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ABSTRACT

I begin this study by presenting an overview of the theory of magnetohydrodynam-

ics and the necessary conditions to justify the fluid treatment of a plasma. Upon

establishing the fluid description of a plasma we move on to a discussion of magneto-

hydrodynamics in both the ideal and Hall regimes. This framework is then extended

to include multiple plasmas in order to consider two problems of interest in the field

of theoretical space physics. The first is a study on the evolution of a partially ion-

ized plasma, a topic with many applications in space physics. A multi-fluid approach

is necessary in this case to account for the motions of an ion fluid, electron fluid

and neutral atom fluid; all of which are coupled to one another by collisions and/or

electromagnetic forces. The results of this study have direct application towards an

open question concerning the cascade of Kolmogorov-like turbulence in the inter-

stellar plasma which we will discuss below. The second application of multi-fluid

magnetohydrodynamics that we consider in this thesis concerns the amplification of

magnetic field upstream of a collisionless, parallel shock. The relevant fluids here are

the ions and electrons comprising the interstellar plasma and the galactic cosmic ray

ions. Previous works predict that the streaming of cosmic rays lead to an instability

resulting in significant amplification of the interstellar magnetic field at supernova

blastwaves. This prediction is routinely invoked to explain the acceleration of galac-

tic cosmic rays up to energies of 1015 eV. I will examine this phenomenon in detail

using the multi-fluid framework outlined below. The purpose of this work is to first

confirm the existence of an instability using a purely fluid approach with no addi-

tional approximations. If confirmed, I will determine the necessary conditions for it

to operate.
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CHAPTER 1

Introduction

1.1 Fluid Description of Plasma

The problem of plasma dynamics is in general a complicated one. A general solu-

tion involves knowing and keeping track of the position and momentum of every

particle within the plasma. The number of degrees of freedom necessary to describe

these microscopic variables alone is staggering before particle dynamics are even

considered. In the kinetic theory of plasmas, this information is contained within

the distribution function, f(x,p). This function evolves with time as forces alter

the position and momentum of the individual particles. One method for avoiding

the full kinetic theory associated with following individual particles is to instead ap-

proximate the motion of the plasma as a fluid. The collective motion of a fluid can

then be described in terms of macroscopic variables such as average bulk velocity

and particle number density which are calculated from f(x,p).

n(x) =

∫
f(x,p)d3p (1.1)

v(x) =

∫
u(p)f(x,p)d3p (1.2)

Rather than having to keep track of the location and momentum of each particle

in the plasma, the dynamics of n and 〈v〉 are calculated and observed. While the

small-scale motion of individual particles in lost in this macroscopic limit, much of

the essential physics of the plasma is present making the fluid approach popular in
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many areas of research. This method of studying the evolution of a fluid is called

hydrodynamics. Below, we will review the essential equations used in hydrodynam-

ics.

The primary equations for hydrodynamics are based upon fundamental conser-

vation laws of physics; those of mass, momentum, and energy. By definition, as long

as a quantity is conserved the time rate of change of that quantity must be equal to

the negative divergence of its flux.

∂A

∂t
+∇ · (A〈u〉) = 0 (1.3)

Here, u is the total velocity of the particles in the plasma. This total velocity

can be separated into two components, the bulk plasma velocity v from above and

random thermal velocities w: u = v + w. Note an additional definition: 〈u〉 = v.

This implies that 〈w〉 = 0 which has the physical meaning that all random motions

of particles within a plasma cancel with one another and do not contribute to the

bulk speed of the plasma.

1.1.1 Conservation of Mass

If A is taken to be the plasma mass density nm we find the first equation for

hydrodynamics which simply shows that the motion of the plasma must conserve

mass (and particles), as expected. Any rate of change in the plasmas local mass

density is simply due to a divergence of the mass flux.

∂(nm)

∂t
+∇ · (nmv) = 0 (1.4)
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Only the bulk velocity remains in the above equation because after averaging u

over all of the particles in the plasma the random motions indeed cancel with one

another.

1.1.2 Conservation of Momentum

In a similar manner, we now consider the conservation of momentum density in a

plasma.

∂ (nm〈u〉)
∂t

+∇ · (nm〈uu〉) = 0 (1.5)

In the equation above, the product of the two velocity vectors is an outer product

not the more common inner (dot) product. The outer product between two vectors

results in a tensor rather than a scaler.

〈uu〉 =


uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

 = 〈uiuj〉 (1.6)

The final equality represents the tensor in the more compact index notation.

Below is the entire momentum conservation equation in index notation.

∂ (nm〈ui〉)
∂t

+
∂

∂xj
(nm〈uiuj〉) = 0 (1.7)

Recall that u is the total velocity of the particles within the plasma and equal

to the sum of the bulk plasma speed and random thermal motions: u = v+w.

Inserting this definition into into equation (1.7) we find the following.
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∂

∂t
(nm〈vi + wi〉) +

∂

∂xj
(nm〈vi + wi〉〈vj + wj〉) = 0

→ ∂

∂t
(nm〈vi + wi〉) +

∂

∂xj
(nm〈vivj + wiwj + viwj + vjwi〉) = 0 (1.8)

Carrying out the averages in (1.8), the terms that are linear in wi or wj will

vanish for the reasons mentioned above.

∂

∂t
(nmvi) +

∂

∂xj
(nm(vivj)) +

∂

∂xj
(nm〈wiwj〉) = 0 (1.9)

The final term on the LHS of the equation above is recognized as the divergence of

the plasma pressure tensor, P . This pressure terms appears in the momentum con-

servation equation because pressure simply transfers momentum within the plasma

without creating or destroying it.

∂

∂t
(nmvi) +

∂

∂xj
(nm(vivj)) +

∂

∂xj
(Pij) = 0 (1.10)

We now perform the chain rule on the terms with both n and v because in general

both variables are time and space dependent.



14

nm
∂vi
∂t

+ vi
∂nm

∂t
+ vi

∂(nmvj)

∂xj
+ nmvj

∂(vi)

∂xj
+

∂

∂xj
(Pij) = 0

→nm∂vi
∂t

+ nmvj
∂(nmvi)

∂xj
+ vi

(
∂(nm)

∂t
+
∂(nmvj)

∂xj

)
+

∂

∂xj
(Pij) = 0

→nm∂vi
∂t

+ nmvj
∂vi
∂xj

+
∂

∂xj
(Pij) = 0 (1.11)

The term in parentheses in the second equation above vanishes in accordance

with the mass conservation equation (1.4). At this point, any external forces may

simply be added to the RHS of equation (1.11) as they do not conserve momentum.

Examples of the external forces could be gravity or the Lorentz force. Returning to

vector notation, the hydrodynamic momentum equation takes on the more familiar

form below.

nm

(
∂v

∂t
+ (v · ∇)v

)
= −∇ · P + ΣFext

→nmDv

Dt
= −∇ · P + ΣFext (1.12)

In the final step, we have defined the advective derivative D/Dt ≡ ∂/∂t + v · ∇.

The advective derivative accounts for changes in a variable due to explicit time

variations (first term) as well as spatial variations resulting from following a fluid

element (second term). This derivative is common throughout hydrodynamics.

Equations (1.4) and (1.12) are the foundation of hydrodynamics and determine

the large-scale bulk motions of a dynamic plasma in the fluid limit. In order for

the fluid limit to be valid, allowing for the use of the hydrodynamic equations, the

plasma must satisfy certain conditions. Parker [1] provides a simple explanation

of these conditions. First, consider the bulk motions of a certain plasma to have
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length scale L which is divided into smaller lengths of size l, as in a finite differencing

scheme [1]. In order for that scheme to yield satisfactory solutions to equations (1.4)

and (1.12) above, the length scales must satisfy the relation l � L. At the same

time, each cell of length l must be large enough so as to contain enough particles to

give a statistically meaningful number density n. These coupled conditions on L,

l, and n determine scenarios where plasmas may be treated as fluids. Fortunately,

these conditions are routinely satisfied in many regions of interest throughout the

solar system and galaxy making the fluid treatment of a plasma useful in many fields

of physics and astrophysics.

1.2 Magnetohydrodynamics

By definition a plasma is at least partially ionized which means electric and mag-

netic forces must be included in the external forces of equation (1.12). Charged

particles and their dynamics also alter those same fields necessitating the inclusion

of Maxwell’s equations. When the Lorentz force and Maxwell’s equations are added

to those of hydrodynamics, to account for the effects of electromagnetic forces and

fields, we enter the field of magnetohydrodynamics (hereinafter MHD). This power-

ful combination is the perfect tool for describing the bulk motions of ionized gases

throughout the galaxy. Recall the general form of the Lorentz force and Maxwell’s

equations in Gaussian units.

FL = qE +
1

c
qu×B (1.13)

∇ ·B = 0 (1.14)

∇ · E = 4πρ (1.15)

∇×B =
4π

c
j +

1

c

∂E

∂t
(1.16)

∇× E = −1

c

∂B

∂t
(1.17)
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These equations contain the variables for the magnetic field B, electric field E,

particle velocity u, and electric current j. The combination of the hydrodynamic

equations, Maxwell’s equations and the Lorentz force actually over-constrains the

system, however, and only two of these variables are necessary for our solution.

Two logical pairs to consider are either v and B or j and E. Different scientific fields

choose to work in one paradigm or the other as they were considered equivalent for

years. While some still work in the E-j paradigm, Vasyliūnas [2] has shown that

only B and v provide the correct physics in general. Once v and B are known, j

and E are easily calculated.

j =
c

4π
∇×B (1.18)

E = −1

c
v ×B (1.19)

These relations are the result of Maxwell’s equations but the details of the deriva-

tion will be explained further in subsequent sections.

