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ABSTRACT 

 

Droughts are a recurrent part of our climate, and are still considered to be one of the most 

complex and least understood of all natural hazards in terms of their impact on the 

environment. In recent years drought has become more common and more severe across 

the world. For more than a decade, the US southwest has faced extensive and persistent 

drought conditions that have impacted vegetation communities and local water resources. 

The focus of this work is achieving a better understanding of the impact of drought on the 

lands of the Hopi Tribe and Navajo Nation, situated in the Northeastern corner of 

Arizona.  This research explores the application of remote sensing data and geospatial 

tools in two studies to monitor drought impacts on vegetation productivity. In both 

studies we used land surface phenometrics as the data tool. In a third related study, I have 

compared satellite-derived land surface phenology (LSP) to field observations of crop 

stages at the Maricopa Agricultural Center to achieve a better understanding of the 

temporal sensitivity of satellite derived phenology of vegetation and understand their 

accuracy as a tool for monitoring change.   

The first study explores long-term vegetation productivity responses to drought. The 

paper develops a framework for drought monitoring and assessment by integrating land 

cover, climate, and topographical data with LSP. The objective of the framework is to 

detect long-term vegetation changes and trends in the Normalized Difference Vegetation 

Index (NDVI) related productivity. 
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The second study examines the major driving forces of vegetation dynamics in order to 

provide valuable spatial information related to inter-annual variability in vegetation 

productivity for mitigating drought impacts. 

The third study tests the accuracy of remote sensing-derived LSP by comparing them to 

the actual seasonal phases of crop growth.  This provides a way to compare and validate 

the various LSP algorithms, and more crucially, helps to characterize the remote sensing-

based metrics that contrast with the actual biological phenophases of the crops. 

These studies demonstrate how remote sensing data and simple statistical tools can be 

used to assess drought effects on vegetation productivity and to inform about land 

conditions, as well as to better understand the accuracy of satellite derived LSP.  

 Keywords: Drought, Land Surface Phenology, Vegetation Index, Crops, Hopi, Navajo.
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                 CHAPTER 1: INTRODUCTION 

 

Problem Context 

Droughts are some of the most damaging natural hazards menacing the economic, social, 

and political elements of our society (Chen et al., 2012; Riebsame, Changnon Jr, & Karl, 

1991; Wilhite & Buchanan-Smith, 2005; Woodhouse & Overpeck, 1998). They are a 

recurrent part of our climate and are considered one of the most complex and least 

understood climate-related hazards due to their tremendous influence on social-political-

economic-environmental interactions (Glantz, 2003; Hagman, 1984; Mishra  and Desai, 

2005; Sönmez, Koemuescue, Erkan and Turgu, 2005; Wilhite, 1990; Woodhouse  and 

Overpeck, 1998; Wu and Chen, 2013).  

From 1900 to 2004, more than 807 global droughts were recorded. During this time, 

more than 1.8 billion people were affected; 11 million people lost their lives; and billions 

of dollars in economic losses were incurred as a result of droughts (Below et al., 2007; 

UNESCO, 2012). Due to the multi-dimensional impact of droughts on global agricultural, 

hydrological, eco-environmental, and social-economical systems, droughts have been 

categorized as the second most geographically widespread hazard after floods, according 

to the United Nations (UNESCO 2012). However, droughts are considered the most 

devastating hazard when the number of people affected by drought is taken into 

considerations (Hewitt, 1997; Keshavarz et al., 2013; Obasi, 1994; Wilhite, 2000). From 
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the 1970s to the early 2000s, the percentage of the Earth’s land area experiencing very 

severe drought doubled (NCAR, 2005).  

In recent years drought has become more common and more severe across the world, and 

the extent of drought‐affected areas has increased (Easterling et al., 2000; FAO., 2011; 

Hoerling, 2003; IPCC, 2007; Meehl, 2004; Mishra  et al., 2010) . Furthermore, drought is 

now recognized as one of the principal causes of crop loss and severe food shortage, 

particularly in developing countries (FAO., 2011; Parida et al., 2008). For the last 

decades, droughts have constantly threatened the world’s food security (Eriksen et al., 

2012; FAO., 2011). In addition to their effect on natural resources and economies, 

droughts can threaten livelihoods and communities, causing displacement and migration 

of peoples (FAO., 2011; Parida et al., 2008). 

In the Southwestern United States, droughts are relatively common phenomena due to 

land surface-ocean interactions (Cook et al., 2007; Seager et al., 2007). Several studies 

have shown that both climate and human activities are the key driving forces of landscape 

changes in the American Southwest (Seager et al., 2007). This finding renders it difficult 

to detangle the impacts of droughts and human activities on vegetation. 

Intermittent droughts have been a consistent feature of the history of the southwestern 

United States (Cook et al., 2004; Gray, 2003; Griffin et al., 2013). However, recent 

drought conditions on the Colorado Plateau, where the Hopi Tribe and Navajo Nation are 

located, have taken a different pattern: instead of fluctuating between dry and wet 

conditions, this area has become increasingly dry. Across the region, a scarcity of rain 
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gauge networks has challenged traditional drought monitoring tools. Furthermore, limited 

hydro-climatological and ecological monitoring in this area has created a challenging 

environment for resource managers trying to assess current conditions and anticipate 

future climatic impacts at seasonal to inter-annual time scales.  

The current capacity for monitoring drought on the lands of the Hopi Tribe and Navajo 

Nation is limited due primarily to a lack of long-term temperature and precipitation 

monitoring sites in this area. Therefore, classic drought monitoring indices, such as the 

Palmer Drought Severity Index (PDSI) (Palmer, 1965), the crop moisture index (Byun 

and Wilhite, 1999; Palmer, 1968; Shafer and Dezman, 1982), the Surface Water Supply 

Index, and the Standardized Precipitation Index (SPI) (McKee et al., 1993), cannot 

adequately capture a drought of this magnitude and its impact over time. Given the 

scarcity of monitoring stations, these indices cannot characterize the spatial patterns of 

drought across the landscape.  In addition, several studies have reported common 

weaknesses related to the use of these indices to monitor drought because they rely on 

monthly time scales, and are not sufficiently accurate in capturing the beginning, end, and 

accumulated stress of drought.(Blenkinsop et al., 2007; Byun et al., 1999; Mu et al., 

2013; Sivakumar et al., 2010). 

Because of these challenges, this study has investigated the use of  remote sensing indices 

to capture and assess the spatial patterns of the impacts of the region’s recent drought on 

vegetation productivity along vegetation community and elevation gradients. Remote 

sensing allows for fast and efficient monitoring and tracking of land surface processes on 
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different scales, from the local to global (Anyamba et al., 2005; Bastiaanssen et al., 1999; 

Delegido et al., 2013; Lausch et al., 2013; Papes et al., 2012; Pocas et al., 2013; 

Schmugge et al.,2002).   

In this research, I developed a remote sensing approach to monitoring drought and 

assessing remote sensing-derived Land Surface Phenology (LSP) as a viable remote 

sensing tool. This research developed a framework for drought monitoring and 

assessment, as well as began to establish the accuracy of the remote sensing-derived LSP 

algorithms when compared to actual crop growing season phases.  For drought 

assessments, the main goals are: (1) to evaluate the magnitude of inter-annual variability 

in vegetation productivity, and then quantify its temporal variability relative to rainfall 

variation and elevation gradients, (2) to detect any long-term vegetation change and 

trends in the NDVI-related productivity parameters, and (3) to assess environmental 

drivers associated with vegetation productivity changes across time and space.   For the 

assessment of remote sensing-derived LSP, this work addressed three fundamental 

challenges in remote sensing: (1) how to validate remote sensing-based land surface 

phenology metrics, (2) how to compare the extracted parameters with actual field 

observations of phenology given the heterogeneous nature of remote sensing 

observations, and (3) how to evaluate the overall performance of the most common land 

surface phenology algorithms.  
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Study Area 

This research was conducted at two sites. The first study site covers the main land of the 

Hopi Tribe and Navajo Nation of Arizona. The second site is located at the University of 

Arizona’s Maricopa Agriculture Center, located northwest of Tucson. 

The Hopi Tribe and Navajo Nation of Arizona are located in the northeastern corner of 

the state in the lower Colorado River basin. Collectively, the Hopi Tribe and Navajo 

Nation cover over 77,700 square km. The area is characterized by cold winters and very 

hot summers. The annual rainfall of the lowland Navajo Nation averages from 100-150 

mm (less than 6 inches) and the average annual temperature varies between 11
o
C in the 

higher altitudes and 14ºC in the lowlands. Climatic patterns vary from south to north 

across the area (Redsteer et al., 2011). The seasonal rainfall varies along elevation 

gradients and is low and moderate in the early winter, increasing in February and March, 

and then decreasing quickly in April. May through June is a very dry period in the area 

(Grahame et al., 2002). Vegetation cover varies throughout the area as a result of 

differences in rainfall and average temperature, soil types, elevations, and land 

management. 

Explanation of Dissertation Format 

The main body of this dissertation consists of three appendices (A, B, and C).  For all 

three manuscripts, the theoretical frameworks used were developed with the guidance of 

the dissertation committee. In applying the theoretical frameworks to reach the overall 

objectives of the studies, I developed a methodological approach based on the use of 

remote sensing data and geospatial tools. The first paper (Appendix A), entitled “Long-
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term vegetation productivity responses to drought on the land of the Hopi Tribe and 

Navajo Nation”, and explored any long-term vegetation changes and trends in the NDVI 

related productivity parameters in the area. I was the first authors on this work and was 

responsible of the research design and interpretation. The second paper (Appendix B), 

entitled “Vegetation responses to climate variability on the lands of the Hopi Tribe and 

Navajo Nation”, relied on the first paper framework to analyze inter-annual variability in 

vegetation productivity. I was the first author, and developed the methodological 

(theoretical and analytical) framework for this research. Dr. Kamel Didan and I 

established the methodological frame work for the third paper. Using this frame work I 

was in charge of implementing the methodology for analyzing the data and interpreting 

the results.    

Finally, following the composition of each paper, I worked closely with my dissertation 

committee to incorporate its feedback into the preparation of this document.  
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CHAPTER 2: PRESENT STUDY 

Summary 

This dissertation relies on the use of remote sensing data and geospatial analysis to 

develop a monitoring tool aimed at assessing drought impacts on vegetation dynamics 

over the last 22 years on the lands of the Hopi Tribe and Navajo Nation, as well as to 

validate remote sensing-based land surface phenology metrics using field observations of 

croplands at the University of Arizona’s Maricopa Agriculture Center. The methods, 

results, and conclusion of this research are summarized in the papers appended to this 

dissertation. The challenges addressed by this dissertation include the development of an 

approach for the use of remote sensing data and geospatial tools to monitor vegetation 

dynamics across different vegetation communities in arid and semiarid regions in the 

southwestern U.S. The following section outlines the central findings of this dissertation.  

Here, I proposed and presented an integrated approach for data selection, tools 

development, and need for validation and characterization to support the accurate 

monitoring of the impact of drought on vegetation.  

Appendix A: Long-term vegetation productivity responses to drought on the land of 

the Hopi Tribe and Navajo Nation 

(Note: this article will be submitted to the Journal of Arid Environments) 

Periodic droughts are common in the southwest United States (Cook et al., 2004; Gray, 

2003; Griffin et al., 2013). But unlike the intermittent droughts characteristic of the larger 

region, recent drought conditions on the Colorado Plateau, where the Hopi Tribe and 
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Navajo Nations are located, have emerged and persisted steadily over time. This 

challenges traditional drought monitoring considering the sparse network of rain gauges 

across the region.  Limited hydro-climatological and ecological monitoring across the 

region has created a challenging environment for resource managers trying to assess 

current climatic conditions and anticipate their future impacts at seasonal to inter-annual 

time scales.  In order to assess the impacts of both climate change and human activity on 

the region’s ecosystem structure and function, it would be useful to develop a 

geospatially explicit drought monitoring system and remote sensing data was an obvious 

choice. This can help inform decision makers about ecosystem responses to these 

dynamics, while also helping to predict future climate and human impacts.  

