Body Size and the Neural, Cognitive and Sensory Basis of Sociality in Bees

Persistent Link:
http://hdl.handle.net/10150/145712
Title:
Body Size and the Neural, Cognitive and Sensory Basis of Sociality in Bees
Author:
Riveros Rivera, Andre J.
Issue Date:
2009
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Embargo: Release after 7/29/2011
Abstract:
Body size is a universal property affecting biological structure and function, from cell metabolism to animal behavior. The nervous system, the physical generator of behavior, is also affected by variations in body size; hence potentially affecting the way animals perceive, interpret and react to the environment. When animals join to form groups, such individual differences become part of the structure of the society, even determining social roles. Here, I explore the association between body size, behavior and social organization in honeybees and bumblebees. Focusing on bumblebees, I explore the link between body size, brain allometry and learning and memory performance, within the context of task specialization. I show that body size goes along with brain size and with learning and memory performance, and that foraging experience affects such cognitive and neural features. Next, I explore the association between body size and foraging task specialization in honeybees. Previous evidence showed a link between specialization on pollen or nectar foraging and sensory sensitivity, further associating sensitivity to the quality and/or quantity of resource exploited. I hypothesize that, as in solitary bees, larger body size is associated with higher sensory sensitivity. I test this hypothesis by comparing body size and the quality and quantity of the resource exploited by wild Africanized and European honeybees. I show that nectar foragers are smaller and have fewer olfactory sensilla, which might underlie their lower sensitivity to odors. Also, larger bees collect more pollen (within pollen foragers) and more dilute nectar (within nectar foragers). To further test this `size hypothesis', I compare strains of bees selected to store large ("high strain") or small ("low strain") amounts of pollen surplus. As these strains differ in sensory sensitivity, I predict that the more sensitive high strain bees are larger and have more sensory sensilla. I show that high strain bees are generally bigger, but have fewer sensory sensilla than low strain bees. These results show that in bees, body size is associated with an individual's sensory, neural and cognitive features, further suggesting that body size plays a more important role in the organization of bee societies than generally assumed.
Type:
text; Electronic Dissertation
Keywords:
Bumble bees; Honey bees; Insect behavior; Insect societies; Social Insects; Sociobiology
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Insect Science
Degree Grantor:
University of Arizona
Advisor:
Gronenberg, Wulfila

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleBody Size and the Neural, Cognitive and Sensory Basis of Sociality in Beesen_US
dc.creatorRiveros Rivera, Andre J.en_US
dc.contributor.authorRiveros Rivera, Andre J.en_US
dc.date.issued2009-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseEmbargo: Release after 7/29/2011en_US
dc.description.abstractBody size is a universal property affecting biological structure and function, from cell metabolism to animal behavior. The nervous system, the physical generator of behavior, is also affected by variations in body size; hence potentially affecting the way animals perceive, interpret and react to the environment. When animals join to form groups, such individual differences become part of the structure of the society, even determining social roles. Here, I explore the association between body size, behavior and social organization in honeybees and bumblebees. Focusing on bumblebees, I explore the link between body size, brain allometry and learning and memory performance, within the context of task specialization. I show that body size goes along with brain size and with learning and memory performance, and that foraging experience affects such cognitive and neural features. Next, I explore the association between body size and foraging task specialization in honeybees. Previous evidence showed a link between specialization on pollen or nectar foraging and sensory sensitivity, further associating sensitivity to the quality and/or quantity of resource exploited. I hypothesize that, as in solitary bees, larger body size is associated with higher sensory sensitivity. I test this hypothesis by comparing body size and the quality and quantity of the resource exploited by wild Africanized and European honeybees. I show that nectar foragers are smaller and have fewer olfactory sensilla, which might underlie their lower sensitivity to odors. Also, larger bees collect more pollen (within pollen foragers) and more dilute nectar (within nectar foragers). To further test this `size hypothesis', I compare strains of bees selected to store large ("high strain") or small ("low strain") amounts of pollen surplus. As these strains differ in sensory sensitivity, I predict that the more sensitive high strain bees are larger and have more sensory sensilla. I show that high strain bees are generally bigger, but have fewer sensory sensilla than low strain bees. These results show that in bees, body size is associated with an individual's sensory, neural and cognitive features, further suggesting that body size plays a more important role in the organization of bee societies than generally assumed.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectBumble beesen_US
dc.subjectHoney beesen_US
dc.subjectInsect behavioren_US
dc.subjectInsect societiesen_US
dc.subjectSocial Insectsen_US
dc.subjectSociobiologyen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineInsect Scienceen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGronenberg, Wulfilaen_US
dc.contributor.committeememberPapaj, Daniel R.en_US
dc.contributor.committeememberStrausfeld, Nicholas J.en_US
dc.contributor.committeememberWheeler, Dianaen_US
dc.identifier.proquest10593-
dc.identifier.oclc659752346-
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.