1.3 Single-fluid MHD

Including only the Lorentz force in the fluid momentum equation we arrive at the

MHD specific momentum equation for a single plasma.

nm

(
∂v

∂t
+ (v · ∇)v

)
= −∇ · P + nqE + nq

1

c
v ×B + ΣFext (1.20)

Among the additional forces in ΣFext, accounting for inter-particle collisions

is possible. Collisions will be addressed in a later chapter, however, and will be

neglected in the following section.
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1.3.1 Ideal MHD

Though the fluid equations and Maxwell’s equations describe the general motion

of any electrically charged fluid we choose to focus on the specific case of a colli-

sionless plasma, a limit that is actually realized quite often in interstellar plasmas.

In a collisionless plasma, interactions with magnetic irregularities lead to particle

scattering and isotropy, rather than interactions with other particles. Without any

interparticle collisions, the less massive electrons in a plasma are able to easily move

throughout the plasma resulting in very high electrical conductivity. A consequence

of the high conductivity of the electrons is that a plasma is unable to maintain any

substantial electric field in its own moving (with non-relativistic velocity v) frame of

reference; E′ = 0. Any imposed charge separation is easily neutralized by the mobile

electrons. If we choose to move from the plasma frame to another observer’s frame

(perhaps at rest relative to the plasma) the electric and magnetic field undergo a

Lorentz transformation. In the non-relativistic limit, this transformation has the

following general form.

B = B′ +
1

c
v × E′ (1.21)

E = E′ − 1

c
v ×B′ (1.22)

Primed variables denote the moving reference frame and unframed variables

denote the observer’s rest frame. As stated above, a collisionless plasma cannot

support a electric field in its own frame so E′ = 0. The Lorentz transformations

then simplify to the following.
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B = B′ (1.23)

E = −1

c
v ×B (1.24)

In this non-relativistic approximation, Ampére’s law also simplifies by excluding

the displacement current, (1/c)∂E/∂t, which is now proportional to v/c using the

transformations above. Substitution of equation (1.24) into Faraday’s law leads to

the magnetic induction equation of ideal MHD. Note that the magnetic field is the

same in any frame of reference in the non-relativistic limit. The definitions of j and

E in equations (1.18) and (1.19) are also now obvious in the same limit.

∂B

∂t
= ∇× (v ×B) (1.25)

The induction equation provides a means to determine the time evolution of the

magnetic field. In the case of ideal MHD the induction equation shows that the

magnetic field is deformed by the motion of the plasma moving at velocity v. This

is because the magnetic field line are considered frozen into the highly conducting

plasma. The lack of collisions also means there is no mechanism to dissipate the

magnetic field so the field lines are only deformed and not destroyed. To see this

result, begin with the definition of flux through a given surface A defined within

the fluid.

Φ =

∮
B · dA (1.26)
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If the magnetic field is carried along with the magnetic field, the magnetic flux

through the surface A should be constant.

∂Φ

∂t
=

∂

∂t

∫
A

B · dA =

∫
A

∂B

∂l
· dA +

∫
A

B · ∂(dA)

∂t
(1.27)

The rate at which the surface A (moving with the fluid) changes size is given

by the cross product v × dl where dl is the path around dA. This relation and the

induction equation are now substituted into the flux equation.

∫
A

(∇× (v ×B)) · dA +

∫
L

B · (v × dl)∫
A

(∇× (v ×B)) · dA−
∫
A

(∇× (v ×B)) · dA = 0 (1.28)

The final step involves reordering the terms in the vector operations of the final

term and applying Stoke’s theorem to the integral. This result shows that the

magnetic flux through the surface A does not change with time, equivalent to stating

the field lines are frozen into the plasma.

We now have the equations necessary to describe ideal MHD, namely the fluid

momentum equation and magnetic induction equation.

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ · P +

1

4π
∇× (∇×B) (1.29)

∂B

∂t
= ∇× (v ×B) (1.30)
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1.3.2 Alfvén Waves

A simple result of ideal MHD is that of Alfvén waves, a phenomenon whereby

magnetic perturbations travel along magnetic field lines just as perturbations travel

along a string. To begin, we consider a stationary plasma threaded by a uniform

magnetic field, B0, aligned along the ẑ direction with uniform pressure. If we now

perturb the uniform field and stationary plasma in the x̂ direction (perpendicular

to the original field) with variations in the ẑ direction the momentum and induction

equations are as follows.

ρ
∂vx
∂t

=
1

4π

∂2δBx

∂z2
(1.31)

∂δBx

∂t
= −B0

∂δvx
∂z

(1.32)

The shear perturbations assumed here do not compress the fluid and ∇ · P = 0.

Using one equation to eliminate δvx in favor of δBx from the other we arrive at the

single equation describing the behavior of the magnetic field perturbations.

∂2δBx

∂t2
= − B2

0

4πρ

∂2δBx

∂z2
(1.33)

This differential equation is easily recognized as a wave equation. Small pertur-

bations in the magnetic field propogate along the field lines and travel at the Alfvén

speed, vA = B0/(4πρ)1/2. Alfvén waves are present throughout the universe and

provide one technique for probing magnetic field strength and particle density.

Had the plasma initially been non-stationary and traveling along the field lines in

the ẑ direction with speed v0 the waves will simply be Doppler-shifted, va+v0. This

perturbation method will be applied and extended to more complicated problems

in subsequent chapters.
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1.4 Multi-fluid MHD

The single-fluid description of MHD can be extended to an arbitrary number of fluids

of different particle species. In multi-fluid MHD, each species of particles are treated

as separate plasmas subject to separate equations of motion. These equations may

be coupled by common forces or collisions, but each species behaves in response to

momentum individual equations. The different species may be as simple as a single

population of ions and electrons or made to include multiple species of either, as

well as neutral atoms. Multiples cases will be examined in this dissertation.

To arrive at the equations of ideal MHD, an implicit assumption was made with

regards to the relative masses of electrons and protons; me � mp. This assumption

neglects the inertia of the electrons making the velocity of the proton plasma the

bulk plasma velocity, v. In this section, we will begin with separate momentum

equations for ions (taken to be protons) and electrons.

nimi

(
∂vi

∂t
+ (vi · ∇)vi

)
= −∇ · P i + niqE + niq

1

c
vi ×B (1.34)

neme

(
∂ve

∂t
+ (ve · ∇)ve

)
= −∇ · P e − neqE +−neq

1

c
ve ×B (1.35)

These two equations must now be combined by performing the operation (1.34) +

(1.35). Using methods similar to those in section 1.1.2 simplifies this process.

∂

∂t
(nimi〈ui,j〉+ neme〈ue,j〉)

+
∂

∂xk
(nimi〈ui,jui,k〉+ neme〈ue,jue,k〉) =

1

nec
j×B (1.36)

The first and second indices on each velocity u denote the particle species and vector

component respectively. Moving forward, the following definitions are used:
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vcm =
nimivi + nemeve
nimi + neme

(1.37)

w = u− vcm (1.38)

〈w〉 = v − vcm (1.39)

Equation (1.37) is simply the speed of the center of mass for the combined fluid.

The purpose of equations (1.38) and (1.39) is to recast the random motions of the

individual particles in terms of vcm [3]. These equations still imply that 〈u〉 = v.

Applying these useful definitions lead to the following on the LHS of equation (1.36).

∂

∂t
(nimivi,j + nemeve,j)

+
∂

∂xk
(nimi〈(vcm,j + wi,j) (vcm,k + wi,k)〉+ neme〈(vcm,j + we,j) (vcm,k + we,k)〉)

(1.40)

∂

∂t
(nimivi,j + nemeve,j)

+
∂

∂xk

[
nimi (〈wi,jwi,k〉+ vcm,jvi,k + vcm,kvi,j − vcm,jvcm,k)

+ neme (〈we,jwe,k〉+ vcm,jve,k + vcm,kve,j − vcm,jvcm,k)
]

(1.41)

Once again, the 〈wjwk〉 terms are recognized as the pressure tensors due to the

individual motions of ions and electrons, P i/nimi and P e/neme. Recall that these

motions are now measured relative to vcm rather than the bulk speed of the indi-
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vidual species.

∂

∂t
(nimivi,j + nemeve,j)

+
∂

∂xk

[
Pi,jk + Pe,jk + vcm,j (nimivi,k + nemeve,k) + vcm,k (nimivi,j + nemeve,j)

− vcm,jvcm,k (nimi + neme)

]

=
∂

∂t
(nimivi,j + nemeve,j) +

∂

∂xk

[
Pi,jk + Pe,jk + (nimi + ne +me) vcm,jvcm,k

]
(1.42)

→ ∂

∂t
(ρvcm,j) +

∂

∂xk
(ρvcm,jvcm,k + Ptot,jk) =

1

nec
j×B (1.43)

In this expression, the total mass density is given by ρ = nimi +neme and the total

pressure tensor by P tot = P i + P e defined as above. Conserving mass allows for a

final simplification.

ρ
∂vcm
∂t

+ (vcm · ∇)vcm = −∇ · P tot +
1

c
j×B (1.44)

Equation (1.44) is the momentum equation for the combination of the fluid

comprised of both the ions and electrons [4, 5].

Once multiple fluids are under consideration, a more formal treatment of the

electric field is necessary. To proceed, once again consider the momentum equations

for the ions and electrons. Calculating the difference (q/mi)∗(1.34)−(q/me)∗(1.35)

leads to the following result with the new definition for the electric current J =

niqvi − neqve.
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∂[q(nivi − neve)]
∂t

+ niq(vi · ∇)vi − neq(ve · ∇)ve (1.45)

= −∇ · P i

mi

+
∇ · P e

me

+

(
niq

2

mi

+
neq

2

me

)
E +

(
niq

2

mic
vi +

neq
2

mec
ve

)
×B

Continuing with the approximation me � mi any terms proportional to 1/mi

are neglected in the equation above. In the approximation of zero electron mass the

electron velocity is not well defined so vi is substituted for ve using J = (c/4π)∇×B.

Solving for the electric field, the result is known as the Generalized Ohm’s Law.