I utilized the15-day composite multi-sensor Normalized Difference Vegetation Index 

(NDVI) time series data from 1989 to 2010. Multi-sensor Normalized Difference 

Vegetation Index time series data were acquired from the vegetation index and phenology 

project (vip.arizona.edu). This sensor-independent and continuous NDVI time series 

derived from AVHRR (1981-1999), SPOT (1998-2002) and MODIS (2000-2010) is used 

in this study (Didan et al., 2010). More details about the datasets can be found on the 

Vegetation Index and Phenology Laboratory website: 

(http://vip.arizona.edu/viplab_data_explorer.php). We acquired and analyzed the 15-day 

composites, at 5.6 km, to characterize the inter-annual changes of vegetation productivity 

along elevation gradients. The use of the multi sensor seamless NDVI data enabled us to 

successfully extend our analysis back to 1989. This study is one of the first studies that 

http://vip.arizona.edu/viplab_data_explorer.php
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have deployed this new dataset to characterize vegetation responses to drought on the 

lands of Hopi tribe and Navajo Nation. 

This greenness Normalized Difference Vegetation Index (NDVI) has been widely used to 

characterize vegetation response to climate change and variability at different scales: 

from local, regional, to continental (Ahmad, 2013; Pocas et al., 2013; Tucker, 1979; 

White et al., 2009). We developed a framework relying on four different steps. The first 

step involves generating three annual indictors related to vegetation productivity from the 

15-day composite multi-sensor NDVI time series. These annual indicators included: (1) 

annual cumulative NDVI (∑NDVI, a proxy of Gross/Net Primary Production, GPP/NPP) 

(Chen et al., 2013; Hwang et al., 2008), (2) maximum annual NDVI, and (3) annual 

NDVI amplitude (difference between annual maximum and minimum NDVI). These 

annual indicators were extracted during the snow-free period from March to November of 

each year to reduce snow impacts on NDVI values (Delbart et al., 2006; Shi et al., 2008; 

Zhang et al., 2004). The second step was to characterize vegetation productivity along 

both elevation gradients and within vegetation communities by analyzing the long-term 

averages of each NDVI-related productivity measurement. The third step involved 

assessing the long-term trends in vegetation productivity among each annual indicator 

related to NDVI productivity.  In this step, the trend analysis was based on two variables: 

time (22 years) as the independent variable and the annual NDVI related productivity as 

the dependent variable. Many studies have relied on this technique to quantify vegetation 

response to climate change, study phenological change, and capture land cover change 

(Fensholt et al., 2012; Wright et al.,, 2012; Yin et al., 2012). The last step employed the 
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Rain-Use Efficiency (RUE) indicator to assess vegetation capacity to efficiently 

transform water and nutrients to biomass over the last 22 years. RUE is a key indicator of 

the state of vegetation cover function particularly in semiarid ecosystems (LeHouerou, 

1989; LeHouerou, 1984; Yang et al., 2010).   

At the Hopi and Navajo Nation, our results confirmed that over the last 22 years, the area 

has experienced a significant reduction in productivity, particularly in areas dominated by 

shrubland. As expected for such an arid area, rainfall is the most fundamental and driving 

factor of vegetation productivity, especially for areas dominated by grassland and 

shrubland (limited root depth). 

 Our results also found that the forested areas at higher elevations were less prone to 

rainfall variability. This independence can be explained by factors related to rooting 

depth, size, and resiliency of trees in the area. Rooting depth determines a tree’s ability to 

access deeper soil moisture during dry periods, and thus influences its intrinsic resiliency 

to precipitation reduction through its capacity to store water. 

The RUE-based analysis did not show any widespread or significant changes, which 

support the finding that rainfall patterns only explain 21% of the observed changes in 

vegetation productivity. 

From our results, the 15-day multi-sensor NDVI record and simple statistical tools were 

able to capture the spatial variation of vegetation response to drought impacts. It is 

expected that the resulting maps, that provide a spatial context of change, can serve as a 

valuable tool for adaptive range management. 



21 
 

 

Appendix B: Vegetation responses to climate variability on the lands of the  

                           Hopi Tribe and Navajo Nation 

(Note: this article will be submitted to the Journal of Arid Environments) 

The overall goal of this study was to look at the inter-annual variability in vegetation 

productivity in the study area, as well as to examine the existing relationships between 

vegetation variability and environmental variables. Landscape change in the southwestern 

United States, as in any region, is strongly linked to both climate and human activity. As 

such, detangling the anthropogenic from the climatic drivers of drought in terms of 

vegetation productivity presents a challenge (Seager et al., 2007). Although drought is a 

normal part of the southwestern United States’ climatic chronicle (Cook et al. 2007; 

Seager et al., 2007), the present drought on the Colorado Plateau, where the Hopi Tribe 

and Navajo Nation are located, has emerged slowly challenging traditional drought 

monitoring metrics based on sparse rain gauge networks across the region. Assessment of 

the present drought and its impacts on the ecosystem of the Hopi Tribe and Navajo 

Nation can benefit from the use of remote sensing data to supplement the area’s limited 

hydro-climatological data.  

To reach the main objective of this study, a methodological framework was implemented 

using different remote sensing data and tools. The first step was to extract two key annual 

NDVI-related productivity measurements: (1) integrated annual NDVI (a proxy of Gross/ 

Net Primary Production, GPP/NPP) and (2) maximum annual NDVI, from the 15-day 

composite multi-sensor NDVI time series from 1989 to 2010.  These two annual NDVI 
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measurements of vegetation productivity are considered response variables. The second 

step was to select the appropriate explanatory variables (environmental variables: climate 

data, vegetation types, soil, and topographic characteristics). After selecting both 

response and explanatory variables, the next step was to generate the coefficient of 

variation (CoV = standard deviation/mean) of the response variables and examine them 

by vegetation type. The last step was to study vegetation-environment relationships by 

conducting a stepwise multiple linear regression analysis (SMLR) in order to find the key 

environmental variables of the inter-annual variability in vegetation productivity over the 

last 22 years. 

The results of the spatial distribution of the inter-annual variability in vegetation 

productivity suggested that: (1) needleleaf forest at middle elevations showed the highest 

inter-annual variability in cumulative NDVI; (2) larger CoV values related to maximum 

NDVI were observed at low elevations where grasses are the dominant vegetation types; 

and (3) in terms of the key environmental variables used to explain variability in 

vegetation productivity, climate drivers were most strongly correlated with the inter-

annual variability in vegetation productivity. Specifically, the inter-annual variability in 

spring precipitation and temperature seem to be the most significant drivers that correlate 

positively with the inter-annual variability in vegetation productivity in the study area. 

However, the inter-annual variability in summer precipitation and temperature showed a 

decreasing relationship with the inter-annual variability in vegetation productivity and 

they showed a strong impact of vegetation productivity. It was found that the inter-annual 

variability in winter, spring and summer temperature were the most powerful drivers in 
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the inter-annual variability in maximum NDVI for shrubland areas.  Those positive 

correlations between the inter-annual variability in vegetation productivity and spring 

precipitation and temperature can be explained by the change in soil moisture levels. For 

example, the strong correlations between spring temperature and vegetation productivity 

in the area may relate to the local vegetation species response to the warmer season 

(spring season). This variability in spring temperature can easily effect the evaporative 

demands which is one controlling factor of vegetation growth in the area.   

Appendix C: Assessment of satellite derived land surface phenology with field 

observations of stages of crop development. 

(To be submitted to the Journal of Applied Remote Sensing) 

Phenology is an integrative tool capable of addressing key questions of the impacts of 

climate change on ecosystem states and functions, especially when coupled with the 

geospatial capabilities of remote sensing. The need to develop an accurate system for 

monitoring and understanding land surface phenology over space and time has become 

urgent due to evidence of the strong relationship between climate and vegetation 

dynamics (Heumann et al., 2007; Zhang et al., 2003; Zhao et al., 2013). Over the last 

decade, land surface phenology applications have provided valuable information for 

vegetation change and response to climate, for species distribution and richness, as well 

as for wildlife habitat suitability (Fairbanks et al., 2004; Morisette et al., 2006; Sun et al., 

2008; Tuanmu et al., 2010; Viña et al., 2008).   
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Studying the phenology of natural or managed land in a global context requires the use of 

remote sensing to capture large-scale spatial and temporal dynamics. What remains 

unclear is the accuracy of remote sensing-based data compared to the ground-observed 

phenology.  Specifically, three challenges remain: (1) how to validate remote sensing-

based land surface phenology; (2) how to compare extracted parameters with actual 

phenological field observations in light of the complex and heterogeneous nature of 

remote sensing observations; and (3) how to evaluate the overall performance of the most 

common land surface phenology algorithms. 

To address these fundamental challenges, this work aimed at characterizing and 

validating the remote sensing based phenology metrics with field observation of growing 

season metrics. Here we used cropland field observations of cotton and corn as sources of 

accurate field observations of land surface phenology. The field observations considered 

in this research was limited to planting and harvesting dates being the two key parameters 

that can relate the impact of climate to growing season (White et al. 2009, Reed et al., 

1996, Myneni et al. 1997).  In this study, we used MODIS 250m16-day and daily records 

of vegetation index (VI). The VI time series data were preprocessed to remove pixels 

contaminated by clouds and aerosols. The resulting gaps were replaced using simple 

interpolation.  Four algorithms: 1) Half-Maximum Method (Coops. et al., 2012; White et 

al., 1997) , 2) Savitzky-Golay, 3) Asymmetric Gaussian, 3) and Double Logistic methods 

which are part of the TIMESAT (Jonsson and Eklundh, 2004) phenology extraction 

software package, were used to generate phenological information (start and end of 
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growing season, peak date of the maximum NDVI, and the maximum NDVI) for each 

pixel.  

We found that remote sensing based phenology metrics are indeed capable of providing 

information for monitoring vegetation and response to climate. The different algorithms 

and vegetation indices used in this study were able to consistently identify the different 

development stages of crops, but with varying degrees of accuracy depending on the 

thresholds used and data smoothing methods and parameters.  The results suggested: (1) 

the Half-Maximum algorithm always detects the start of growing season late compared to 

Gaussian, Double-Logistic, and Savitzky-Golay. (2) the Savitzky-Golay estimated the 

start of growing season earlier than other algorithms (Gaussian and Logistic). The 

difference in terms of days  can vary between 1 to 8 days depending on the thresholds 

used. (3) The Half-Maximum algorithm detects the end of growing season earlier 

compared to the Gaussian, Double-Logistic, and the Savitzky-Golay algorithms. 

However, The Savitzky-Golay usually identifies the end of growing season later 

compared to the Half-maximum, Logistic and Gaussian algorithms.  We found that that 

the start and the end of growing season derived from daily VI are earlier than the 16-day 

composite VI.  

Conclusions  

The approaches used in these three research studies support key conclusions regarding 

vegetation response to droughts on the land of the Hopi Tribe and Navajo Nation.  

Moreover, these studies reveal that the use of remote sensing can play a fundamental role 

in monitoring drought and agricultural production particularly in remote areas where 
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there is a lack of field based measurements.  The first study reveals the importance of the 

multi-sensor vegetation index time series for detecting the long-term response of 

vegetation to drought. The second study shows how we can use remote sensing data to 

identify vegetation dynamics and associated environmental variables. The third study 

demonstrates how to validate and use satellite-derived land surface phenology to monitor 

the different stages of cropland development and the impact of the extraction algorithm 

selection on the results.  

