impaired assembly to the octadecamer represents one possible reason for decreased HMW adiponectin in insulin resistance and type 2 diabetes, but mechanisms by which HMW adiponectin assembles are unknown. This dissertation discusses the progress that we have made regarding formation of HMW adiponectin in vitro.I found that disulfide bonds are important in the assembly process to octadecameric adiponectin, but are not required for stability of the octadecamer itself. We showed that hydrogen peroxide accelerated oligomerization to the octadecamer through formation of disulfide bonds, while alkylation of the cysteines led to inhibition of both oligomerization and disulfide bond formation. Using comparative native/denaturing polyacrylamide gel electrophoresis (PAGE), dynamic light scattering, and tandem mass spectrometry, we demonstrated that octadecamer is stable in the absence of disulfide bonds by using multiple biochemical and biophysical assays. In addition, oxidized adiponectin oligomerizes to octadecamer far slower than reduced adiponectin. To further evaluate the role of disulfide bonds in the formation to octadecamer, we analyzed the role of reduction potential on adiponectin oligomerization. We observed that under immediate oxidizing conditions, hexamers and trimers form. Oxidized hexamer can form HMW adiponectin through disulfide bond rearrangement using beta-mercaptoethanol (βME) or increasing the total concentration of glutathione under oxidizing conditions. To further understand the role of disulfide bonds, we showed that zinc increased the oligomerization to octadecamer. This effect was associated with decreased initial disulfide bonding during the assembly to the octadecamer. In summary, these data suggest the rate of disulfide bond formation and the ability to undergo disulfide bond isomerization are important in the oligomerization process of HMW adiponectin.
Type:
text; Electronic Dissertation
Keywords:
Adiponectin; Diabetes; Disulfide bonds; Protein Assembly; Protein Multimerization
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Molecular & Cellular Biology
Degree Grantor:
University of Arizona
Advisor:
Tsao, Tsu-Shuen

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleBIOCHEMICAL CHARACTERIZATION OF ADIPONECTIN OLIGOMERIZATIONen_US
dc.creatorBriggs, David Blaineen_US
dc.contributor.authorBriggs, David Blaineen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseEmbargo: Release after 10/6/2011en_US
dc.description.abstractAdiponectin, a hormone that homo-oligomerizes into trimer, hexamer, or higher molecular weight (HMW) species, is involved in maintaining insulin sensitivity in muscle and liver. Interestingly, its functions appear to be oligomer-specific. Recent data suggest that HMW levels are decreased in obesity and insulin resistance, although, the cause for this decrease is not known. Impaired assembly to the octadecamer represents one possible reason for decreased HMW adiponectin in insulin resistance and type 2 diabetes, but mechanisms by which HMW adiponectin assembles are unknown. This dissertation discusses the progress that we have made regarding formation of HMW adiponectin in vitro.I found that disulfide bonds are important in the assembly process to octadecameric adiponectin, but are not required for stability of the octadecamer itself. We showed that hydrogen peroxide accelerated oligomerization to the octadecamer through formation of disulfide bonds, while alkylation of the cysteines led to inhibition of both oligomerization and disulfide bond formation. Using comparative native/denaturing polyacrylamide gel electrophoresis (PAGE), dynamic light scattering, and tandem mass spectrometry, we demonstrated that octadecamer is stable in the absence of disulfide bonds by using multiple biochemical and biophysical assays. In addition, oxidized adiponectin oligomerizes to octadecamer far slower than reduced adiponectin. To further evaluate the role of disulfide bonds in the formation to octadecamer, we analyzed the role of reduction potential on adiponectin oligomerization. We observed that under immediate oxidizing conditions, hexamers and trimers form. Oxidized hexamer can form HMW adiponectin through disulfide bond rearrangement using beta-mercaptoethanol (βME) or increasing the total concentration of glutathione under oxidizing conditions. To further understand the role of disulfide bonds, we showed that zinc increased the oligomerization to octadecamer. This effect was associated with decreased initial disulfide bonding during the assembly to the octadecamer. In summary, these data suggest the rate of disulfide bond formation and the ability to undergo disulfide bond isomerization are important in the oligomerization process of HMW adiponectin.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectAdiponectinen_US
dc.subjectDiabetesen_US
dc.subjectDisulfide bondsen_US
dc.subjectProtein Assemblyen_US
dc.subjectProtein Multimerizationen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMolecular & Cellular Biologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorTsao, Tsu-Shuenen_US
dc.contributor.committeememberWysocki, Vickien_US
dc.contributor.committeememberMcEvoy, Meganen_US
dc.contributor.committeememberBandarian, Vaheen_US
dc.contributor.committeememberHausrath, Andrew C.en_US
dc.identifier.proquest11483-
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.