E = −1

c
vcm ×B +

1

4πneq
(∇×B)×B− 1

neec
∇ · P e +

me

neq2
DJ

Dt
+ ηJ (1.46)

The first term on the RHS is the electric field due to Lorentz transformation into

the center of mass frame of reference. The rest of the terms are the Hall term, electon

pressure term, inertial term and resistive term, respectively. Each one represents

electric fields due to various effects. The resistive term has been added to account

for possible collisions between electrons and ions. Each term becomes non-negligible

at different scales of interest.

In the limit of very large length scales and negligible electron mass, equation

(1.46) reduces to the electric field of ideal MHD and the freezes the magnetic field

into the ion plasma.

E = −1

c
vi ×B (1.47)
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1.4.1 Hall MHD

Continuing in the limit of me � mi but now at smaller length scales, the Hall terms

approaches the magnitude of the advection term.

Advection

Hall
∼ viB

L
× 4πneqL

2

cB2
=
viωg,iL

v2A
(1.48)

Here, L is the length scale associated with variations in the magnetic field and ωci

is the ion cyclotron frequency. If vi and vA are assumed to be of similar magnitude,

the Advection-Hall ratio reduces to the following.

Advection

Hall
∼ ωciL

vA
=
ωpiL

c
(1.49)

The term ωpi is the ion plasma frequency, the rate at which charge perturbations

oscillate in a plasma. The ratio c/ωpi is known as the ion inertial length. Once length

scales of interest approach the ion inertial length, the Hall term in the generalized

Ohm’s law is comparable to the advection term and must be considered.

E = −1

c
vcm ×B +

1

4πneq
(∇×B)×B (1.50)

The induction equation now takes on a slightly more complicated form.

∂B

∂t
= ∇× (vi ×B)− c

4πneq
∇× [(∇×B)×B] (1.51)
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The advection term on the RHS is easily recognized, but the effects of the second

is not immediately apparent. To better understand the physics resulting from the

Hall term, reexpress the induction equation in terms of the electron velocity.

∂B

∂t
= ∇× (ve ×B) (1.52)

Written in this form, it is obvious that the magnetic field is actually frozen-into

the electron plasma instead of the ion plasma. The Hall term accounts for this by

causing the magnetic field to slip through the ion fluid when the motions of the two

fluid differ greatly. On small scales, these differences become apparent. On large

scales where the motions of electrons and ions are indistinguishable the Hall term

is not necessary and the ion frozen-in condition is satisfied.

This limit can be understood in terms of the ion inertial length discussed above.

The ion inertial length is the distance a magnetic perturbation travels during a

single ion gyro period. As long as the size of that perturbation is much longer

than the ion inertial length, an ion can remain tied to the field line and satisfy the

frozen-in condition. For perturbation scales smaller than λi the perturbations will

propagate past an ion too quickly for the ion to remain tied to the field line and only

the electrons (with a much smaller inertial length) remain frozen-in. This regime

where the ion and electron motions decouple is where the Hall term in the induction

equation becomes important and the analysis moves from ideal to Hall MHD. Now

that the ions and electrons no longer follow the same field line the charges separate

from one another resulting in the additional electric field in the induction equation.

This explains the magnetic field slipping through the ion plasma at small scales.

This effect is typically ignored because many astrophysical events occur on scales

much larger than the ion inertial length and the ion-electron decoupling becomes
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unimportant. Below is a table with typical length scales in various regions of interest.

Characteristic Length and Time Scales

Solar Corona Solar Wind ISM

λd (cm) 10−1 102 103

c/ωpi (cm) 103 106 107

rc (cm) 10 106 107

ωp (rad/s) 107 103 103

ωc (rad/s) 10−1 10−1 10−2

All MHD regimes are valid on length scales larger than λd (Debye length) and rc

(cyclotron radius), as well as time scales longer than ω−1p (plasma frequency) and

ω−1c (cyclotron frequency).

One important applicatition of Hall MHD is magnetic reconnection. Magnetic

reconnection requires the merging of magnetic field lines in order to facilitate the

acceleration of energetic particles. This is not possible in ideal MHD where magnetic

field lines are frozen into the plasma. Reconnection is a phenomenon that takes place

on very short length scales where the Hall term becomes comparable to the typical

advection term.

1.4.2 Choice of coordinate frame and electric fields

The above discussion of the Hall effect in MHD has illustrated the potential for

different reference frames resulting in different effects on the plasma or plasmas being

studied. This consequence is not surprising considering the Lorentz transformation

of the electric field when moving between frames moving relative to one another.
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In the limit of non-relativistic plasma speeds these transformation equations are as

above.

E′ = E− 1

c
v ×B (1.53)

(1.54)

B′ = B +
1

c
v × E

In this case, v, is the relative velocity between two different reference frames. For

example, the stationary laboratory frame and the frame of the plasma moving at

velocity v. As we have already discussed, the electric field, E, goes to zero in the

frame of the highly conductive electrons. The Lorentz transformation equations

then reduce to the following.

E′ = −1

c
ve ×B (1.55)

B′ = B (1.56)

The magnetic field in the frame moving relative to the electrons is unchanged and

the electric field in the moving frame is due to the motion of the frame relative

to the unchanged magnetic field. Extending this result to Ohm’s law reveals that

electrical conductivity must also be frame-dependent.

j = σE (1.57)

In the non-relativistic limit we are already considering, Galilean transformations

between frames dictate that the electric current, j = nievi − neeve, is independent
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of reference frame. This means that if E changes when moving from one frame to

another, the conductivity σ must also change for j to remain constant. This results

in interesting consequences due to changes in reference frames and Chapter 2 will

explore this further.

One way to interpret this frame-dependent conductivity is to consider the mo-

tion of the magnetic field lines relative to the moving frame. As we have already

discussed, ideal MHD assumes the plasma under question is perfectly conducting.

This assumption leads to the frozen-in condition of the magnetic field lines moving

with the plasma. If the electrical conductivity is finite, the frozen-in condition is

broken and the magnetic field appears to slip through the plasma.
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CHAPTER 2

The Physics of Partially Ionized Gas

with Applications to Processes in the Interstellar Medium

2.1 Introduction

Many plasmas of interest in space physics, including the very-local interstellar gas

and solar atmosphere, are only slightly ionized and comprised mostly of neutral

atoms with long collision mean free paths. MHD is still the preferred method for

studying the dynamics of these partially ionized plasmas. While the practice of using

MHD to study predominantly neutral gases is common, there is some confusion as to

how the problem should be treated. This is typically over which coordinate frame is

best for carrying out the calculations. This problem will be discussed below, where

we address the recent controversy concerning the proper equations for describing

the interaction of the local interstellar medium with the heliosphere (Baranov and

Fahr [6] and Florinski and Zank [7]).

Another problem involving partially ionized plasmas is the persistence of the

Kolmogorov turbulence cascade in interstellar space. Previous theoretical work [8]

has shown that the Alfvén waves propagating through a partially ionized plasma

should be damped on scales smaller than ∼ 1015 cm. Observations strongly suggest

that the cascade continues to small scales despite the damping [9]. A possible

explanation for this persistence will be proposed in Section 3 below.
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2.2 Basic Equations

2.2.1 Momentum

In order to address the controversy discussed in [6] and [7] we will review the basic

MHD equations applicable to the case of partially ionized plasmas. To do so we must

consider at least three separate fluids; the neutral atoms, protons and electrons. All

three fluids have their corresponding momentum equations [1].

nnmp
dvn
dt

= −∇pn +
nnmp(vp − vn)

τn,p
+
nnmp(ve − vn)

τn,e
(2.1)

(2.2)

nmp
dvp
dt

= −∇pp + ne

(
E +

1

c
vp ×B

)
− nmp(vp − vn)

τp,n
− nmp(vp − ve)

τp,e

(2.3)

nme
dve
dt

= −∇pe − ne
(
E +

1

c
ve ×B

)
− nme(ve − vn)

τe,n
+
nme(vp − ve)

τe,p

In the above equations v, w and u are the bulk velocities of the neutrals, protons

and electrons respectively. The number density of the atoms is nn and the number

densities of the protons and electrons are both simply n where we have assumed

the total fluid to be quasi-neutral. Parker assumes the condition n� nn in [1] but

this is not necessary in general. For simplicity, we also assume that neutral atoms

and protons have the same mass mp. The electrons have mass me � mp. The

quantities pn, pp, pe, τj,k are the pressures of each species and the average times

between collisions particle species j and k.
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2.2.2 Collisions

The calculation of the change in momentum due to particle collisions varies through-

out the literature so we believe a short aside is warranted. In the above equations,

the force exerted on a plasma due to particle collisions is written in a simple form.

While concise, the details of the force are obscured. Here, we will use Newton’s

second law to calculate the force due to particle collisions: F = ∆p/∆t. To begin

the derivation, recall the final velocities of two particles interacting by way of a one

dimensional elastic collision.

vj,f =
vj,0(mj −mk) + 2mkvk,0

mj +mk

(2.4)

(2.5)

vk,f =
vk,0(mk −mj) + 2mjvj,0

mj +mk

The change in momentum, ∆pj = pj,f − pj,0, for a single particle can then be

calculated.

∆pj = mj(vj,f − vj,0)

= mj

[
vj,0(mj −mk) + 2mkvk,0

mj +mk

− vj,0
]

= mj

[
vj,0(mj −mk) + 2mkvk,0 − (mj +mk)vj,0

mj +mk

]
= mj

[
−2mkvj,0 + 2mkvk,0

mj +mk

]
= [mj(vk,0 − vj,0)]

[
2mk

mj +mk

]
(2.6)
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The factor of 2 is typically ignored in the literature. The time between collisions

∆t is simply the inverse of the collision frequency between single particles of species

j and k, νj,k. The frequency of collisions between a single particle j and a plasma of

multiple particles j is simply nkνj,k. Combining these results we find the expression

for the force density on a plasma of particles j due to collisions with a plasma of

particles k.