This research thus makes valuable contributions to the study of ecosystem response to 

drought at local, regional, and global scales. It also shows the value of remote sensing 

tools and data in support the characterization of complex phenomenon like drought and 

vegetation dynamic under changing climate. 

In the context of climate change impacts on terrestrial ecosystem services at different 

spatial and temporal scales, it becomes urgent to have a strong understanding of how 

natural hazards, such as droughts, influence vegetation dynamics from local at regional to 

global scales. This research: (1) showed how the use of multi sensor seamless NDVI data 

(vip.arizona.edu) enabled us to successfully extend our analysis back to 1989, (2) 

proposed an integrated system of data/tools to monitor drought and their impacts on 

ecosystems, as well as to inform range management about land conditions and help 

identify areas where adaptive management actions could be applied, and (3) provided a 

viable approach for  remote sensing land surface phenology validation, which can be 

applied at a global scale to monitor vegetation response to climate change.   
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Abstract 

 For more than a decade, the Hopi Tribe and Navajo Nation have faced extensive and 

persistent drought conditions that have impacted vegetation communities and local water 

resources while exacerbating soil erosion. Moreover, these persistent droughts threaten 

ecosystem services, agriculture, and livestock production activities, and make this region 

sensitive to inter-annual climate variability and change. Recent analyses of climate and 

hydrological data have confirmed that the area has been going through a drier period 

which is threatening its socio -economic development. The objective of this research is to 

employ remote sensing data to monitor the ongoing drought and inform management and 

decision-making. A drought assessment framework was developed that integrates 

climate, and topographical data with land surface remote sensing time series data in order 

to examine  the land condition of the region over the period 1989-2010. Multi-sensor 

Normalized Difference Vegetation Index time series data was acquired from the 

vegetation index and phenology project (vip.arizona.edu) from 1989 to 2010 at 5.6 km 

were analyzed to characterize the intra-annual changes of vegetation, seasonal phenology 

and inter-annual vegetation response to environmental factors. A multi-linear regression 

has been applied to several metrics related to vegetation phenology derived from the 

NDVI time series to detect potential vegetation changes and to examine the existing 

relationship between vegetation dynamics and rainfall. The results suggest that vegetation 

behavior is foremost governed by rainfall (R-square =0.74).  Trend analyses confirmed 

that around 80 percent of pixels showed a general decline of greenness with confidence 

level of 95% (p< 0.05), while 4 percent showed a general green up. Vegetation in the area 
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showed a significant positive relationship in response to elevation and precipitation 

gradients. This correlation was more prominent at mid-elevation which could be 

explained by the snowmelt dynamic of the area. These results can be used to aid in 

monitoring and understanding the climate changes and variability impacts on vegetation 

productivity, ecosystem services, and water resources of the region, and to inform 

decision-makers and range managers at the Hopi Tribe and Navajo nation. 

Keywords: drought, phenology, remote sensing, time series, vegetation dynamic, Hopi 

and Navajo Nation. 
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Introduction 

Globally more than 807 droughts were recorded between 1900 and 2004 during which 

more than 11 million people lost their lives, more than1.8 billion people were affected, 

and (list in billions of dollars)in  economic losses caused by droughts (Below et al., 2007; 

UNESCO, 2012). Due to their multiple impacts on global agricultural, hydrological, eco-

environmental, and social-economical systems, droughts have been categorized the 

second most geographically widespread hazard after floods, according to United Nations 

(UNESCO, 2012). However, droughts are classified among all the natural hazards as the 

most devastating hazard when the number of people affected by drought is taken into 

consideration (Hewitt, 1997; Keshavarz et al., 2013; Obasi, 1994; Wilhite, 2000). From 

the 1970s to the early 2000s, the percentage of Earth’s land area experiencing very severe 

droughts doubled, according to the National Center for Atmospheric Research (NCAR, 

2005).  

Degradation of natural resources has become one of the major dominating issues 

threating ecosystem functions in arid and semi-arid environments. Over 40% of the 

world’s land surface, on which more than one billion people live, is considered arid and 

semi-arid (Bainbridge, 2012; Deichmann and Eklundh, 1991; Reynolds et al., 2003; 

UNDP/UNSO, 1997). Arid and semi-arid vegetation community structure, function, and 

pattern are always shaped by both climate and anthropogenic variables at different levels 

(Kaplan, 2012a). Rainfall input to dry lands is the main force driving both water and 

primary production (Fensholt et al., 2012; Kaplan, 2012a; Noy-Meir, 1973; Noy-Meir, 

1973; Paruelo et al., 2000; Sala et al.,1988).  
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The Hopi Tribe and Navajo Nation are situated in the northeastern corner of Arizona with 

much of the land in the lower Colorado River basin. Collectively, the Hopi Tribe and 

Navajo Nation represent over 77,700 square km of land area. Hydroclimatic observations, 

albeit limited, demonstrate that the region has been suffering through an almost 15 year 

long drought (Crimmins et al. 2013).Winter rainfall has been below average for 11 of the 

past 15 years leading to a decline in range conditions, an increase in soil erosion and a 

reduction in surface water flows. The ranching industry in that region has been hard hit 

by this ongoing drought. 

Droughts are common in the southwest United State (Cook et al., 2004; Gray, 2003; 

Griffin et al., 2013), but the recent drought conditions on the Colorado Plateau, where the 

Hopi Tribe and Navajo Nations are located, have emerged slowly challenging traditional 

drought monitoring metrics based on sparse rain gauge networks across the region. 

Limited hydro-climatological and ecological monitoring across the region has created a 

challenging environment for resource managers trying to assess current conditions and 

anticipate future climatic impacts at seasonal to inter-annual time scales. 

Due to the complex climatic mechanisms and limited long-term temperature and 

precipitation monitoring sites critical for monitoring drought, classic drought monitoring 

indices, such as Palmer drought severity index (PDSI), the crop moisture index (Byun et 

al., 1999; Palmer, 1968; Shafer et al., 1982), the surface water supply index and the 

standardized precipitation index (SPI) are challenging to interpret with respect to 

potential drought impacts at different time-scales and might not be able to capture spatial 
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patterns in potential drought impacts across the landscape. In addition, several studies 

have reported common weaknesses related to the use of these indices to monitor drought  

because they rely on monthly time scale and are not accurate sufficient in capturing the 

beginning, end, and accumulated stress of drought. (Blenkinsop et al., 2007; Byun et al., 

1999; Mu et al.,2013; Sivakuma et al., 2010). 

Because of these challenges we proposed using complementary remote sensing (RS) 

indices to capture and assess spatial patterns in the impact of the recent droughts on 

vegetation productivity across vegetation communities and elevation gradients within the 

region. Remote sensing provides for fast and efficient monitoring and tracking of land 

surface process on different scales from local to global using (Anyamba et al., 2005; 

Bastiaanssen et al., 1999; Papes et al., 2012; Pocas et al., 2013; Schmugge et al., 2002).   

Various biophysical variables derived from satellite data, such as the Normalized 

Difference Vegetation index (NDVI) and land surface temperature (LST), Leaf Area 

Index (LAI) among others, have become central to environmental assessments when 

environmental dynamics occur at different scales from instant to long-term and from 

local to regional (Cai and Sharma, 2010; Justice et al., 1985; Karnieli , 2003; Li et al., 

2013; Siren et al., 2013; White et al., 2006). 

Productivity of natural and agricultural lands has been widely used as an indicator of 

vegetation status (Gamon et al., 2013; Peng et al., 2013; Wessels et al., 2007). The 

timing, magnitude and spatial patterns of vegetation dynamic from inter-seasonal to 

decadal scales are highly influenced by both short-term climate variability and long-term 
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climate change. This vegetation dynamic at different spatial and temporal scales can be 

studied using various biophysical variables derived from remote sensing data which can 

quantify total biomass and characterize the unique seasonal and spectral reflectance of 

canopy structures and functions as well as to capture spatial and temporal variation 

(Horion et al., 2012; Mark et al., 1999; Ryu et al., 2010). 

Remote sensing based phenology studies, including phenological states (Gonsamo et al., 

2012; Ivits et al., 2013; van Leeuwen et al., 2010), photosynthetic, or biomass estimations 

provide critical  information regarding ecosystem responses to climate variability (Melaas 

et al., 2013b) and  play an important input for climate–carbon cycle modeling (Colditz et 

al., 2008). This entails the analysis of NDVI time series to derive various phenological 

metrics (e.g., timing of start, peak, length of the growing season, amounts of greenness). 

In global change studies, remotely sensed phenological data have provided detailed 

information about the existing relationship between changes in vegetation cycles (e.g., 

start and end of growing season and productivity) and climate change (Brown et al., 

2012; Cong N. et al., 2013; Ivits E.et al., 2013; Myneni et al., 1997; Parmesan et al., 

2003) as well as disturbances and stressors like fires (Lozano F.J.et al., 2012; Tan et al., 

2013; van Leeuwen, 2008) and droughts ( Hwang et al., 2008; Saatchi et al., 2013; 

Tucker, 1979).  

The Normalized vegetation index (NDVI), based on the ratio of the sum and the 

difference of NIR (near-infrared) and red reflectance (Tucker, 1979; Wilkie and Finn, 

1996) derived from different remote sensing sensors such as the Advanced Very High 
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Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Landsat. The NDVI in combination with several biophysical indicators has 

become a useful tool to monitor regional- or global-scale phenological cycles and 

changes (Dall'Olmo and Karnieli, 2002; Fisher et al., 2007; Stellmes et al., 2013). 

Nevertheless, the need for ground validation of such remote sensing assessments related 

to vegetation dynamics in responses to climate and human disturbances is still 

emphasized by the remote sensing community (He et al., 2012; Samalens et al., 2012). 

Seasonal patterns of vegetation activity derived from long-term satellite data are widely 

used to understand vegetation dynamics, monitor land cover change, and track the impact 

of climate change and inter-annual variability on vegetation productivity (Bachoo et al., 

2007; Villa et al., 2012).Vegetation is one of the most fundamental features of arid and 

semi-arid ecosystems (Kaplan, 2012b).  Precipitation is an important factor for ecosystem 

processes in arid landscapes due to its major impacts on vegetation productivity 

(Pennington and Collins, 2007). 

Change in vegetation productivity measured as the above-ground net primary production 

(ANPP), as result of change in precipitation patterns are an important component in the 

feedback between climate-ecosystem-hydrology,  which strongly influence carbon, water, 

and energy  allocation at the land surface (Troch et al., 2009). One of the most used 

techniques to assess changes in vegetation productivity as result of seasonal and annual 

climate patterns is trend analyses (Michaud et al., 2012; J. Peng et al., 2012). Rain Use 

Efficiency (RUE) has been widely used to measure vegetation response to climate change 
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and variability (Huxman et al., 2004; Yang et al., 2010). RUE is one of the most used 

indicators to study vegetation responses to climate variability in arid and semi-arid area. 

Both trend and RUE were used to assess vegetation productivity changes as result to the 

ongoing drought in Hopi Tribe and Navajo nation. 

The overall goals of this study are to develop a better understanding of the current status 

and response of vegetation to droughts using RS data and statistical techniques and tools 

to inform range management and decision-making across the area about land conditions, 

as well as to help identify where to apply and orient adaptive management actions. This 

work aims at developing a framework for drought monitoring and assessment, integrating 

land cover, climate, and topographical data with land surface remote sensing time series 

data. The main objectives of this framework are (1) to evaluate the magnitude of inter-

annual variability in vegetation productivity and then quantify its temporal variability 

relative to rainfall variation and elevation gradients, (2) to detect any long-term 

vegetation changes and trends in the NDVI related productivity parameters, and (3) to 

investigate the relationship between these changes and trends in NDVI and rainfall. More 

specifically: 

- How did seasonal and inter-annual vegetation productivity vary on the lands of the 

Hopi tribe and Navajo nation from 1989 to 2010? 

