Optimization of Polishing Kinematics and Consumables during Chemical Mechanical Planarization Processes

Persistent Link:
http://hdl.handle.net/10150/145385
Title:
Optimization of Polishing Kinematics and Consumables during Chemical Mechanical Planarization Processes
Author:
Meled, Anand
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation presents a series of studies relating to optimization of kinematics and consumables during chemical mechanical planarization processes. These are also evaluated with the purpose of minimizing environmental and cost of ownership impacts.In order to study diamond micro-wear and substrate wear during planarization processes, a series of static etch tests and wear tests were performed using different types of diamond discs and subjected to various treatments. Scanning Electron Microscopy (SEM) and Inductively Coupled Plasma Membrane Spectroscopy (ICPMS) were used to estimate the extent of diamond micro-wear and substrate wear.Next, the impact of various factors (type of slurry abrasive, pH, abrasive content and abrasive concentration) on pad wear rate during planarization process was studied. Another study in this dissertation focuses on the development of a novel technique of using coefficient of friction (COF) data to distinguish between good and bad diamond discs. This study made use of the innovative tool diamond disc dragging device (DDD-100) designed and developed for the purpose of this study.It is known that the performance of chemical mechanical planarization depends significantly on the polishing pad grooving type and the kinematics involved in the process. Variations in pad grooving type as well as pressure and sliding velocity can affect polishing performance. One study in this dissertation investigates the effect of pressure and sliding velocity on the polishing performance. The study is conducted on multiple pressure and sliding velocity variations to understand the characteristic of each condition. A subsequent study focuses on the impact of pad grooving type on polishing performance.The greatest contribution of this dissertation involves development of the novel slurry injector to optimize the utilization of slurry during planarization processes. Slurry is a critical component in chemical mechanical planarization processes and accounts for approximately 50 percent of the cost of ownership (CoO). The novel injector apart from reducing the consumption of slurry, also contributed in addressing problems associated with foaming, reduced the number of defects and achieved better within wafer non-uniformity (WIWNU).
Type:
Electronic Dissertation; text
Keywords:
Chemical Mechanical Planarization; Coefficient of Friction; Diamond Disc; Pad Wear Rate; Removal Rate; Slurry Injector
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemical Engineering
Degree Grantor:
University of Arizona
Advisor:
Philipossian, Ara

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleOptimization of Polishing Kinematics and Consumables during Chemical Mechanical Planarization Processesen_US
dc.creatorMeled, Ananden_US
dc.contributor.authorMeled, Ananden_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation presents a series of studies relating to optimization of kinematics and consumables during chemical mechanical planarization processes. These are also evaluated with the purpose of minimizing environmental and cost of ownership impacts.In order to study diamond micro-wear and substrate wear during planarization processes, a series of static etch tests and wear tests were performed using different types of diamond discs and subjected to various treatments. Scanning Electron Microscopy (SEM) and Inductively Coupled Plasma Membrane Spectroscopy (ICPMS) were used to estimate the extent of diamond micro-wear and substrate wear.Next, the impact of various factors (type of slurry abrasive, pH, abrasive content and abrasive concentration) on pad wear rate during planarization process was studied. Another study in this dissertation focuses on the development of a novel technique of using coefficient of friction (COF) data to distinguish between good and bad diamond discs. This study made use of the innovative tool diamond disc dragging device (DDD-100) designed and developed for the purpose of this study.It is known that the performance of chemical mechanical planarization depends significantly on the polishing pad grooving type and the kinematics involved in the process. Variations in pad grooving type as well as pressure and sliding velocity can affect polishing performance. One study in this dissertation investigates the effect of pressure and sliding velocity on the polishing performance. The study is conducted on multiple pressure and sliding velocity variations to understand the characteristic of each condition. A subsequent study focuses on the impact of pad grooving type on polishing performance.The greatest contribution of this dissertation involves development of the novel slurry injector to optimize the utilization of slurry during planarization processes. Slurry is a critical component in chemical mechanical planarization processes and accounts for approximately 50 percent of the cost of ownership (CoO). The novel injector apart from reducing the consumption of slurry, also contributed in addressing problems associated with foaming, reduced the number of defects and achieved better within wafer non-uniformity (WIWNU).en_US
dc.typeElectronic Dissertationen_US
dc.typetexten_US
dc.subjectChemical Mechanical Planarizationen_US
dc.subjectCoefficient of Frictionen_US
dc.subjectDiamond Discen_US
dc.subjectPad Wear Rateen_US
dc.subjectRemoval Rateen_US
dc.subjectSlurry Injectoren_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemical Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPhilipossian, Araen_US
dc.contributor.committeememberBlowers, Paulen_US
dc.contributor.committeememberSorooshian, Arminen_US
dc.contributor.committeememberRaghavan, Srinien_US
dc.identifier.proquest11348-
dc.identifier.oclc752261297-
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.