Fcol−j,k =
nkνj,knjmjmk(vk − vj)

(mj +mk)
(2.7)

In the notation of equations (2.1)-(3.3), τj,k = (mj + mk)/(nkmkνj,k). This

definition of τj,k is typical throughout the literature though the details behind the

derivation are typically not covered. Confusion stems from the differing subscripts

on τ in each equation. Collisions must conserve momentum within the entire system,

so collision terms between two species must be present in the equations for each of

those species. For example, consider the collision terms between neutral atoms and

protons.

nnmp(vp − vn)

τn,p
(2.8)

−npmp(vp − vn)

τp,n
(2.9)

The sum of these terms should be 0 in order to conserve momentum. Without

the above explanation this cancellation is not always obvious and is the reason for

this aside.
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2.2.3 Magnetic Field Evolution

The evolution of the magnetic field is once again determined by the magnetic in-

duction equation.

1

c

∂B

∂t
= −∇× E (2.10)

In section 1.4.2 we discussed the effects that the choice of coordinate frame has

on the observed electric field in that frame. Not surprisingly, this effect appears

again in the multi-fluid treatment of a partially ionized plasma where there are

three relevant frames to consider, one corresponding to each particle species.

Recall the non-relativistic Lorentz transformation equations for electromagnetic

fields between frames moving relative to one another at a velocity V.

B′ = B +
1

c
V × E (2.11)

E′ = E− 1

c
V ×B (2.12)

2.3 Effects of Coordinate Frame Choice

2.3.1 Momentum and Magnetic Field

The use of different coordinate frames to study partially ionized plasmas has been

discussed previously by Baranov and Fahr [6] as well as Florinski and Zank [7].

Both papers address issues pertaining to physical effects associted with the choice

of coordinate frame and illustrate the importance of deciding on a frame in which
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to work. In general there are an infinite number of frames in which to work but in

the case of a partially ionized plasma, there are four reasonable frames to consider

first. These are the frames moving with either the bulk velocities of the center of

mass, the neutral atoms, the protons or the electrons. Baranov and Fahr [6] point

out that ideal MHD is not always a valid assumption when working in the center of

mass coordinate frame. This is true because the magnetic field is not frozen into this

frame in general (section 1.4.1), a primary assumption of ideal MHD. The slipping

of the field lines through the center of mass frame introduces a number of effects

which can be difficult to interpret. The complications that arise from working in

the center of mass frame are real but we are free to choose the frame in which we

work. Usually, if nn << n, the most useful frame is the one moving with the bulk

speed of the protons, w.

Once again, in the limit of low pressure and negligible electron mass we solve

(3.3) for E and find the previous result E = −(1/c)u×B. This results shows that

the magnetic field is frozen into the frame moving with the electron bulk velocity.

Therefore, in this frame, the magnetic evolution equation is that of ideal MHD and

the magnetic field is simply advected with the electron fluid.

∂B

∂t
= ∇× (ve ×B) (2.13)

Even though the magnetic evolution equation is simple in this case, the limit of

massless electrons complicates their motion. When we take me � mp, the electron

fluid simply serves the purpose to quickly neutralize any electric field that develops

in the plasma so solving for the exact motion can be difficult. Instead we can take

the proton velocity to be the fluid velocity by replacing ve with vp− (c/4πne)∇×B

(Ampére’s law).
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∂B

∂t
= ∇× (vp ×B)− c

4πne
∇× [(∇×B)×B] (2.14)

In doing so we recover the results of section 1.4.1 which introduces a Hall term,

the second term on the right hand side, to the magnetic evolution equation. In

section 1.4.1 we compared the magnitudes of the convection and the Hall terms and

found the Hall term is only significant if rg/L & 1 or va/L & ωg. Here rg and ωg

are the proton gyro radius and frequency, va is the Alfvén speed and L is the scale

over which B changes. For low energy particles and large astronomical distances the

effect of the Hall term is negligible and the magnetic field is approximately frozen

into the proton fluid.

Continuing in the limit of me � mp we substitute the electric field E into the

proton momentum equation (2.3). Note that collision terms including electrons→ 0

in this limit as well.

nM
dvp
dt

=
1

4π
(∇×B)×B +

nM(vp − vn)

τp,n
(2.15)

Collisions between the protons and neutrals couple the neutrals to the proton

fluid. The equation of motion for the neutrals (2.1) must then be included to close

equations (2.14) and (2.15). This system of equations (valid while following the

proton fluid) will be studied further in a subsequent section.

2.3.2 The Electrical Conductivity

Another interesting aspect of the coordinate frame ambiguity is the frame depen-

dence of the electrical conductivity, σ. In resistive MHD, a difference in electrical
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conductivity between frames determines how the magnetic field diffuses between

those frames. In order to illustrate the frame dependence of the conductivity, we

consider a common version of Ohm’s law, j = σE, which is accurate under the con-

ditions of MHD [3]. Here, E is the electric field transformed to the relevant frame

(as in equation (2.12)) considered in the calculation. In previous sections we have

already discussed how E changes between moving frames but in the non relativistic

limit j is unchanged (Ampere’s law).

j = ne(vp − ve) = ne((vp −V)− (ue −V))

= ne(vp − ve + V −V) = ne(vp − ve) (2.16)

In order for the current to be constant between frames, the conductivity must

change to compensate for the changing electric field. In the frames moving with the

electrons, protons, and neutrals we have the following electric fields.

Ee =0 (2.17)

Ei =
1

nec
j×B (2.18)

En =
1

nec
j×B− τp,nB

2 sin θ

nMc2
jn̂ (2.19)

The angle θ is the angle between the vectors j and B. Note that the terms

involving collisions with electrons are still neglected in the equations above. The

direction of the unit vector n̂ is normal to the local magnetic field while also in

the plane defined by B and j. In terms of the current, n̂ = −ĵ|| sin θ + ĵ⊥ cos θ

where the parallel and perpendicular directions are relative to the magnetic field.

It should also be noted that the equation for En is valid in the limit, N >> n,
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used by Parker [1] where the momentum of the ions is neglected relative to that of

the neutral atoms. If we insert these expressions for the different electric fields into

Ohm’s law and take the dot product of both sides with the current we can solve

for the conductivity in each frame. In both the proton and electron frames, we find

the conductivity to approach infinity consistent with ideal MHD. In the case of the

neutral frame we find the conductivity to be finite.

σn =
nMc2

τp,nB2 sin2 θ
(2.20)

If we were to move away from the limit of me � mp and include the effects from

collisions with electrons we would find the following conductivity.

σn =

[
4π

c2
η +

τp,nB
2 sin2 θ

nMc2

]−1
(2.21)

η =
mc2

4πne2

[
1

τe,n
+

1

τe,p

]
(2.22)

The quantity η above is simply the Ohmic resistivity due to electron-proton

or electron-neutral collisions. When considering the problem of partially ionized

plasmas, Cowling [10], found a ”genuine reduction in the conductivity normal to

the magnetic field”, an effect termed Cowling conductivity. In the limit of N >> n,

Cowling’s result simplifies to σn above with θ = π/2, which is simply the inverse

sum of the Ohmic and Pedersen resistivities. This calculation clearly illustrates

that the Cowling conductivity is frame dependent and only relevant if one chooses

to work in the neutral atom (also center of mass in this case) frame of reference. This

specific choice of frame is not always explicit in the literature so the use of Cowling
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conductivity is not clearly justified, leading to confusion. The resistive term in (2.19)

is also partly responsible for the complexity of the magnetic evolution equation in

[6] as pointed out by [7]. By working in the proton frame, the resistive term does

not appear and the magnetic evolution equation simplifies to (2.14).

2.4 Application to the interstellar turbulence problem

Observations show that the interstellar medium is turbulent with an rms fluctuation

in quantities such as the density or magnetic field of the same order as the mean

[9]. The turbulence is well described by a Kolmogorov-like energy spectrum. The

theory of Kolmogorov turbulence proposes that large scale turbulent eddies break

down into smaller and smaller eddies. This “energy cascade” from large to small

scales terminates when dissipation removes the cascading energy. The resulting

energy spectrum E(k) follows a scale dependent power law, E(k) ∼ k−5/3, where k

is the wave number (inverse length) of the eddy. This energy cascade occurs from

length scales on the order of tens of parsecs to scales of kilometers [9]. Recently,

some authors have questioned the existence of the Kolmogorov cascade on small

scales in the partially ionized interstellar plasma [8, 11]. They propose that the

Kolmogorov turbulence will be damped at scales less than about 10−16 cm due to

the interaction of protons with neutral atoms. We examine this theory below.

Using equations (2.1), (2.14), and (2.15) we can determine the propagation of

Alfvén waves through a partially ionized plasma composed of neutral hydrogen

atoms, protons, and electrons. To do so we will follow a similar procedure to the

one in section 1.3.2. Just as with the analysis of the fully ionized plasma, we assume

a uniform magnetic field (once again directed in the ẑ direction) permeates an

initially motionless partially ionized plasma. The magnetic field and fluid velocities

are then perturbed perpendicular to the magnetic field by the values δB, δw, and

δv in the x̂ direction. These perturbations are assumed to be oscillating in nature,

∼ exp(ikz − iωt), and vary only in the z direction.
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B = δB ∗ eikz−iωtx̂+B0ẑ (2.23)

w = δw ∗ eikz−iωtx̂ (2.24)

v = δv ∗ eikz−iωtx̂ (2.25)

Inserting the assumed solutions above into (2.1), (2.14), and (2.15) and solving

the system of equations for the unknown quantities δB, δw, and δv we find the

following cubic dispersion relation for ω.