- How can trend analysis of vegetation productivity derived from remote sensing 

data provide a common understanding of the current status of drought in this 

region? 
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- How can the derived information from trend analysis be useful to monitor droughts 

and inform management and decision-making? 

Data and Method 

2.1  Study Area 

The Hopi Tribe and Navajo Nation of Arizona are situated in the northeastern corner of 

the state in the lower Colorado River basin. Collectively, the Hopi Tribe and Navajo 

Nation cover over 77,700 square kilometers (Fig. 1).  The area is characterized by cold 

winters and very hot summers.  The annual rainfall is less than 10 inches and the average 

annual temperature vary between 40ºF and 50ºF. Climatic patterns vary from south to 

north across the area.  The seasonal amount of rainfall varies along elevation gradients 

and is low and moderate in the early winter, increases in February and March, and then 

decreasing quickly in April. May through June is a very dry period in the area (Grahame, 

John D. and Thomas D. Sisk, ed, 2002). Vegetation cover varies throughout the area as a 

result of differences in rainfall and average temperature, soil types, elevations, and land 

management. 

2.2 Remote Sensing data  

 NDVI Time Series, Climate, Topographic Data, and Vegetation Types 

Multi-sensor Normalized Difference Vegetation Index time series data were acquired 

from the vegetation index and phenology project (vip.arizona.edu) from 1989 to 2010. 

This sensor independent and continuous NDVI time series derived from AVHRR (1981-

1999), SPOT (1998-2002) and MODIS (2000-2010) is used in this study (Didan et al., 



44 
 

 

2010). More details about the datasets can be found on the Vegetation Index and 

Phenology Laboratory website: (http://vip.arizona.edu/viplab_data_explorer.php). We 

acquired and analyzed the 15-day composites, at 5.6 km, to characterize the intra-annual 

changes of vegetation productivity and inter-annual vegetation responses to rainfall along 

vegetation types.  

Climate data came from the Oregon State University’s Parameter-elevation Regressions 

on Independent Slopes Model (PRISM) (Di-Luzio et al., 2008) dataset, at 4 km spatial 

and monthly temporal resolution. Average seasonal monthly rainfall data were generated 

for the period 1989-2011 and the long term (inter-annual) average of rainfall was 

computed over the period. All PRISM data were resampled to 5.6 km to match the NDVI 

pixel size using Arcmap software.    

Topographic and elevation data are based on the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) 

with a spatial resolution of 30 m (ASTER Validation Team, 2009). Elevations range 

between 821-3771 meters (Fig 2a) corresponding to ecological zones with low to high 

vegetation cover. The pixel size of the elevation data was resampled to 5.6 km to match 

the NDVI time series data.  Arcmap software was used to resample the elevation data 

using majority as the resampling type. 

Land cover types were extracted from the 2005 North American Land Cover at 250 m 

spatial resolution database produced by the North American Land Change Monitoring 

System (NALCMS) project (NALCMS, 2005). It is important to note that the land cover 

http://vip.arizona.edu/viplab_data_explorer.php


45 
 

 

of the region is fairly stable due to f natural and anthropogenic changes.  According to 

this classification, the area is characterized by 11 diverse land cover types (Fig 2b), 

including: shrubland which represents the primary land cover type in the area. The 

second important land cover type is needleleaf forest at higher elevation. 

2.3 Methodology 

The main goal of this research is to analyze and investigate vegetation responses to 

drought across the Hopi Tribe and Navajo Nation areas during the last 22 years, from 

1989 to 2012. The length of the study period was mainly controlled by the long term 

Difference Vegetation Index (NDVI) at 5.6km (available from1981 to 2010). The aim of 

this research is to characterize the extent to which drought impacts have influenced or 

shaped the spatial temporal trends in land surface phenology related to productivity. We 

have used the 15-day composite multi-sensor Normalized Difference Vegetation Index 

(NDVI) time series from 1989 to 2010. This biophysical index has been widely used to 

characterize vegetation dynamics at different scales: from local, regional, to continental 

scales (Ahmad, 2013; Pocas et al., 2013; Tucker, 1979; White et al., 2009).  

To understand the dynamics and the main forces driving the ecosystem process of the 

region, a framework consisting of four steps was developed. The first step was to derive 

the annual NDVI related productivity variables: (1) the annual cumulative NDVI, (2) 

maximum annual NDVI, (3) annual relative NDVI (difference between annual Max and 

Min NDVI). The second step was to quantify the vegetation productivity along elevation 

gradients as well as within each vegetation community by looking at the long term 
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average of each NDVI related productivity variables and examining the relationship 

between the long term average NDVI and the long-term average of precipitation during 

the last 22 years. In the third step we investigated the spatial and temporal trends in 

vegetation productivity across the region. And finally, in step four trend analysis of Rain-

Use Efficiency (RUE) was conducted in order to assess vegetation capacity to transfer 

water and nutrients to biomass during the last 22 years.   

To assess rainfall effects on vegetation productivity, we computed the RUE index which 

is the ratio between the annual cumulative NDVI and the total annual rainfall for each 

year. The Rain Use Efficiency index (RUE) measures the capacity of vegetation to 

efficiently transform water and nutrients to biomass, has been widely used to investigate 

the relationship between change in vegetation productivity and rainfall (Huang L. et al., 

2013; Kaplan, 2012a; LeHouerou, 1984). 

 Deriving NDVI related productivity parameters 

Phenological phases derived from remotely sensed time series vegetation indices assume 

that the time series signal follows seasonal and annual vegetation cycles (Huete et al., 

2006; Jonsson et al., 2002; Melaas et al., 2013a; Sakamoto etal., 2013; Zhang et al., 

2003), which requires spurious noise be minimized during data filtering and compositing. 

The simplest algorithm used for the derivation of phenological events is based on the 

threshold technique, which assumes that phenological events start when the vegetation 

index (VI) crosses a preset threshold value (Lloyd, 1990; Reed et al., 1994).  
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Several software tools are available to extract phenologically key events (White et al., 

2010) from vegetation time series data, such as the Time Series Generator (TiSeG) 

(Colditz et al.,2008), the Time Series Product Tool (TSPT) (McKellip et al., 2008), 

TIMESAT (Jonsson et al., 2004), and the Phenological Parameter Estimation Tool 

(PPET) (Ross et al., 2008). In general, these tools allow for the extraction of the 

phenological events, but most of them suffer from limitations when there is more than 

one unique growing season (Arlete et al., 2011). 

 In order to avoid these issues, using our framework we extracted three annual NDVI 

related productivity parameters: the annual cumulative NDVI (∑NDVI, a proxy of 

Gross/Net Primary Production, GPP/NPP), maximum annual NDVI, and annual relative 

NDVI amplitude or annual relative (difference between Max and Min annual NDVI).  

These variables (Fig.2) were extracted during the snow free period from March to 

November of each year in order to minimize the impact of snow on NDVI values 

(Delbart et al., 2006; Shi et al., 2008; Zhang et al., 2004). 

The annual cumulative NDVI is an effective proxy of biomass production and is 

integrative descriptor of ecosystem functioning that has been used extensively to 

characterize vegetation dynamics (An-Price et al., 2013; Boschetti et al., 2013). Empirical 

models and biomass harvesting studies have shown a strong correlation between the 

integrated NDVI and biomass productivity; (Boschetti et al., 2013; Ouyang et al., 2012; 

Parviainen et al., 2010; Pei et al. 2013; Prince.S.D., 1991; Sala, 2000).  Many studies 
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have used these bio-variables to capture changes in ecosystem functioning across the 

globe (Alcaraz et al., 2006; An-Price et al., 1997; Weiss et al., 2004) . 

 Long-term trends in vegetation productivity 

Many studies have used NDVI trends at different temporal and spatial scales using 

parametric and non-parametric approaches to assess ecological responses to climate 

change, study phenological changes, crop status, and land cover change (Fensholt et al., 

2012; Wright et al., 2012; Yin et al., 2012). The most common approach to detect 

changes in vegetation productivity is the use of the ordinary least-squares (OLS) linear 

regression model (Liu et al., 2012; Turasie, 2012; Wang, 2012). This statistical technique 

is widely used for evaluating vegetation trends (Liang et al., 2012; Ma & Frank, 2006) . 

In this study, the general trend in vegetation change was determined based on the time 

series analysis of the different annual NDVI related productivity.  

In the model time (22 years) is the independent variable; while the dependent variables 

were the annual NDVI related productivity parameters.  The model helps detect the 

trends over time of each productivity parameter. Using equation 1 defined by: 

                                Y = Ax +B + ε                                                         (1) 

Where X is the independent variables (time), Y is the modeled change variables 

(dependent variables), A is the slope, B represents the intercept, and ε error in the model.  
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To assess the inter-annual trends in vegetation productivity, we analyzed the slopes and 

strength of the correlation coefficients of the regression model considering only 

significant change (p < 0.05). 

 Rain-Use Efficiency (RUE) 

Rain-Use efficiency (RUE) is a key indicator of the state of vegetation cover function 

particularly in semiarid ecosystems (LeHouerou, 1984; Yang Y. et al., 2010). RUE is the 

ratio of aboveground net primary production (ANPP) to annual rainfall and is often 

expressed as the amount of dry land plant materiel production on 1 ha in 1yr per 1 mm of 

rainfall. Variations in RUE can be explained by difference in annual rainfall and 

vegetation productivity (Huxman et al., 2004).  

Spatiotemporal variations of RUE can be used to assess ecosystem dynamics and 

degradation (Kaplan, 2012a; Kaplan, 2012b; Troch et al., 2009; Varnamkhasti et al., 

1995). In this study we calculated the RUE for each year in order to examine its 

spatiotemporal patterns; we also used the ∑NDVI as a proxy of ANPP (McBride et al., 

2011). We then conducted a regression analysis of RUE to investigate the relation 

between inter-annual change in vegetation productivity and rainfall. This allows 

separating between changes related to climate variability and those related by other 

sources of disturbance (e.g. fire, management,). 
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Results 

3.1 Vegetation  Productivity 

The vegetation dynamics were characterized by the long-term (inter-annual) average 

NDVI related productivity-parameters: ∑NDVI, maximum NDVI, and the relative 

NDVI. Figure 4 shows the spatial distribution of the long-term average of ∑NDVI, 

maximum, NDVI, and the relative NDVI for the period 1989-2010 across the area.  

These results confirm that vegetation productivity increases with elevations as expected. 

This can be explained by the spatial patterns of rainfall along elevation gradients which is 

can be related to more water balance, cooler temperature and lower evapotranspiration.  

Any deviations from this expected relationship would indicate unfavorable conditions, 

such as fires, soil degradation, land management practices and other factors. The 

moderating effect of rainfall along mid and high elevations (2300- 3771m) is very strong 

on ∑NDVI and maximum NDVI (see Fig 4a and 4b). High elevation areas are dominated 

by needle leaf forest (ponderosa pine), while shrubland and grassland dominate the lower 

elevation areas.  

As expected, the vegetation productivity is highly correlated with rainfall gradients, 

which are in turn also highly correlated with elevation gradients (increase in rainfall with 

increased elevation). This is evident in the direct correspondence between the spatial 

distribution of annual ∑NDVI (Fig 4a), the annual maximum NDVI (Fig 4b), and annual 

relative NDVI (Fig 4c).  
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3.2 Spatial correlation between vegetation productivity and rainfall  

A spatial linear regression model was developed to study the relationship between the 

long term average NDVI related productivity parameters and the long term average 

rainfall in order to characterize the productivity variation along elevation gradients. This 

analysis looked at the spatial inter-annual variations in the regression parameters by 

examining the strength (p-value < 0.05) of the correlation coefficients, (R
2
), and the 

spatial variation of the model residuals. 

