Persistent Link:
http://hdl.handle.net/10150/145446
Title:
Microbial Cogeneration of Biofuels
Author:
Scholz, Matthew John
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The fields of biodiesel and bioethanol research and development have largely developed independently of one another. Opportunities exist for greater integration of these processes that may result in decreased costs of production for both fuels.To that end, this work addresses the use of the starches and glycerol from processed algal biomass as substrates for fermentation by the yeasts <ital>Saccharomyces cerevisiae</ital> and <ital>Pachysolen tannophilus,</ital> respectively. Ethanol producers commonly employ the former yeast for ethanol production and include the latter yeast among candidate species for cellulosic ethanol production.A simple 95% ethanol extraction at 70°C followed by sulfuric acid hydrolysis at 121°C and 2 atm proved a sufficient pretreatment for <ital>S. cerevisiae</ital> fermentation of starch from <ital>Chlamydomonas reinhardtii</ital> mutant <ital>cw15.</ital> The maximum rate of ethanol production was observed as 14 mL/g-h and a maximum concentration of 0.9±0.01% (m/v) was observed by 28 hours. Some starch appeared invulnerable to hydrolysis.<ital>P. tannophilus</ital> fermentation of glycerol, both independently and among mixed substrates, was likewise demonstrated. It was found that glucose consumption preceded that of glycerol and xylose, but that the latter two substrates were consumed concurrently. Under aerobic, batch conditions, the maximum specific growth rate of the species on a 2% glycerol substrate was observed as 0.04/hr and the yield coefficient for conversion of glycerol to ethanol was 0.07 g/g. While the maximum observed concentration of ethanol in the glycerol-only fermentation was 0.1% m/v, that in mixed media containing 2% each glucose, xylose, and glycerol was 1.5%.Also investigated here was the flocculation of a mutant species of the algae <ital>C. reinhardtii</ital> by a combination of methanol and calcium. Algae harvest is typically an energy-intensive process, but the technique demonstrated here is not. Complete flocculation of cells was observed with only 5 minutes of mixing and less than 10 minutes of settling using 12 mM CaCl<sub>2</sub> and 4.6% methanol. Ethanol was observed to operate in the same capacity, intimating another area in which yeast bioethanol and algal biodiesel processes might enable one another. During growth, either an inhibitor of flocculation was produced or a facilitator was consumed.
Type:
Electronic Dissertation; text
Keywords:
algae; biofuel; ethanol; fermentation; flocculation; hydrolysis
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Agricultural & Biosystems Engineering
Degree Grantor:
University of Arizona
Advisor:
Cuello, Joel L.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleMicrobial Cogeneration of Biofuelsen_US
dc.creatorScholz, Matthew Johnen_US
dc.contributor.authorScholz, Matthew Johnen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe fields of biodiesel and bioethanol research and development have largely developed independently of one another. Opportunities exist for greater integration of these processes that may result in decreased costs of production for both fuels.To that end, this work addresses the use of the starches and glycerol from processed algal biomass as substrates for fermentation by the yeasts <ital>Saccharomyces cerevisiae</ital> and <ital>Pachysolen tannophilus,</ital> respectively. Ethanol producers commonly employ the former yeast for ethanol production and include the latter yeast among candidate species for cellulosic ethanol production.A simple 95% ethanol extraction at 70°C followed by sulfuric acid hydrolysis at 121°C and 2 atm proved a sufficient pretreatment for <ital>S. cerevisiae</ital> fermentation of starch from <ital>Chlamydomonas reinhardtii</ital> mutant <ital>cw15.</ital> The maximum rate of ethanol production was observed as 14 mL/g-h and a maximum concentration of 0.9±0.01% (m/v) was observed by 28 hours. Some starch appeared invulnerable to hydrolysis.<ital>P. tannophilus</ital> fermentation of glycerol, both independently and among mixed substrates, was likewise demonstrated. It was found that glucose consumption preceded that of glycerol and xylose, but that the latter two substrates were consumed concurrently. Under aerobic, batch conditions, the maximum specific growth rate of the species on a 2% glycerol substrate was observed as 0.04/hr and the yield coefficient for conversion of glycerol to ethanol was 0.07 g/g. While the maximum observed concentration of ethanol in the glycerol-only fermentation was 0.1% m/v, that in mixed media containing 2% each glucose, xylose, and glycerol was 1.5%.Also investigated here was the flocculation of a mutant species of the algae <ital>C. reinhardtii</ital> by a combination of methanol and calcium. Algae harvest is typically an energy-intensive process, but the technique demonstrated here is not. Complete flocculation of cells was observed with only 5 minutes of mixing and less than 10 minutes of settling using 12 mM CaCl<sub>2</sub> and 4.6% methanol. Ethanol was observed to operate in the same capacity, intimating another area in which yeast bioethanol and algal biodiesel processes might enable one another. During growth, either an inhibitor of flocculation was produced or a facilitator was consumed.en_US
dc.typeElectronic Dissertationen_US
dc.typetexten_US
dc.subjectalgaeen_US
dc.subjectbiofuelen_US
dc.subjectethanolen_US
dc.subjectfermentationen_US
dc.subjectflocculationen_US
dc.subjecthydrolysisen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineAgricultural & Biosystems Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCuello, Joel L.en_US
dc.contributor.committeememberYoon, Jeong-Yoolen_US
dc.contributor.committeememberArnold, Robert G.en_US
dc.contributor.committeememberRiley, Mark R.en_US
dc.identifier.proquest11568-
dc.identifier.oclc752261433-
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.