ω2 +
iω

τp,H

(
1− 1

1− iN
n
ωτp,H

)
=

B2
0k

2

4πnM
(2.26)

The quantities τp,H , N , n, B0, and M are the proton-hydrogen collision period,

hydrogen number density, proton number density, average magnetic field, and the

mass of protons and hydrogen atoms (taken to be equal).

Analytic solutions are possible for cubic polynomials though the complexity of

the coefficients in the dispersion relation lead to equally complex solutions. First we

will investigate the dispersion relation in two extreme limits and examine the simple

results. In these limiting cases this cubic dispersion relation reduces to a quadratic

equation with far more tractable roots. In the high-collision limit of ωτp,H << 1 the

collisions between protons and hydrogen atoms are frequent enough to bind the two

fluids. The resulting dispersion relation describes Alfvén waves propagating though

a fluid of total mass density M(n+N), that of both the neutral atoms and protons.

ω2

k2
=

B2
0

4π(n+N)M
(2.27)
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In the opposite collisionless limit, ωτp,h >> 1, the proton-hydrogen collisions are

too infrequent to bind the two fluids. The result is Alfvén waves that propagate

through only the proton fluid with no contribution from the neutral atoms.

ω2

k2
=

B2
0

4πnM
(2.28)

In the intermediate range of ωτp,H , the roots of the dispersion relation become

complex resulting in damping of the waves. Equation (2.26) is cubic in ω for ωτp,H ∼
1, however, making an analytic expression for the damping difficult to find. If we

work in the limit of n/N << 1, (2.26) becomes quadratic in ω and we find the

damping rate γ ∼ 1/τp,H . The rate of the turbulent cascade is simply va/λ and for

relevant parameters is somewhat larger than γ allowing the cascade to continue to

small scales. This is possibly why the turbulent cascade is observed to continue to

small scales [9]. While damping does occur, the rate is slow enough to allow for

the turbulent cascade to continue. These results match those found originally by

Kulsrud and Pearce [12] though by different means using somewhat different limits.

2.5 Conclusions

The MHD treatment of a partially ionized plasma is widely used, but has recently

led to controversy in the astrophysical and heliospheric fields. As one would expect

in this case, the details of the different methods are quite varied throughout the

literature. The most commonly confused detail seems to be the choice of reference

frame and the corresponding fluid velocity. As Baranov and Fahr [6] pointed out,

the choice of frame can have drastic results on how the problem is solved and the

final results. If the fluid velocity is taken to be that of the center of mass, additional

terms must be added to the equations of ideal MHD to account for non-ideal effects.

Florinski and Zank [7] argued that working with the center of mass bulk velocity was
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an unnecessary constraint and instead recommended taking the proton bulk velocity

to be the fluid velocity. Strictly speaking, ideal MHD is not valid when working with

the proton velocity because of the additional Hall term in (2.14). Most situations in

space physics that deal with partially ionized plasmas occur over large enough length

scales, however, that the Hall contribution to the induction equation is negligible

leading to ideal MHD.

We have presented a possible explanation for the persistence of the Kolmogorov

cascade in a partially ionized plasma. Previous authors have proposed that the

waves comprising the Kolmogorov turbulence spectrum should be damped due to

collisions between protons and hydrogen atoms. Observations, however, contradict

these theories and show the cascade to continue below the proton-H damping scale.

An analysis of the damping and cascade rates in a partially ionized plasma show

that the cascade rate is somewhat larger allowing it to persist to small scales, and

not be damped.
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CHAPTER 3

Dynamics of a Three-Component Plasma Including Streaming Cosmic Rays

3.1 Motivation

We examine the problem of a composite fluid made up of a single electron species

and two distinct ion populations, each singly charged but with different masses and

velocities. One of the ion populations will represent galactic cosmic rays (here-

inafter GCR) accelerated at a shock propogating away from a supernova remnant

(hereinafter SNR). These three fluids will initially be threaded by a weak uniform

magnetic field. The purpose of this paper is to determine the evolution of the mag-

netic field in the event that one of the ion fluids (the GCRs) moves with a bulk

velocity parallel to the background magnetic field. Previous authors have predicted

that the bulk motions of the GCRs lead to an instability in the magnetic field

causing substantial amplification of the background field. In the first study of this

instability, Bell [13] followed a partial fluid approach to derive the dispersion relation

for the non-resonant streaming instability. The GCRs were treated using a method

from Krall and W. [14] that offered little obvious insight into the dynamics of the

GCRs.

In this paper, I will treat the GCRs as a fluid in order to make their dynamics

more obvious. If the GCR motions trigger an instability, I will identify the neces-

sary conditions for this to occur and determine whether or not the conditions are

possible in nature. Along with explicitly including the GCR dynamics by way of the

MHD momentum equation, no approximations are made with regard to the GCR

interactions with the background magnetic field. I will consider the case of infre-

quent collisions between individual particles, however. The long mean free path of
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the GCRs ensures this is a valid approximation. The three fluid approach outlined

in this paper reveals a new minimum threshold on the energy density of galactic

cosmic rays that must be exceeded in order to excite a streaming instability. This

threshold has not been explored previously and is simply assumed to be satisfied in

all cases where the Bell instability is applied.

3.2 Introduction

Blast waves propagating out from SNRs are thought to be the source of most GCRs

up to an energy of ∼ 1015 eV [15, 16, 17, 18, 19]. Because the observed GCR

spectrum follows a power law with constant index up to this energy, diffusive shock

acceleration (hereinafter DSA) is the most likely primary acceleration mechanism

[20, 21, 22, 23, 24]. When considering acceleration at a SNR, DSA at a quasi-parallel

shock can only account for energies up to ∼ 1014 eV using the observed interstellar

magnetic field and maximum scattering rate [25]. The acceleration must be more

rapid in order to reach the energies at the knee of ∼ 1015 eV. In the case of DSA, this

means the particles must be bound to the shock more effectively by the magnetic

field. One way to make the acceleration more rapid at a parallel shock is to increase

the magnitude of the magnetic field. Observational evidence supports amplification

of the magnetic field beyond that caused by the compression of the fluid at the shock

[26].

In order to amplify the magnetic field at a parallel shock, Bell [13] suggested a

magnetohydrodynamic (hereinafter MHD) fluid instability capable of amplifying a

transverse perturbation upstream of the shock to δB/B0 ∼ 100, where B0 is the

magnitude of the original field. This cosmic ray current-driven instability (here-

inafter CRCD) is triggered by GCRs streaming along the uniform background mag-

netic field. The GCR current produces a separate return current in the background

plasma to maintain overall charge neutrality. The return current excites transverse

turbulence in the upstream region. In this formulation the GCR dynamics are not
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considered with their only purpose being to establish the streaming current. Their

motion is assumed to be constant and unchanged by any interactions with the sur-

round environment. This simplification is valid in some cases but not in general.

The goal of this analysis is to account for the dynamics of the GCRs from the be-

ginning without any assumptions. This allows for determining when GCR dynamics

can be explicitly ignored, ultimately leading to a Bell-like instability.

Once established, the excited transverse component scatters high energy GCRs,

limiting their motion away from the shock increasing their acceleration rate. Bell

finds that the amplified field is adequate to accelerate GCRs up to, and possibly

beyond, 1015 eV. Observations of supernova remnants [19] strongly support the

existence of an amplified magnetic field of the required magnitude. Others have

also worked in the kinetic regime to examine Bell’s streaming instability. While

some work supports the large increase in δB [27, 28, 29, 30, 31, 32, 33, 34], some

find the amplification is only moderate δB/B0 . 10 [35]. Fluid approaches to

this problem are present in the literature, but assumptions are made regarding

the interactions between the GCRs and magnetic field [36, 37], something avoided

within this treatment. Riquelme and Spitkovsky [38] have proposed an additional

instability caused by the perpendicular streaming of GCRs relative to the background

field. This perpendicular current-driven instability (hereinafter PDCI) is actually

triggered by the pre-amplified field generated by the CRCD. Additional work has

also been carried out concerning kinetic instabilities related to self excited waves in

shocks [39].

Another possibility to account for the observed acceleration of GCRs to 1015eV

is that much of the acceleration takes place where the shock is quasi-perpendicular,

in which case no upstream magnetic-field amplification is necessary [23, 24]. In that

case, the observed amplification of the magnetic field could be the result of preex-

isting upstream turbulence warping the shock front, leading to turbulent motions

of the plasma behind the shock that amplify the magnetic field through a turbulent
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dynamo process [40, 41].

In the present paper I will take a previously unexplored approach to the original

MHD problem of streaming GCRs at a quasi-parallel shock and compare the results

with those found previously. The approach outlined below follows the dynamics of

three separate MHD fluids; the background ions, background electrons and GCRs.

In this paper, I explicitly include and retain the dynamics of the GCRs, treated

here as a MHD fluid, without any simplifying assumptions. Bell [13] immediately

assumed the GCRs to be energetic enough to move freely along magnetic field with-

out significant scattering. As mentioned above, this assumption is satisfied in many

cases but not in general. For this reason, no initial assumptions are made about the

GCRs to allow for any effects on the system as a whole. This method of treating

the GCRs as an MHD fluid has not been done previously and in this case allows

us to identify the conditions necessary to transition from a stable to unstable state.

Specifically a minimum threshold for the the energy density of the GCRs is found

to allow for Bell-like instabilities to develop.

3.3 Relevant Equations

In order to carry out our multi-fluid treatment of this problem, we will begin by

considering the dynamics of the three separate fluids mentioned above. Two of these

fluids comprise the background plasma of singly charged ions and electrons. The

third fluid will be the GCRs, also singly charged ions. In order to preserve overall

charge neutrality, the electron fluid will have the appropriate number density to

neutralize the positive charge of the background ions and GCRs. Below are the

MHD momentum equations describing each of the three fluids: the background

ions, electrons and GCRs.
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nbimbiDbivbi =
1

c
nbievbi ×B + nbieE (3.1)

ncrmcrDcrvcr =
1

c
ncrevcr ×B + ncreE (3.2)

nemeDeve =− 1

c
neeve ×B− neeE (3.3)

In the notation above, Dα is once again short hand for the total or convective

derivative, Dα ≡ ∂/∂t + vα · ∇. The subscript α can represent either bi, cr or

e depending on the fluid under consideration. As mentioned above, the electrons

must neutralize the electric charge of both positively charged fluids so we take

ne = nbi + ncr.