This allowed evaluating the model performance and at which level vegetation 

productivity is controlled by rainfall distribution across the area. The residuals analysis of 

the observed  NDVI related productivity and the modeled NDVI related productivity by 

regression model reveal the areas where the correlation is weak and/or where the changes 

in vegetation productivity are controlled by more factors than rainfall. A strong 

correlation was observed with R
2
 values between 0.79 – 0.86 for ∑NDVI, Max-NDVI, 

and relative-NDVI versus rainfall. Figure 5d, 5e and 5f display the spatial distribution of 

residuals resulting from the regression model. 

Correlation coefficient between the long term average ∑NVID and the long term average 

rainfall was quite high  (R
2
 = 0.79) indicating, as expected, a strong positive correlation 

(Fig 5a).  91.78 % of the area shows a significant relationship between the long term 

average ∑NVID and the long term average rainfall, while 8.22 % of the area shows no 

significant relationship.   These results confirm the strong dependency of productivity on 

rainfall in the area particularly among shrublands and grassland areas.  
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The residuals vary between -164 and 88 (VI units) over the study area at the 95 % 

confidence level. The range between [-164 to -31] (VI unit) corresponds to 

overestimation, while [32 to 88] indicates underestimation. Values between [-31 to 31] 

correspond to the 95% confidence level and a strong correlation. The residuals map 

reveals the areas where the correlation is significant or non-significant, or where the 

vegetation productivity is controlled by more factors than rainfall alone. It is important to 

note that high residuals with no significant relationship between the long term average 

∑NDVI-rainfall were found at middle and high elevations where the temperate needleleaf 

forest is the most dominant vegetation type.  This indicates that rainfall input in 

vegetation productivity is not the most force driving among this vegetation types. This 

independence from rainfall needs to be investigated in order to know which 

environmental variables control vegetation productivity along this vegetation type. It is 

important to explore variability in snow cover in the area in order to see how that has 

been impacting vegetation indices over time in middle and high elevations.   

The relationship between the long term average rainfall and the long term average Max-

NDVI showed a strong correlation coefficient (R
2
 = 0.83) at the 95 % confidence level 

(Fig 5b). It is important to note that 88.53 % of the entire area including Hopi Tribe and 

Navajo Nation area show a significant relationship with the long term average rainfall, 

while only 11.47 % of the area doesn’t show a significant relationship with the long term 

average rainfall.  Figure 5e displays the spatial variation in residuals resulting from the 

spatial relationship between the long term average Max-NDVI and rainfall.  The overall 

residuals of the regression model range between -0.66 and 0.39 (VI units) and show that 
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the range between [-0.66 to -0.13] indicate the overestimated relationship, while [0.13 to 

0.39] corresponds to the area where the relationship is underestimated. Values range 

between [-0.12 to 0.12] refers to a significant relationship at the 95 % confidence level.  

As expected, not all pixels showed a significant spatial relationship between these 

variables. The non-significant relationship between the long term average Max-NDVI 

and the long term average rainfall is found at middle and high elevations where the 

needleleaf forest is the most dominant vegetation type. The significant correlation 

between Max-NDVI and rainfall was observed at low elevations. This results show that 

rainfall has a strong affect on vegetation productivity in these areas where grasslands and 

shrublands are the dominant vegetation types.  

The R
2
 of the regression model between the long term average rainfall and the long term 

average relative NDVI was 0.86 with 95 % confidence level. 93.09 % of the study area 

show a significant relationship between the long term average relative NDVI and the long 

term average rainfall. Only 6.91 % in the study area indicate no significant relationship 

between the long term averages relative NDVI and the long term average rainfall. Figure 

5f displays the spatial distribution of the residuals. Values range between [-0.194 to -

0.047] cover the area in which the spatial relationship was overestimated, the range 

between [-0.048 to 0.458] refers to an underestimated relationship. Values between [-

0.046 to 0.046] correspond to the 95 % confidence level and a significant correlation. The 

results indicate that rainfall is a dominant factor in relative NDVI among shrublands and 



54 
 

 

grasslands and that relative NDVI among needleleaf forest is mot controlled by rainfall 

factor. 

These results confirm that rainfall in low elevations, where shrublands and grasslands are 

the dominant vegetation types,  play an important role in vegetation productivity, while 

this finding is not quite confirmed among needleleaf forest at high elevations.   

3.3 Inter-annual variability by vegetation type 

In order to separate the specific response of each land-cover type to the long term average 

rainfall we developed linear regression models for each of the three major land cover 

types: grassland, shrubland, and needle-leaf forest. The results show a significant positive 

correlation between the long term averages NDVI related productivity-parameters and the 

long term average rainfall across all three biome groups (table 1). 

The coefficient of correlation between the long-term average rainfall and the long-term 

average ∑NDVI was 0.83 for grass, 0.73 for shrub, and 0.26 for forest. The coefficient of 

correlation between MaxNDVI and rainfall was 0.88 for grass, 0.79 for shrub, and 0.45 

for forest, while the coefficient of correlation between relative NDVI and rainfall was 

0.92 for grass, 0.81 for shrub, and 0.39 for forest. These results confirm that vegetation 

productivity is for the most part controlled by rainfall, although weaker at higher 

elevations (smaller R
2
).  The results suggest that in high elevations where needle-leaf 

forest is the most dominated vegetation type, a rainfall does not show a strong effect on 

vegetation productivity or no longer plays a major role in NDVI related vegetation 

productivity.  
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3.4 Evaluating spatiotemporal trends in vegetation productivity  

To detect any trends or changes in NDVI-related productivity over the study period, a 

per-pixel linear regression was developed. The results of this per-pixel linear trend 

analyses are shown in Table 2 and Figure 6.  The slope of the regression serves as an 

indicator of the direction and strength of change over time.  Only the slope and 

coefficient of correlation of the significant trends with confidence 95 % (p < 0.05) level 

were considered. 

In general, significant changes in vegetation productivity were observed (Table 2 and 

Fig.6).  For instance, around 60.13 % of the area shows a significant decrease in ∑NDVI, 

while 36 % only shows no significant change. Most of the decrease in ∑NDVI related 

vegetation productivity corresponded to grassland and shrubland areas along low 

elevations. While, most observed increase in ∑NDVI (3.87%) corresponded to the 

middle-elevation areas, which dominated by needle leaf.  Assuming droughts are the 

main driver of these reductions, the observed and opposite increase at higher elevation 

can be linked to snow melt dynamics, which may be providing additional soil moisture 

during the drier periods.  

3.4.1 Spatiotemporal trends in ∑NDVI  

Using these spatiotemporal linear regression models, we evaluated the trend over time 

and space by looking at the strength of the correlation coefficients, and the slope of the 

regression. These regression parameters capture the direction and strength of change in 

vegetation productivity. We only considered the pixels with significant changes at the 
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95% confidence level.  The remaining pixels with insignificant change are colored gray 

in figure 7. The spatial distribution of the slope and the coefficient of correlation for 

∑NDVI are shown in figure 7a and 7b.  

64% of the pixels show significant change, compared to 36 % with insignificant changes. 

Only 3.87% of the area showed slight increase in ∑NDVI related productivity, mainly at 

higher elevations. A strong decrease in vegetation productivity (from -7 to -2 VI units) is 

mainly observed between 1800 and 2000 m in elevation, which corresponds to areas 

dominated by ponderosa pine forests with some area in low elevation dominated by 

grasslands. The correlation coefficient (R
2
), Fig. 7b, varied between 0.18 and 0.8, with 

high values (from 0.5 to 0.84) mainly at low elevations where grasslands and shrublands 

are the main vegetation types. There are few forest pixels, at high elevations, which show 

fairly high correlation coefficients (0.6 to 0.8).  

The results indicate that vegetation productivity( ∑NDVI ) among the most dominant 

vegetation types, grasslands, shrublands, and ponderosa pine forests, are experiencing  

decreases over the last 22 years as results of drought impacts in the area. It is important to 

note that some areas covered by ponderosa pine forests showed increases in productivity 

as result of the recent long-term drought. This might be linked to temperature fluctuations 

and snow dynamics in the area. 

3.4.2  Spatiotemporal trends in maximum NDVI 

The overall trend in the inter-annual maximum NDVI, indicated a significant changes 

(Fig. 8), approximately 50.04 % of the study area showed a significant decrease versus 
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only 2.4 %  significant increase and 47.56 % had insignificant changes in maximum 

NDVI related productivity (Fig. 8a). The significant decreases in the inter-annual 

maximum NDVI were observed across all vegetation types and elevation gradients.  

The range [-327 to -100 VI units *10000] corresponds to the area that shows a significant 

decrease in vegetation productivity. These areas are mostly located in mid-elevations and 

are forested. The range between [-99 to 0] corresponding to areas covered by shrublands 

and grasslands. Severe decreases in the inter-annual maximum NDVI related to 

vegetation productivity were found at middle elevations within forested areas. 

Figure 8b shows the spatial distribution of the coefficient of correlation for every pixel 

resulting from the regression model with the spatial patterns following the general 

elevation gradients. The R
2
 increases from high to low elevations. The areas with a strong 

decrease in vegetation productivity related to maximum NDVI corresponded to areas 

where the regression coefficient varies between 0.40 and 0.57.  

3.4.3 Spatiotemporal trends in relative NDVI  

Figure 9 shows the spatial distribution of the temporal trend results in the inter-annual 

relative NDVI. 32.93 % of the area showed significant change in vegetation productivity 

related to the relative NDVI, of those only 2 % showed significant increase along mostly 

washes and stream areas. The remaining 30.93 % showed mostly a decrease. This further 

confirms that a large portion of the region is experiencing significant vegetation 

productivity decline, with small pockets of significant increase. It is important to note 

that most of the significant changes were observed over the shrubland and forested areas.  
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Figure 8b displays the spatial distribution of the coefficient of correlation over the areas, 

revealing that the coefficient of correlation increases with elevation.  High R
2 
was 

observed in middle-elevation where the inter-annual relative NDVI shows a significant 

decline over the last 22 years.  

3.5 Factors Controlling Vegetation Changes  

Figure 9 shows the spatial distribution of the results obtained from the RUE temporal 

trend analysis with a confidence level of 95 % (p<0.05). The aim here is to identify areas 

where RUE drops over time due to decreased soil moisture retention or increased 

evaporation. Attention was placed on pixels showing significant negative trends. RUE 

showed strong correspondence with the areas of negative regression slopes and 

vegetation decreases in the ∑NDVI (Fig.7a). 21% of the area showed significant changes 

in RUE, with 19 % negative. Only 2 % of the area exhibited a positive trend in RUE. The 

rest of the area, 79% exhibited insignificant changes over the considered period. The 

areas with an increasing RUE trend showed strong correspondence (97 %) with areas that 

showed declines in the inter-annual ∑NDVI.  Most of the positive trends are found in the 

southwestern part of the area at higher elevations, which is dominated by ponderosa pine 

forests.   This could be explained by the rooting depth of these trees and their ability to 

access and make efficient use of the limited soil water reserves during droughts.  These 

negative trends are mainly located at the northern part of the area and along lower 

elevations. It is also important to note that these negative trends concern for the most part 
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the grasslands and shrublands of the area. The decrease in RUE along these areas may be 

related to the limited rooting depth and poor soil moisture retention. 

The RUE-based analysis did not show any widespread or significant changes, which 

seems to support the earlier finding that rainfall patterns only explained 21% of the 

changes in vegetation productivity. 

Conclusions 

The present study aimed at developing and presenting an understanding of the impact of 

the recent and still ongoing droughts on vegetation productivity on the lands of the Hopi 

Tribe and Navajo Nation.  This work looked at the major factors that may be responsible 

for the region’s ecosystems variability at inter-annual to decadal scales. Our framework 

illustrated how remote sensing data, especially the multi-sensor NDVI records used in 

this study, and simple statistical tools can be used to assess drought effects on vegetation 

productivity and to inform range management about land conditions, as well as to help 

identify where to apply and orient adaptive management actions. 