Just as we have done in the previous chapters, the magnetic induction equation

(Faraday’s law) is now added to the above momentum equations to account for the

time evolution of the magnetic field.

∂B

∂t
= −c∇× E (3.4)

In order to begin combining these four vector equations, we note that me � mbi

and me � mcr, and thus neglect terms proportional to me. In this limit, equation

(3.3) reduces to the following.

1

c
neeve ×B + neeE = 0 (3.5)

From this result, it is clear that the electric field takes on the simple form below.
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E = −1

c
ve ×B (3.6)

This result shows that within the frame moving with the electrons at velocity ve,

the electric field E = 0. Physically, the massless electrons can easily move to cancel

any imposed external electric field. Using this expression for E in the induction

equation we find the following result.

∂B

∂t
= ∇× (ve ×B) (3.7)

This result has the effect of freezing the magnetic field into the electron fluid

which carries the field lines bodily with the motion of the fluid. This fact is simply

the result of neglecting the inertia of the less massive electrons.

Because the electrons simply serve to neutralize any applied electric field, their

specific dynamics are not essential to the problem at hand. Instead we will focus

on the dynamics of the more massive ions. We can use Ampère’s law to recast E in

terms of the bulk velocities of the two remaining ion fluids which contribute nearly

all of the inertia to the system. From the non-relativistic form of Ampère’s law

(∂E/∂t), we know that j = nbievbi + ncrevcr − neeve = (c/4π)∇ × B. Solving for

ve and substituting the result into the equation for E we find the expression for the

electric field in terms of the remaining ion velocities.

E = −1

c

nbi
ne

vbi ×B− 1

c

ncr
ne

vcr ×B +
1

4πnee
(∇×B)×B (3.8)
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Having re-solved for E in terms of the ion velocities we now substitute the above

expression into the magnetic induction equation.

∂B

∂t
=∇×

(
nbi
ne

vbi ×B

)
+∇×

(
ncr
ne

vcr ×B

)
(3.9)

+∇×
[

c

4πnee
(∇×B)×B

]

This version of the induction equation shows that the magnetic field is not frozen

into the ion fluids in general. This is not surprising as the dynamics of the electrons

and ions are different in general. The final term on the RHS, known as the Hall

term, prevents this and the field lines are partly carried with the ion fluids but also

slip through them. The Hall electric field is caused by charge separation occurring

due to charged particles traveling at different speeds in a magnetic field. In some

cases, the Hall term can be neglected and the magnetic field can be approximated as

being frozen into the ions. The Hall term becomes important when the scale of the

irregularities in the magnetic field is on the order of any of the ions’ gyro radius. In

order to keep this work as general as possible, we retain the Hall term throughout.

Now that we have determined the appropriate electric field for the situation

at hand, we may substitute equation (3.8) into equations (3.1) and (3.2) which

describe the dynamics of the background ions and GCRs. After substitution we

find the following.

nbimbiDbivbi =
nbincr
ne

e

c
(vbi − vcr)×B (3.10)

+
nbi
ne

(∇×B)×B

4π



50

ncrmcrDcrvcr = −nbincr
ne

e

c
(vbi − vcr)×B (3.11)

+
ncr
ne

(∇×B)×B

4π

Equations (3.9), (3.10), and (3.11) represent nine dynamical equations in nine

unknowns, vbi, vcr, and B.

We will now study the equations by perturbing the values of vbi, vcr, and B

about predetermined initial values. In this case, we begin with a uniform magnetic

field, B0, directed along the ẑ direction and the GCRs moving with a non-relativistic

bulk speed, vcr0, in the same direction. The background ions begin nearly at rest,

with vbi0 << vcr0. In order for this scenario to be true, the massless electrons must

move with bulk speed ve0 ≈ (ncr/ne)vcr0 in the same direction as the GCRs. This is

necessary for the initial condition of a uniform magnetic field which requires zero net

current. To further simplify our analysis, the perturbations to these initial conditions

will be circularly polarized in x̂ and ŷ and only depend on the z coordinate.

δx ∼ exp(ikz − iωt)

δy ∼ ±iδx (3.12)

The + and - in the± sign indicate perturbations that are right hand and left hand

circularly polarized, respectively. The choice of circularly polarized perturbations

reduces the number of unknown values to just three: δvbix, δvcrx, and B1x. The

vector quantities B, vbi, and vcr are listed below.
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B = δBxexp(ikz − iωt)(x̂± iŷ) +B0ẑ (3.13)

vbi = δvbixexp(ikz − iωt)(x̂± iŷ) (3.14)

vcr = δvcrxexp(ikz − iωt)(x̂± iŷ) + vcr0ẑ (3.15)

If we substitute the above assumed solutions into equations (3.9)-(3.11) we find

the following system of three equations in the three unknowns.

[
ω ± ncr

ne
ωc,bi

]
vbix +

[
±ncr
ne
ωc,bi

]
vcrx (3.16)

+

[
±ncr
ne

e

mbic
vcr0 +

kB0

4πnembi

]
B1x = 0

[
∓nbi
ne
ωc,cr

]
vbix +

[
ω −

(
kvcr0 ∓

nbi
ne
ωc,cr

)]
vcrx (3.17)

+

[
∓nbi
ne

e

mcrc
vcr0 +

kB0

4πnemcr

]
B1x = 0

[
nbi
ne
kB0

]
vbix +

[
ncr
ne
kB0

]
vcrx (3.18)

+

[
ω −

(
ncr
ne
kvcr0 ±

k2B0c

4πnee

)]
B1x = 0

The quantities ωc,bi and ωc,cr are the cyclotron frequencies of the background ions

and GCRs respectively, defined below.
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ωc,bi =
eB0

mbic
(3.19)

ωc,cr =
eB0

mcrc
(3.20)

This system of equations can be represented as a single matrix equation A·x = 0.


ω − α β γ

δ ω − σ Σ

κ χ ω − λ



δvbix

δvcrx

δB1x

 = 0

The Greek variables in the coefficient matrix A can be read from equations above. A

solution to the matrix equation exists if the determinant of A = 0. Calculating the

determinant of A leads to the following cubic equation in the perturbation frequency

ω.

ω3 − (α + σ + λ)ω2

+ [α(σ + λ) + σλ− Σχ− βδ − γκ]ω

+ [−α(σλ− Σχ) + β(δλ+ Σκ) + γ(δχ+ κσ)] = 0

This cubic equation above is the plasma dispersion relation describing the charac-

teristics of this particular system. The roots of the dispersion relation reveal the

behavior of the plasma. If the roots are purely real, small perturbations will not

lead to runaway instabilities. Complex roots, however, mean the system is unsta-

ble to small perturbations which can then grow, perhaps rapidly. In the following

section we will study the nature of the roots and the conditions which can lead to

instabilities in the magnetic field.
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3.4 Numerical Solutions to the Dispersion Relation

Having laid out the theoretical basis for our work in the preceding sections, we now

begin the analysis of the dispersion relation from equation (3.3). Analytic solutions

for the roots of a cubic equation can be calculated, but due to the complexity of

the coefficients in equation (3.3) the resulting solutions would be too complicated,

obscuring any conclusions. We instead study the dispersion relation by calculating

the roots numerically and determine whether they are real or complex [42].

In this paper, we are primarily concerned with the development of instabilities

so we will only focus on conditions that lead to complex roots. The nature of the

roots of a polynomial equation, whether real or complex, is easily determined by

calculating the discriminant, D, of the coefficients. The discriminant of a cubic

equation of the form ax3 + bx2 + cx+ d is shown below.

D = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd

If D > 0, all of the roots of the cubic are real and if D < 0 only one root is real and

the other two are complex conjugates corresponding to growth and decay. Once the

nature of a root is determined, the actual values of the complex roots are calculated

according to the process outlined in Numerical Recipes [42].

3.4.1 Parameters

One purpose of this work is to try and compare the results of this paper directly

with those of [13] who made a more restrictive approximation with respect to the

GCR dynamics. The GCRs were assumed to be completely unmagnetized and

free to move along the background magnetic field. No consideration was made for

their interaction with the other particles or magnetic field and doing so ensured the
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development of a magnetic instability. By choosing not to make any assumptions

ahead of time, the results of this paper are extended to a wide range of GCR

populations beyond just unmagnetized particles. To begin the comparison, the

dispersion relation (equation (3.3)) is first evaluated for a set of background plasma

and GCR parameters mirroring those used by Bell. Our results are then directly

comparable with those of [13]. The parameters are listed below.

B0 = 3× 10−6 G

nbi = 1 cm−3

vA = 6.6× 105 cm/s

vcr0 = 1× 109 cm/s

ncr = 1.52× 10−11 cm−3

γcr = 1.05× 106

The variable γcr is an “effective” Lorentz factor due to the relativistic random mo-

tions of the GCRs (recall the bulk velocity ucr is non-relativistic) and is equal to

mcr/mbi where mcr is the relativistic mass of the GCRs. The values for ncr and γcr

are not explicitly stated in [13] but the values implied in the paper can be found

with the aid of the Bell variables rg1 and kmax, the gyro radius of the GCRs and

wavenumber of maximum unstable growth rate of the magnetic field, respectively.

rg1 =
γcrmbic

2

eB0

→ γcr =
eB0rg1
mi1c2
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kmax =
ni2evi20B0

2ni1mbiv2Ac

→ ncr = 2
nbimbiv

2
Ac

vcreB0

kmax

Using these parameters for the background plasma and GCRs we can calculate

the coefficients of the dispersion relation over a wide range of wavenumbers k. With

the coefficients determined, the frequency at each value of k can be calculated and

compared to the results of [13]. The wavenumber range over which we examine the

dispersion relation is 10−2 < krg1 < 105 and identical to that in Figure 2 in [13]).

Bell’s Figure 2 plots the real and imaginary (unstable) components of the com-

plex roots found in the dispersion relation of [13]. In our Figure 3.1 we have plotted

the roots of our dispersion relation (3.3) which are calculated over an identical range

of wavenumber. The real and complex portions are scaled and plotted in the same

manner.

Comparing the two plots we see very similar behavior near the peak of the

imaginary component of the roots. In both cases, the imaginary portion of the

root peaks near krg1 ∼ 103 and then quickly drops off. Our graph does not exhibit

the same shallow tail for krg1 > 103, however, and instead goes to zero. Once the

imaginary component drops off, the behavior of the real components agree very well

for krg1 > 103. Below the value krg1 < 103, the behavior of the real components once

again disagree, though in both plots the imaginary component is much greater than

the real component. In Figure 2 from [13], the slope of the imaginary components

breaks near krg1 ∼ 1 while the imaginary slope in Figure 3.1 remains the same. One

explanation for the difference between the plots for krg1 < 1 and krg1 > 103 is that

Bell considers three separate regimes when studying his dispersion relation. The

boundaries of his regimes coincide with these vales of krg1. We have not specified

any such boundaries in our study and have not made any approximations over this

range of krg1.
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In this section, we have used our fluid approach to confirm the existence of an

instability with characteristics similar to those of the Bell instability using the same

parameters as [13]. In the next section we will explore a wider parameter space to

better understand the general conditions necessary for the instability to develop.

3.4.2 Necessary Conditions for an Instability

We will once again study the dispersion relation over the same range of wavenumbers

but we will instead change the values of ncr and γcr and explore their effect on the

development of instabilities. As we have mentioned above, these variables are not

explicitly dealt with in [13] and their values are not well known in the literature so

we will vary their values in our calculations and discuss possible realistic values for

the two. The parameters for the background plasma and bulk velocity of the GCRs

are generally well accepted so they will remain constant throughout. In the event

that a combination of ncr and γcr triggers an instability we will find the wavenumber

corresponding to the highest growth rate (kmax) and the growth rate itself (γmax)

and compare them to the values predicted in [13]. Analytically, the values of kmax

and γmax are given by the expressions below.

kmax =
jcrB0

2ni1mpv2Ac

γmax = kmaxvA =
jcrB0

2ni1mpvAc

The results of this analysis for the various combinations of ncr and γcr are compiled

in Figure 3.2 below. The various values of γcr are plotted along the x axis and ncr

along the y. The gray region represents combinations of γcr and ncr that lead to an

instability with characteristics similar to those in [13] and values in the white region
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do not. The white diamond in the gray region corresponds to the combination

used in Bell (2004). It is obvious from the plot that as long as the product of

〈γcrncr〉 & 10−7 an instability with characteristics very similar to those of [13] is

triggered. If the product falls below this threshold, however, no instability at all is

observed. This leads to the question of whether or not 〈γcrncr〉 & 10−7 is a condition

that can be satisfied under realistic circumstances. Neither one of these parameters

is well defined in the vicinity of a supernova blast wave so we will discuss methods

for estimating their values.

First, we will consider the observed energy density of GCRs to make a rough

estimate of γcrncr. Including the recent results from Voyager 1 [43] we find ρcr ≈ 1.3

eV/cm3. If we take this value to be the energy density averaged over some collection

of GCRs we write the relation.

ρcr = 〈ncrEcr〉 = 〈ncrγcrmcr,0c
2〉

Here, γcr is once again the relativistic Lorentz factor for the GCRs and mcr,0 is the

rest mass of the GCRs which are taken to be protons. Because mcr,0 and c are

constants they can be removed from the average leaving us to solve for the average

of the quantity 〈γcrncr〉.

ρcr = 〈γcrncr〉mcr,0c
2

→ 〈γcrncr〉 =
ρcr

mcr,0c2

For the values of ρcr = 1.3 eV/cm−3 andmcr,0 = 938 MeV/c2 we find 〈γcrncr〉 ∼ 10−9

cm−3. This value of 〈γcrncr〉 is two orders of magnitude too low to reach the threshold
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we have found to excite an instability. The estimate for γcrncr used here is almost

certainly a lower bound as the energy density of GCRs would be enhanced near

the site of acceleration. It is not obvious if the increase would be enough to reach

the 10−7 increase, however. Below, we address the question of how much the GCR

energy density may increase at a shock.

In order to estimate this increase we will consider this problem in the frame

moving with shock. In this frame, the background plasma moves with bulk speed

vcr. The GCRs have no bulk speed and only move with their random relativistic

velocities. We wish to estimate the collective contribution of these random motions

to the GCR energy density. To do so, we estimate the particle distribution function,

f(x, p), for the GCRs using the free kinetic energy of the background plasma. The

kinetic energy density flux of the background plasma provides an upper constraint

on the enthalpy flux of the GCRs, placing a limit on their total energy density.

1

2
nbimbiv

3
cr >

5

2
Pcrv2

Here, Pcr and v2 are the GCR pressure and the fluid velocity downstream of the

shock (v2 = vcr/4). The GCR pressure is limited by this expression which ultimately

leads to a limit on the distribution function as we show below.

Pcr <
4

5
nbimbiv

2
cr

In order to calculate Pcr we consider a generic GCR momentum distribution

function f(p).



59

Pcr =
1

3

∫
4πp2

p

mcr

pf(p)dp

=
4π

3

∫
p4

mcr

f(p)dp

Here, we have assumed an isotropic distribution function. The theory of DSA

predicts a momentum distribution ∼ p−4 for a strong shock so we choose the fol-

lowing form for f(p).

f(p) = f0

(
p

p0

)−4

In this expression, p0 and f0 are the minimum momentum of the GCRs and a

proportionality constant, respectively. Note that mcr in our expression for Pcr is

the relativistic mass of the GCRs, mcr = γcrm0, where m0 is the rest mass of the

GCRs taken to be protons. The mass of the high energy GCRs then depends on

their momentum.

mcr = m0

[
1 +

(
p

m0c

)2
]1/2

Inserting this into the above expression for Pcr we find the following.
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Pcr =
4π

3

∫
p4

m0 [1 + (p/m0c)2]
1/2
f0

(
p

p0

)−4
dp

=
4πf0p

4
0

3m0

∫ pmax

p0

[
1 +

(
p

m0c

)2
]−1/2

dp

Upon integration we find the following expression for the pressure of the GCRs in

terms of the minimum cosmic ray momentum. The purpose of this expression is to

determine particle distribution function resulting in GCR energy density observed by

Voyager. The GCR pressure, Pcr, is calculated in terms of the distribution function.

Pcr =
4πcf0p

4
0

3
log


pmax

m0c
+

√
1 +

(
pmax

m0c

)2
p0
m0c

+

√
1 +

(
p0
m0c

)2


Recall the previous inequality Pcr < (4/5)nbimbiv
2
cr which leads to an upper limit

on f0, the constant of proportionality for the GCR distribution function.

f0 <
3nbimbiv

2
cr

5πp40c

log


pmax

m0c
+

√
1 +

(
pmax

m0c

)2
p0
m0c

+

√
1 +

(
p0
m0c

)2


−1

Now, we evaluate f0 for the above background plasma parameters with p0 =

3.127×107 eV/c and pmax = 1×1015 eV/c. These values for p0 and pmax correspond

to particles with energies of 5 × 105 eV (particles moving at the shock speed) and
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1×1015 eV (particles near the knee of the GCR spectrum). We find f0 < 3.297×10−26

(eV/c)−3cm−3. The distribution function then takes on the following form.

f(p) =
(
α3.152× 104

)
p−4

(
eV

c
cm−3

)

The variable α has a value between 0 and 1 and represents the fraction of available

kinetic energy available to the GCRs. With α = 0.2 the value of 〈γcrncr〉 = 2.37 ×
10−4 cm−3, well above the established threshold above.

To this point, we have neglected any spatial dependence of the GCR distribution

function. The behavior of f(p) upstream and downstream is once again determined

by DSA. Downstream of a shock, f(p) is uniform in space so the distribution function

remains the same as equation (3.4.2). Upstream, however, the diffusion of GCRs

ahead of the shock result in an exponential decrease in f(p) in the upstream region;

f(x, p) ∼ exp(−x ∗ vcr/κ) where κ is the diffusion coefficient in the upstream region

and equal to λ ∗ w/3 with λ and w the GCR mean free path and the particle

speed. For approximation purposes we move to the limit of Bohm diffusion where

λ is simply the GCR gyroradius, rg,cr. The individual particles are also moving

relativistically so the particle speed w ≈ c and we find the following expression for

κ in terms of the particle momentum, p.

κ =
pc2

3eB0

The final expression for the distribution function upstream of the shock in terms

of both x and p is below.
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f(x, p) =
(
α3.152× 104

)
p−4 exp

(
−3vcreB0

pc2
x

)

Now that f(x, p) is determined up to the value of α (numerical results suggest

that α can be as large as 10%−20% at a parallel shock [44, 45, 46]) for the GCRs at

the shock considered here, we integrate over p to calculate 〈γcrncr(x)〉 for comparison

with our derived limit above. Recall that the variable 〈γcrncr(x)〉 is a measure of

energy density due to the random relativistic motions of the GCRs. Physically, this

can be interpreted as a measure of how much GCRs are affected by interactions with

the surrounding environment, such as irregularities in the magnetic field. Higher

energy particles with a larger Lorentz factor scatter less frequently and have the

ability to stream more freely along magnetic field lines. This streaming is integral

to the excitation of a Bell-like instability at a shock. In the event that the GCRs

are not as energetic (low Lorentz factor) and scatter more often a larger number of

particles are required to effect the same result.