The Hopi Tribe and Navajo Nation region is considered arid and semi-arid making them 

vulnerable to climate change and human pressure (grazing, fires, and land use change).  

This work looked at the inter-annual variation of vegetation productivity over the last 22 

years and how this productivity changed with rainfall, elevation gradients, and cover 

types. The results show that the spatial distribution of the vegetation productivity roughly 

corresponds to the mean inter-annual rainfall at low and middle elevations, but at higher 

elevations productivity is not responsive to rainfall.   
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At the region’s scale, the correlation between the long-term (inter-annual) average-NDVI 

related productivity-parameters, and rainfall varies between 0.79 and 0.89 (Fig.5). As 

expected, for arid areas, rainfall is the most fundamental factor for vegetation 

productivity especially for the areas dominated by grassland and shrubland (Table 1).  In 

contrast, forested areas of higher elevation exhibited less dependency on rainfall. This 

lower dependency can be explained by many factors related to rooting depth of trees that 

enables accessing deeper soil moisture during the dry periods and the intrinsic resiliency 

of trees to precipitation reduction due to their ability to store water. 

Over the last 22 years the region’s vegetation experienced significant reduction in 

productivity, particularly in the Navajo nation where around 74 % of the area revealed 

significant decrease in ∑NDVI (p<0.05). The decreasing trends of all NDVI related 

vegetation productivity parameters were mostly observed over the shrubland dominated 

areas with the highest decrease in mid- elevation. Forested areas at higher elevations were 

less prone to rainfall and subsequently droughts, which can be explained by factors 

related to the rooting depth, size, and resilience of these large trees.  Rooting depth 

determines a tree’s ability to access deeper soil moisture during dry periods, and thus 

influences its intrinsic resiliency to precipitation reduction through its capacity to store 

water. 

The RUE-based analysis did not show any widespread or significant changes, which 

support the finding that rainfall patterns only explained 21% of the observed changes in 

vegetation productivity. 
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Tables 

Table 1:  Correlation coefficients for the main land cover types and different NDVI-based 

productivity parameters vs. rainfall. 

 Grassland Shrubland Forest 

∑NDVI 0.83 0.73 0.26 

Max-NDVI 0.88 0.79 0.45 

Relative-NDVI 0.92 0.81 0.39 
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Table2: Percent of area with significant and non-significant slopes for the annual NDVI 

related vegetation productivity during the last 22 years. 

Vegetation 

productivity   

Negative Change Positive Changes No-Significant Change 

Percent Percent Percent 

∑NDVI 60.13 3.87 36.00 

Max-NDVI 50.04 2.40 47.56 

Relative-

NDVI 

30.93 2.00 67.07 
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Figures 

Figure 1: Map of study area showing the distribution of weather station sites 

 

 

 

 

 

 

 

 

 



76 
 

 

Figure 2:    (a) map of elevation gradients across the area, and (b) map of the dominant 

vegetation types (2005 North American Land Cover at 250 m spatial resolution 

database). 
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Figure 3:  Conceptual model showing the NDVI based vegetation productivity 

parameters generated in this study. The maximum, relative NDVI, and (∑NDVI values 

were extracted for each pixel. The annual cumulative NDVI (∑NDVI) was computed by 

integrating the area under the curve for each pixel. 
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Figure 4:  (a) the long term (inter-annual) average ∑NDVI (VI unit), (b) the long term 

(inter-annual) average Maximum NDVI, and (c) the long term (inter-annual) average 

NDVI amplitude (difference between Max and Min NDVI) from 1989 to 2010 
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Figure 5:  Relationship between the long-term average rainfall and the long-term average 

NDVI related productivity variables across the area for (a) ∑NDVI-Rainfall, (b) for 

MaxNDVI-Rainfall, (c) for NDVI amplitude -Rainfall. Residual map resulting from the 

regression model for (d) ∑NDVI-Rainfall, (e) for MaxNDVI-Rainfall, (f) for NDVI 

amplitude (relative) -Rainfall.  
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Figure 6: Percent areas with a significant positive, negative, and unchanged 

vegetation productivity resulting from trend analyses of the time series of NDVI 

related vegetation productivity over the last 22 years.  
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  Figure 7: Spatial patterns of (a) the slope of the significant ∑NDVI temporal trends and 

(b) coefficient of correlation (1989-2010) at 95% confidence interval (p<0.05). 
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Figure 8: (a) linear slope of maximum NDVII over time (22 years) for the area and (b) 

the coefficient of correlation over the study period   
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Figure 8: Spatial patterns of (a) the linear slope of temporal trends in the annual NDVI 

amplitude and (b) the coefficient of correlation over the same period. 
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Figure 9:  (a) Linear slope of RUE over the considered period 1989-2010 (b) linear slope 

of ∑NDVI for the same period 
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Abstract 

This research looks at the major driving force of vegetation dynamics in the lands of 

Hopi tribe and Navajo Nation during the last 22 years in order to provide valuable spatial 

information related to inter-annual variability in vegetation productivity for mitigating the 

impact of drought. The present drought impact on the Colorado Plateau, where the Hopi 

Tribe and Navajo Nation are located, have appeared slowly and relatively unnoticed in 

conventional national drought monitoring efforts like the National Drought Monitor. To 

address, the effect key environmental drivers of vegetation dynamics in the area, a 

drought assessment framework was developed integrating land cover, climate, and 

topographical data with land surface remote sensing time series data. Two NDVI-related 

productivity measurements serving as response variables, integrated annual NDVI (a 

proxy of Gross/ Net Primary Production, GPP/NPP) and maximum annual NDVI were 

derived from the 15-day composite multi-sensor Normalized Difference Vegetation Index 

(NDVI) time series. We also derived the phenoclimatic variables land cover thematic 

maps, and topographic drivers as the explanatory variables.   For each NDVI-related 

productivity and phenoclimatic driver, we computed spatially the coefficients of variation 

(CoV) over the last 22 years. We then examined the inter-annual variation of each 

response variables in order to detect spatial differences in vegetation biomass changes 

among elevation gradients as well as among vegetation communities.  After looking at 

the inter-annual variability in each response variables, we studied vegetation-environment 

relationships by conducting a stepwise multiple linear regression analysis in order to 

explain the source of the variability in vegetation productivity.  Our results suggested that 
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the inter-annual variability of cumulative NDVI showed high variability in middle 

elevations where needleleaf forest is the dominant vegetation type. We also found that 

there was a significant change related to the inter-annual variability in maximum NDVI 

at low elevations. These low elevation areas are mostly dominated by shrublands and 

grasslands. Our analysis also showed that the spatial variation in inter-annual CoV of 

cumulative NDVI was better explained by climate drivers than by topographic drivers. 

Specifically, the inter-annual variability in spring precipitation and temperature seem to 

be the most significant drivers that correlate positively with the inter-annual variability in 

vegetation productivity in the study area. However, the inter-annual variability in summer 

precipitation and temperature showed a decreasing relationship with the inter-annual 

variability in vegetation productivity and they showed a strong impact of vegetation 

productivity. It was found that the inter-annual variability in winter and spring and 

summer temperature were the most powerful drivers in the inter-annual variability in 

maximum NDVI for shrubland. Finally, the inter-annual variability related to NDVI 

productivity among forested area was not controlled by the inter-annual variability in 

phenoclimatic drivers.    

Keywords: drought, remote sensing, time series, vegetation response, Hopi and Navajo 

Nations.
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Introduction  

Drought is one of the natural hazards always threatening society at different economic, 

social, and environmental scales (Chen et al., 2012; Wilhite et al., 2005). Droughts are a 

recurrent part of our climate and are still considered one of the most complex 

phenomenon and one of the least understood among all natural hazards in terms of its 

impact on vegetation productivity (Glantz, 2003; Hagman, 1984; Mishra et al., 2005; 

Wilhite, 1990; Wu et al., 2013). In recent years drought has become more common and 

more severe across the world, and the extent of drought‐affected areas has increased 

(Easterling et al., 2000; FAO., 2011; Hoerling, 2003; IPCC, 2007; Meehl, 2004). Drought 

has been recognized as one of the principal causes of crop loss and severe food shortages, 

particularly in developing countries (FAO., 2011; Parida et al., 2008). For the last 

decades, droughts have constantly threatened the world’s food security (Eriksen etal., 

2012; FAO., 2011). In addition to the economic damage and damage to natural resources, 

droughts can severely impact lives and communities causing displacement of people and 

migration (FAO., 2011; Parida et al., 2008).  

Studying the spatial and temporal dimensions of drought in relation to climatological, 

oceanic, and atmospheric parameters is a fundamental key for developing drought 

monitoring systems in order to provide valuable information for better early warning and 

knowledge-based decision support systems that would help to mitigate impact of future 

droughts on society (Arshad et al., 2008; Tadesse et al., 2005). Therefore, in any given 

place, effective drought monitoring system would take into consideration past and present 

climatological conditions (Tadesse et al., 2005). Monitoring drought patterns and their 
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impact on vegetation productivity at different spatial and temporal scales still presents 

some challenges due to the complex relationship between vegetation, environmental and 

biophysical factors (Chapin et al, 2011; Propastin et al., 2001; Vicente-Serrano et al., 

2012).  

Due to water limitation, several sites across the globe have shown recent declines related 

to forest productivity and tree survival (Allen et al., 2010; Zhao & Running, 2010). This 

water limitation causing declines in vegetation productivity at many places across the 

globe has been linked to lack of reduced precipitation or increase in evaporative 

demands, which is generally related to droughts (Williams et al., 2012). In the 

southwestern United States, the drought impacts on  forests have been well documented 

and considered sever since 1990s as a result of the observed temperature increase 

recorded during this period (Breshears et al., 2005; J. L. Weiss et al., 2009a; Weiss et al., 

2009b; Williams et al., 2012).    

With the increase of destruction, fragmentations, and degradation of natural land cover 

worldwide due to human impact and to a lesser degree climate change, the need for better 

management is becoming urgent (Carmel et al., 2001). Deep understanding of ecosystem 

dynamics in space and time leading to prediction of future ecosystem statuses could assist 

decision makers to maintain biodiversity through good planning and management 

systems (Medvigy et al., 2012; Western et al., 1989; Zhao et al., 2013). One of the useful 

tools for decision making in ecosystem management has relied on the spatially explicit 

dynamic models (Boumans et al., 1990; Freeman et al., 2012; Steele et al., 2012; Turner 
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et al., 1995) , but those spatially explicit dynamic models are still  facing some issues for 

ecosystem management where there are more than two vegetation species (Turner et al., 

1995).  

In the southwestern United States, droughts are relatively a common phenomenon due to 

land surface-ocean interaction  (Cook et al., 2007; Seager et al., 2007) .Several studies 

have shown that both climate and human activities are the key driving forces of changes 

in landscape in the American Southwest (Seager R et al., 2007). This finding makes the 

assessment of vegetation response to droughts in the region difficult due to the human 

dimensions of this problem. 

Droughts in the United Sates are the most costly weather-related disaster (Mishra et al., 

2010). From 1980 to 2003, the cost of drought was estimated at more than $144 billion 

dollars (Ross et al., 2003). The recent ongoing drought in the area will have multiple 

impacts, not only on economic activity but also on the ecosystem services (Cook et al., 

2007; Fye et al., 2003; Swetnam et al., 2010). One concern of the ongoing drought in the 

region is the storage capacity of the Colorado River and taxing of the regional aquifers 

(Gastélum et al., 2013; Wilhite et al., 2005). 