〈γcrncr(x)〉 =

∫ pmax

p0

4πp2γcr(p)f(x, p)dp

= α3.96× 104

∫ pmax

p0

p−2

[
1 +

(
p

m0c

)2
]1/2

× exp

(
−3vcreB0

pc2
x

)
dp

By leaving x as a variable in equation (3.4.2), we are able to determine how

far upstream the streaming instability can be triggered. This expression cannot be

evaluated analytically in general so we must calculate 〈γcrncr(x)〉 for various values

of x individually. The results of this calculation are plotted in Figure 3.3. The value
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of 〈γcrncr(x)〉 drops below our threshold of 10−7 cm−3 at a distance xoff ≈ 5e19 cm

(≈ 16 pc) upstream of the shock (with α = 0.2). Once a parcel of upstream plasma

advecting towards the shock is within 16 pc of the shock, the frozen-in magnetic

field can be amplified until the parcel passes into the downstream region where

f(x, p) is uniform and the Bell instability is suppressed. The growth rate predicted

by Bell depends on the number density of GCRs, so the rate grows as the plasma

parcel approaches the shock. In the linear approximation applied in this paper the

magnetic field grows exponentially with time, ∼ exp(γmaxt). To account for the

time dependence of γmax the growth is instead ∼ exp(
∫
γmax(t)dt).

δB(t) = δB0 exp

(∫ xoff/vcr

0

ncr(t)evcrB0

2nbimbivAc
dt

)

Below is the calculation for determining ncr(t).

ncr(t) =

∫ pmax

p0

4παp2f(t, p)dp

=
(
4πα3.152× 104

)
×
∫ pmax

p0

p−2 exp

(
−3vcreB0(xoff − vcrt)

pc2

)
dp

We have substituted the variable x for t where x = xoff − vcrt. Performing the

integrations over t and p for xoff = 16 pc we find that the original perturbation δB0

can be amplified to over 300 times the original value before reaching the shock. It

should be noted that the perturbation is amplified and not the background field. For

a reasonable perturbation in this linear framework, δB/B ∼ 100, the amplification

of the perturbed field will be only ∼ 3 times that of the background field. The

amplification of the magnetic field is possible but not necessarily to the degree

implied by previous authors also working in the linear approximation.
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In Figure 3.4 we examine the value of 〈γcrncr〉 as a function of pmax. As pmax

increases from 10p0 to 1 × 1015 eV/c, 〈γcrncr〉 decreases quickly from ∼ 5 cm−3 to

1.49× 10−2 cm−3. As the free kinetic energy excites GCRs of increasing energy, the

average value of 〈γcrncr〉 rapidly decreases because while the particle energy increases

∼ p the particle density decreases as ∼ p−4 according to DSA. This result implies

that the highest energy GCRs are not necessary to excite the Bell instability. In

fact, as the DSA power law unfolds the value of 〈γcrncr〉 decreases back towards the

instability threshold. This effect is not pronounced enough to halt the instability,

however, as GCRs with energies beyond 1 × 1015 eV are not accelerated at SNRs.

The fact that GCRs near the knee are not necessary for exciting the Bell instability

supports the case that the Bell instability may operate at young SNR.

The shock speed is another variable that affects the viability of the Bell instabil-

ity. Figure 3.5 plots both the value of 〈γcrncr〉 as a function of pmax and the required

threshold of 〈γcrncr〉 to trigger an instability for three values of vcr: c/30, c/100, and

100vA. As we have already discussed, a shock speed of c/30 is more than enough to

exceed the resulting threshold to trigger an instability, which is clearly illustrated

in the figure. A slower speed of c/100 is still fast enough to trigger the instability as

well. The final case of vcr = 100vA, however, shows that there is indeed a minimum

shock speed (greater than vA for any combination of γcr and ncr) required for the

instability to set in. As the value of vcr decreases over several orders of magnitude

the value of the instability threshold unsurprisingly increases. The effect of decreas-

ing vcr on the incoming energy is quadratic, however, so the energy available to

accelerate the GCRs drops quickly with decreasing vcr. Eventually the two effects

suppress the instability completely.

In previous papers, the magnitude of the GCR Lorentz factor was the primary

constraint for triggering the streaming instability. It was necessary for the Lorentz

factor to be high enough that the GCRs could be considered unmagnetized from

the magnetic field and thus their motion was unaffected by the field. In our fluid
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formulation of the problem, not only is the magnitude of the Lorentz factor crucial

to the instability but also the number density of the GCRs. I have found that the

product of the two determines a condition for triggering the streaming instability.

3.4.3 Center of Mass Formulation

A physical explanation for the Bell instability is that a Lorentz force∼ jcr×B pushes

radially outward on the background plasma surrounding a perturbed (circularly

polarized) magnetic field line. The magnetic perturbations along the field line are

then pulled further outward along with the pushed plasma increasing the size of the

perturbation and amplifying the magnetic field.

The above interpretation of the Bell mechanism explains why the results found

here differ from those previously found when we considered this problem by follow-

ing the motion of the center of mass of the multiple fluids. In that approach the

momentum equations for the GCRs and background ions were combined to describe

a single composite fluid. The method of combining momentum equations to con-

sider only the center of mass motion is common in MHD and was chosen as a way to

simplify the analysis of a complicated problem. The primary simplification in this

case being that there was no net Lorentz force on the composite fluid. Note that

the inertia of the electrons was neglected in this case as well. Because the induction

equation couples the evolution of the magnetic field to the motion of the composite

fluid, the lack of a Lorentz force to deform the fluid means there is no mechanism

for stretching field lines and amplifying the magnetic field.

If the momentum equations for the GCRs and background plasma remain sepa-

rate, each fluid experiences an equal and opposite Lorentz force ∼ jcr × B driving

the two plasmas apart. Each fluid is still partially tied to the magnetic field by the

induction equation so as the two fluids moved apart, field lines will be stretched

between the plasmas leading to an amplification of the field. Considering only the

center of mass motion masks this diverging motion as well as the mechanism behind
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the Bell instability.

3.5 Discussion and Conclusions

Here we have presented a new method to analyze the problem of GCRs streaming

along a uniform magnetic field embedded in a nearly stationary thermal plasma. To

make our work as complete and transparent as possible we have explicitly included

the equations describing the dynamics of the GCRs which are treated as a MHD

fluid. No a priori assumptions are made about the characteristics or motions of

the GCRs. This allows for perturbations to the GCR motions to develop naturally

and have an effect on the rest of the system. The similar process in [13], done by

calculating the variable σ [14], was difficult to understand. While the details behind

the calculation of σ are not clear, the value is set to 0 in the regime leading to

the instability. It appears that σ → 0 represents the limit of very energetic GCRs,

whose motion is unaffected by magnetic field fluctuations. The exact conditions for

moving to this limit are not discussed, a point I have tried to clarify in this paper.

Rather than assuming that the GCRs are too energetic to have their motion affected

by the magnetic field I allow their motion to evolve with the rest of the system which

is possible in general. In the event the perturbations to the GCR motion become

negligible, the three fluid approach presented here allows the system to reach that

limit (similar to σ → 0) naturally rather artificially imposing that limit from the

beginning.

As I have shown above, allowing the system to evolve this way reveals a crucial

threshold in GCR energy density that must be exceeded to trigger an instability. The

critical result of this work, however, calls into question whether or not the physical

parameters present at a supernova blast wave are always sufficient to reach the

threshold found above. By examining the equations of motion over a wide parameter

range describing the GCRs, I have found that the quantity γcrncr, a measure of GCR

energy density, must exceed the value of 10−7 cm−3 for an instability to develop at
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a typical non-relativistic shock. Through a number of calculations I have worked

to determine whether this threshold can be reached under realistic conditions at a

supernova blast wave. Calculations of GCR energy density in the ISM place this

value too low, though some enhancement at the acceleration site is to be expected.

Assuming a substantial amount (∼ 20%) of the free kinetic energy of the system,

the energy density of GCRs is high enough such that 〈γcrncr〉 exceeds the required

value of ∼ 10−7 cm−3. In this case, the streaming instability is a viable mechanism

for magnetic field amplification.

The results of this paper support those of [13] in that the non-resonant streaming

instability is possible in the mathematical sense. The equations describing this

system of a stationary plasma and streaming GCRs allow for the development of

an instability with characteristics similar to that in [13] as long as the derived GCR

energy density threshold is surpassed. We have shown that this is possible for a

typical non-relativistic shock such as the one considered in [13]. This limit should

be considered and verified, however, for any case where the streaming instability

is to be used to amplify the magnetic field near a supernova blast wave. The

conclusion of this paper implies that the observed amplification of magnetic fields

at SNRs [19] may be due to the streaming of GCRs upstream of the shock wave.

Even if conditions are favorable, amplification to the extent presented by Bell [13]

is certainly not guaranteed, however. In situations when these conditions are not

satisfied, other mechanisms such as the turbulent dynamo proposed by [40] may

explain the amplification of the magnetic field. Particle acceleration to the knee

would then occur at the perpendicular portions of the shock without need for the

streaming instability.

This work was supported, in part, by NASA under grants NNX08AH55G and

NNX10AF24G. JRJ is grateful to A. R. Bell and M. A. Lee for helpful discussions

which improved this paper.
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Figure 3.1: Numerical dispersion relation, Equation (3.3)
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Figure 3.2: Conditions for instability to develop. Combinations of γcr and ncr in the
gray region lead to instability, combinations in the white region do not.
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Figure 3.3: 〈γcrncr〉 vs. Upstream distance
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Figure 3.4: Effect of maximum GCR momentum on achieving instability threshold
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Figure 3.5: 〈γcrncr〉 vs. pmax for three different values of ucr (solid lines) as well as
the approximate necessary threshold to trigger the instabiliy (dashed lines).
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