The present drought impact on the Colorado Plateau, where the Hopi Tribe and Navajo 

Nation are located, have appeared slowly and relatively unnoticed in conventional 

national drought monitoring efforts like the National Drought Monitor. Assessment of the 

present drought and its impacts on the Hopi and Navajo Nation area presents some 

difficulties due to lack of the Hydro-climatological data. This situation has created a 
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challenging environment for resource managers to assess current conditions and 

anticipate future climatic impacts at seasonal to inter-annual time scales. Temporal and 

spatial dimensions of drought are complex and vary from one place to another (Wilhite, 

2000b), making the development of one framework for drought monitoring at the global 

scale difficult. 

The goal of this study is to examine the major driving force of vegetation dynamics in the 

region during the last 22 years in order to provide valuable spatial information related to 

inter-annual variability in vegetation productivity for mitigating the impact of drought.  

In any given location, vegetation dynamics is driven by multiple environmental factors 

including climate, topography, soil proprieties, and various human disturbances related 

factors (Kariyeva et al., 2011). The main objective of this work is to develop a spatial 

model that can be used to study the vegetation response to climate variability at different 

spatial and temporal scales in order to assist managers and decision makers to maintain 

biodiversity in Hopi and Navajo lands. These goals can be expressed as a series of 

questions: 

 How has the vegetation productivity of the Hopi tribe and Navajo Nation 

responded to climate variability during the last 22 years? 

 What are the environmental variables driving inter-annual vegetation dynamics in 

the area? 

 Can these environmental drivers be used to explain the variability of the 

vegetation dynamic across time and space in the area? 
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Data and Method  

1.1. Study area  

The Hopi tribe and Navajo Nation of Arizona occupy the northeastern corner of the state 

in the lower Colorado River basin. Collectively, the Hopi tribe and Navajo Nation lands 

cover over 77699.643square km (Fig 1). The area is known for its cold winters and very 

hot summers. Average annual temperature varies between 40ºF and 50ºF. Climatic 

patterns vary from south to north across the area. Annual rainfall is less than 10 inches 

and varies along elevation gradients. Rainfall is low and moderate in the early winter, 

increases in February and March, and then decreases quickly in April. May through June 

is a very dry period (Grahame et al., 2002). Vegetation cover varies through the area as a 

result of climate, soil types, elevations, and land management. 

1.2.Datasets  

Remote Sensing data  

Fifteen-day composite multi-sensor Normalized Difference Vegetation Index (NDVI) 

time series data were acquired from the vegetation index and phenology project 

(vip.arizona.edu) for the available period 1989 to 2010 at 5.6 km spatial resolution to 

study vegetation response to climate variability. This product represents a sensor-

independent and continuous NDVI time series derived from AVHRR (1981-1999), SPOT 

(1998-2002) and MODIS (2000-2010) data (Didan et al, 2010). More details about the 

datasets can be found on the Vegetation Index and Phenology Laboratory website: 

http://vip.arizona.edu/viplab_data_explorer.php. These data were analyzed to characterize 

http://vip.arizona.edu/viplab_data_explorer.php
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the intra-annual changes of vegetation, seasonal phenology, and inter-annual vegetation 

responses to climate variability and environmental factors. 

Climate data were generated from Oregon State University’s Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) (Di-Luzio et al., 2008) dataset at 4 

km spatial and monthly temporal resolution. Average seasonal monthly rainfall and 

temperature data were analyzed in order to characterize the climate patterns over the last 

22 years in the area. The rainfall and temperature data were resampled to the NDVI 

spatial resolution of 5.6 km. 

Topographic data are based on the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) with a spatial 

resolution of 30 m (ASTER, 2009) Elevations range between 821 m to 3771 m 

corresponding to eco-zones with low to high vegetation cover (Fig. 3). Pixel size of the 

elevation data was resampled to 5.6 km to match NDVI pixel size. 

Land cover types were generated from the 2005 North American Land Cover product at 

250 m spatial resolution produced by the North American Land Change Monitoring 

System (NALCMS., 2005). According to this classification, the land of the Hopi tribe 

and Navajo Nation is characterized by shrubland, and grassland and needleleaf forest 

(Fig. 4). The pixel size of the NALCMS was resampled to 5.6 km, using the dominant 

class approach, to match the NDVI pixel size. Overall, the land cover of the area is fairly 

stable because of limited natural and anthropogenic change. 
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1.3.Methodology  

 Response Variables: Deriving Metrics of NDVI-Based Vegetation Productivity  

Two NDVI-related productivity measurements were derived from the 15-day composite 

multi-sensor Normalized Difference Vegetation Index (NDVI) time series. The NDVI 

time series consists of 22 years of images at 24 images per year, resulting in 528 gridded 

images across the area. NDVI has been used in many studies to assess vegetation 

dynamics, monitor land cover change, and track the impact of climate change and human 

disturbances on vegetation productivity across the world (Ahmad, 2013; Bachoo et al., 

2007; Pocas et al., 2013). 

A proposed framework (Fig. 5) was developed to capture the seasonal patterns of 

vegetation activity. For the purpose of this study, two key NDVI-related productivity 

measurements related to greenness were extracted for each year using these frameworks: 

(1) integrated annual NDVI (a proxy of Gross/ Net Primary Production, GPP/NPP), and 

(2) maximum annual NDVI.  We only extracted these greenness metrics during the snow-

free period from March to November of each year in order to minimize snow impacts on 

NDVI values (Delbart et al., 2006; Shi et al., 2008; Zhang et al., 2004). Many studies 

have used such bio-variables, integrated annual NDVI and maximum annual NDVI, to 

capture changes in ecosystem function across the world (Alcaraz et al., 2006; Price et al., 

2013; Weiss et al., 2004). 
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 Explanatory Variables: Obtaining Key Environmental Drivers 

The potential explanatory variables hypothesized to be the key drivers of vegetation 

dynamics in this study are: climate data, vegetation types, and topography characteristics. 

Table 1 lists the different environmental variables used in this study.   

2. Methodology 

To understand the source of vegetation dynamics and the main environmental forces 

driving the ecosystem changes in the lands of the Hopi tribe and Navajo Nation, a four-

step framework was developed using both response and explanatory variables.  The first 

step consisted of selecting the appropriate set of potential explanatory variables by testing 

the near-linear dependencies among the variables. This test allows the determination of 

the multicollinearity levels between the variables and selection of the appropriate 

explanatory variables.  The second step was to examine variations in the coefficient of 

variation (CoV) of the NDVI-related productivity variables (response variables) as the 

ratio of the standard deviation and the mean at the area level as well as among vegetation 

communities. The third step was to study vegetation-environment relationships by 

conducting a stepwise multiple linear regression analysis (SMLR) in order to explain the 

source of the variability in vegetation productivity. The final step was to locally evaluate 

the regression model performance using overall model residuals.   

 

 



96 
 

 

 Detecting multicollinearity among the explanatory variables 

Several techniques are available in the literature to detect multicollinearity in multiple 

regression analyses, such as Eigen system analysis (Castillo-Santiago et al., 2012; 

Walker, 1989), condition number technique (Vinod et al., 1981), and the examination of 

the correlation matrix. For the purpose of this study, the examination of correlation 

matrix of explanatory variables was used in order to determine the degree of correlation 

between variables. This method is widely used to detect multicollinearity issues in 

multiple regression models (Davison et al., 2011; Kariyeva et al., 2011).  

Eleven explanatory (dynamic and static) variables were selected for this test: two 

topography-based factors, elevation and aspect, one vegetation type’s variable, eight 

climate-based variables (6 seasonal precipitation and temperature-based variables, one 

total annual precipitation, and one average annual precipitation). Climate data were 

divided into the standard four seasons (JFM, AMJ, JAS, and OND), but in this study we 

selected only three seasons (JFM, AMJ, JAS) that we hypothesized the main force 

driving vegetation dynamics in the area. We calculated the coefficient of variation of 

seasonal precipitation and temperature over the considered months over the last 22 years. 

As a result of this test, two variables were excluded from the potential explanatory 

variables list, annual cumulative and mean annual precipitation, due to their high 

multicollinearity (R
2
 > 0.8) with other seasonal variables.  
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 Inter-annual variability of NDVI-related productivity parameters 

Many studies have used  inter-annual coefficient of variation (CoV) as a simple indicator 

to study spatiotemporal variation in vegetation productivity in different climates and 

ecosystems (Jordan et al., 2012; Kariyeva et al., 2011; Milich et al., 2000; Wan  et al., 

2009; Weiss et al., 2001). High variability in CoV across pixel/landscape and over any 

considered period can be used as an indicator of changes in vegetation biomass (Weiss et 

al., 2001). For this reason the use of CoV in this study can be useful to study changes in 

vegetation productivity. 

In the study, the inter-annual CoV of NDVI-related productivity variables were spatially 

generated over the study area in order to detect spatial difference in vegetation biomass 

variability among elevation gradients as well as among vegetation communities. Two 

statistical analyses, the Kolmogrov-Smirnov (K-S) test (Dahlin et al., 2012; Pena-

Yewtukhiw et al., 2008) and the boxplot technique (Härdle et al., 2012), were also used 

to analyze variations in the inter-annual CoV of the NDVI-related productivity variables 

over the whole area as well as among vegetation types. The K-S test is non-parametric 

test that shows the maximum absolute difference in the cumulative probability curves 

among the data (Henareh et al., 2013; Moller et al., 2012). Boxplots are widely used to 

visually summarize and compare groups of data. We used the K-S test because it is so 

sensitive to differences anywhere in the cumulative distribution functions (CDFs). 

Therefore, the two statistical tests were used to determine which NDVI-related 
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productivity parameter had the largest inter annual variability as a result of droughts and 

precipitation events.  

 Vegetation- environment relationships 

 Stepwise multiple linear regressions were used to study the relationship between inter-

annual variability in vegetation productivity and inter-annual variability in environmental 

variables. Many studies have used these analyses to quantify variability in vegetation 

dynamics over time and space (Busetto et al., 2010; Chu and Guo, 2012; Fu et al., 2010; 

Wan H et al., 2009). To determine the long-term responses of NDVI-related productivity 

to environmental variables, a spatial-temporal relationship model was developed. This 

required bringing all variables used into one spatial model to express the variability in 

NDVI-related productivity as a function of environmental factors at time scales of 22 

years over the whole area as well as among vegetation communities. Residuals from the 

model were analyzed to find some explanations related to the weakness of the model and 

if there were other factors that might be the source of the weakness.   

COV-NDVI related productivity variables = f (CoV-dynamic climate, land cover, 

topography,)             (1) 

This study provided an idea about potential environmental drivers that have impacted the 

spatial temporal variability in vegetation productivity in the region during the last 22 

years. This allows to spatially seeing how those environmental variables can be used to 

assess vegetation responses to drought in the regions by looking at the spatial 
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distributions of the model residuals in order to provide perspective for land managers' 

decision making in the area.
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Results  

 Spatial patterns of inter-annual CoV of the NDVI-related productivity variables 

 Figure 6 shows the spatial distribution of the inter-annual CoV of cumulative NDVI over 

the study period. The lowest inter-annual CoV values (i.e., those less than 0.1) were 

concentrated along high elevations indicating that these areas had experienced the least 

temporal changes in vegetation productivity over the study period. These areas are mostly 

dominated by needleleaf forest. The inter-annual CoV generally increases with the 

decrease of elevations. The range from 0.21 to 0.56 corresponds to the area with the 

highest inter-annual CoV, sign of a greater variability in vegetation productivity.  Most of 

the areas with the highest inter-annual CoV values are observed in low and some mid-

elevation areas where shrubland is the most dominant vegetation type. 

Figure 7 shows the spatial differences of the inter-annual CoV of the maximum annual 

NDVI for each pixel over the study area.  The coefficient of variation (CoV) of the 

maximum annual NDVI was used as a factor to describe the change of vegetation 

productivity and to compare the amount of variation in different vegetation communities.  

The CoV varies between 0.1 and 2. The larger CoV values were observed over lower 

elevations and over some areas located at middle elevations. These areas are dominated 

by shrubland and grasslands, indicating that the areas experience the most temporal 

variability over the last 22 years.  The entire region shows a very high degree of temporal 

variability in vegetation productivity as measured by Max-VI.  More than 98 % of the 
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area showed a CoV greater than 0.5 CoV. This indicates that the maximum inter- annual 

NDVI is very instable over time and changes frequently. 

 The amplitude of inter-annual variation in vegetation productivity 

Box plots were used to show the overall patterns of the inter-annual variability of NDVI-

related productivity. To that end, pixel values of the inter-annual CoV of each NDVI-

related productivity were extracted.  The box plots provide a useful way to visualize the 

range of the variability among each COV NDVI related productivity at the whole area. 

Figure 9 shows box plots comparing the inter-annual variability among the inter-annual 

CoV of NDVI-related productivity in the area. For example, the distribution of CoV of 

the annual cumulative NDVI shows less inter-annual variability than the maximum 

NDVI CoV. The inter-annual CoV of the annual maximum NDVI has the widest 

distribution and most obvious range. Peak values differ among the CoV of NDVI-related 

productivity and vary between 0.4 and 1.7.  

 As figure 8 shows, the inter-annual CoV of cumulative NDVI presents less variability 

than the inter-annual CoV of annual maximum NDVI related productivity. This suggests 

that difference in variability is likely related to inter variability of climate or other 

variables rather than vegetation characteristics in the area.  

In order to confirm the obtained results from the plot box approach, a two-sample 

Kolmogorov-Smirnov (K-S) test was conducted on the inter-annual CoV of NDVI-

related productivity to evaluate differences across the entire frequency of the inter-

variability among the CoV of each NDVI-related-productivity. The K-S test allowed us 
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not only to see the differences in the median or extremes but also to see the level of 

variability among the CoV. For instance, the K-S test results obtained from the 

comparison  between the inter-annual CoV of cumulative and maximum NDVI show a 

significant difference in terms of variability with maximum percent difference of 99 %  

(D= 0.99) and p-value less than 0.001. The cumulative distribution (Fig.9) of the inter-

annual CoV of cumulative and maximum NDVI demonstrates that the maximum NDVI 

shows more variability. The results confirmed that the cumulative NDVI demonstrated 

less inter-annual variability compared to the maximum. This means that the level of 

sensitivity to climate variability among these variables is different and shows that 

vegetation productivity related to maximum NDVI has experienced more inter-annual 

variability.  

 Inter-annual variation in CoV of the NDVI-related productivity across 

vegetation communities  

To study the inter-annual variability in productivity among vegetation communities, we 

extracted the pixel values for three dominant vegetation communities in the area:  

needleleaf forest shrubland, and grassland. The Kolmogorov-Smirnov test and the box 

plot approach were used to quantify the difference in inter-annual variability in NDVI-

related productivity among these three vegetation communities.  Figure 10 is an 

explanatory diagram of the inter-annual CoV of cumulative and maximum NDVI among 

these three biomes. As figure 10 shows, needleleaf forest demonstrate less variability 

than grassland and shrubland in terms of productivity (Fig. 11i, ii, iii). This finding 
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suggests that needleleaf forest productivity is less sensitive to climate variability, but 

shrubland and grassland productivity show higher variability. The K-S test results 

confirmed that the cumulative distribution of the inter-annual CoV of NDVI-related 

productivity among vegetation communities is different. This finding indicates that 

shrublands and grassland show more sensitivity to climate variability. This can be related 

to the level of resilience among those vegetation communities and their access to water 

during drought or dry season. 

 Inter-annual spatial variation in vegetation productivity as a function of 

environmental variables   

A multiple linear regression approach was applied in order to study the existing 

relationship between vegetation dynamics and environmental variables. The inter-annual 

spatial variation in vegetation productivity was analyzed as a function of nine 

environmental variables in order to explain the source of the inter-annual variation across 

the area. Two inter-annual CoV of NDVI-related productivity were used as response 

variables, CoV of cumulative and maximum NDVI.  The contribution of the potential 

explanatory variables to the inter-annual variability in vegetation productivity differed 

from one response variable to another. Table 2 illustrates the number of explanatory 

variables included in the multiple liner regression with a confidence level of 95%. The 

following sections describe the modeling results for each response variable. 

The results of the multiple linear regression approach used to assess the main forces 

driving variability in NDVI-related vegetation productivity are shown in table 3. The 
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number of explanatory variables involved in the multiple linear regressions for the inter-

annual variability of maximum NDVI was less than those for the inter-annual CoV of 

cumulative. The inter-annual CoV of cumulative NDVI had the largest explanatory 

variables.  

The proportion of the inter-annual variability in cumulative NDVI explained by the 

potential explanatory variables was around 34% with a root mean square error (RMSE) 

of 0.002 (see table 2).  All explanatory variables show a significant correlation at 95 % 

confidence level in the study area as a whole.  Inter-seasonal variability of temperature 

seems to be the most important factor affecting the vegetation dynamics in the area 

during the last 22 years. 

Spatial variation in inter-annual CoV of cumulative NDVI was explained better by 

climate drivers than by topography. Among all explanatory variables, spring precipitation 

and temperature, as well vegetation type showed a positive estimated coefficient (Est-

Coeff). This indicated that those explanatory variables are in increasing relationship with 

the inter-annual variability of cumulative NDVI. The inter-seasonal of winter and 

summer temperature and summer precipitation as well as the topography factors (aspect 

and elevation) indicated a negative estimated coefficient, which meant that the inter-

annual variability in vegetation productivity (cumulative NDVI) showed a decreasing 

relationship with those climate factors. This result suggests that there is a strong positive 

feedback between the inter-annual variability in vegetation productivity and the inter-

seasonal spring temperature in the area. The determination coefficient of the significant 
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relationship between the inter-annual CoV of cumulative NDVI and explanatory 

variables varies between – 8.5e
--05

 and 0.4.  Furthermore, topographic and vegetation 

types drivers showed a weak estimated coefficient in the regression model (see table 3). 

The inter-annual variability in maximum NDVI was best explained by climate drivers 

rather than topography drivers.  The Inter-seasonality of spring precipitation and 

temperature showed a significant relationship (P <0.05) in the regression and are in 

increasing relationship with the inter-annual variability in maximum NDVI.  The inter-

seasonality of winter temperature and summer precipitation and temperature, as well as 

topographic variables (aspect and elevation) are in a decreasing relationship with 

maximum NDVI CoV. However, the inter-seasonality of spring and summer temperature 

presented a strong estimated coefficient compared to the rest of the explanatory variables. 

This suggested those drivers are in a strong relationship with the inter-annual variability 

of maximum NDVI. The amount of variability in maximum NDVI CoV explained by the 

explanatory variables was 26 % (see table 4). 

In order to better understand the regressions’ uncertainty resulting from the spatial 

regression model between the inter-annual variability in response and explanatory 

variables, the spatial distribution of the regression residuals was generated for each 

model. The residual maps (Fig.12) show the spatial distribution of residuals resulting 

from each model. Figure 12 shows where the model is strong, weak and/or where the 

changes in the inter-annual NDVI CoV related to vegetation productivity were controlled 

by more factors than those used in the regression model. 
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Spatial patterns of the residuals demonstrated that the models for the cumulative NDVI 

produced the lowest amount of residuals in the CoV values of the NDVI-related 

vegetation productivity (Fig. 12a) compared to those resulting from maximum. This 

referred to the number of pixel that didn’t show a significant correlation with the 

potential explanatory variables. 

The residuals of the model obtained from the cumulative NDVI vary between –0.3 and 

0.27 CoV-VI unit over the study area with a standard deviation of 0.1 at the 95 % 

confidence level. The range between [-0.3 to -0.1] corresponds to overestimation, while 

[0.101 to 0.27] indicates underestimation. Values between [-0.1 to 0.1] correspond to the 

95% confidence level and a strong correlation. The model performed well at low 

elevations where shrubland and grassland are the dominant vegetation types. In general, 

the relationship between the inter-annual variability of cumulative NDVI was 

overestimated and no significant correlation was found in high elevation areas where 

needleleaf forest is the dominant vegetation type. This means that the inter-annual 

variability in cumulative NDVI among shrubland and forest at middle and high elevations 

is strongly controlled by other variables rather than the explanatory variables used in this 

study. This might be related to the inter-annual variability in snow over these areas 

during the last 22 years. 

 The spatial pattern of residuals obtained from inter-annual variability of maximum 

NDVI (Fig. 112b) varies between -1.5 and 0.44 with a standard deviation of 0.06 at the 

95 % confidence level.  A large percent of the area seems to be overestimated by the 
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model where the residuals range between [-1.5 and -0.12]. These areas are mostly located 

in low and high elevations where both shrublands and needleleaf are the major vegetation 

types. The range value of the residuals between [ -0.119 to 0.12] correspond to the 95% 

confidence level and show a strong relationship between the inter-annual variability of 

maximum NDVI and the explanatory variables included in the model( see table 8 for the 

significant ones).  These results show that the inter-annual variability in maximum NDVI 

related productivity in   middle and high elevation is not controlled by climate, 

topographic drivers, or soil characteristics. 

 Inter-annual spatial variation in vegetation productivity among vegetation types 

as a Function of  the Potential Environmental Variables   

To better understand the potential drivers of the inter-annual variability in vegetation 

productivity among vegetation types in the area, the inter-annual variability of NDVI-

related productivity was modulated as a function of the same potential drivers. Table 5 

illustrates the results by the stepwise multivariate regression approach used for the three 

dominant vegetation types in the area: grasslands, shrublands, and needleleaf forest. The 

amount of variability in NDVI-related productivity explained by the potential explanatory 

variables varies from one vegetation type to another. The percent of the explanatory 

variables involved in each regression model also varies from one vegetation type to 

another.  

The inter-annual variability in cumulative NDVI among grasslands explained by the 

explanatory variables was around 14 %.  The percent of the explanatory variables 

included in the regression model for grasslands was 30 % (3 out of 9 explanatory 
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variables showed a significant relationship with cumulative NDVI at the 95% confidence 

level).  The two topography drivers, aspect and elevation, were included in the model and 

showed a negative relationship with the inter-annual variability in cumulative NDVI for 

grasslands.  The inter-seasonal of spring precipitation showed a negative estimated 

coefficient in the regression model. This suggests that the inter-annual variability in 

grassland productivity is in decreasing relationship with spring precipitation, aspect and 

elevation (see table 5a). 

The regression model was able to explain 46 % in the inter-annual variability in 

maximum NDVI for grasslands. Only one explanatory (11% of the potential explanatory 

variables) variables showed significant correlations to the inter-annual variability in 

maximum for grasslands (see table 5b).   The significant driver included in the regression 

was elevation which was in a decreasing relationship with the inter-annual maximum 

NDVI. This suggested that the inter-annual variability in maximum NDVI for grasslands 

is more controlled by elevation gradients. The dominate grasslands in the area is plains 

grasslands, which are commonly dominated by blue Grama.  

The regression model for shrublands (see table 6) resulted in R
2
 = 0.27 for the inter-annul 

variability in cumulative NDVI model and R
2
 = 0.31 for the inter-annual variability in 

maximum NDVI model. Climate and topography drivers were significantly correlated to 

the inter-annual variability in cumulative NDVI of shrublands (see table 6a).  The inter-

annual variability in spring precipitation and summer precipitation and temperature seem 

to be the most positive contributors to the inter-annual variability in cumulative NDVI 
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related productivity for shrubland. However, summer precipitation and temperature, as 

well as topographic drivers showed a significant relationship, but in negative ways. 

Table 6b illustrates the resulted obtained for the maximum NDVI among shrublands. 

Winter temperature, spring precipitation and temperature, and summer precipitation 

contributed strongly to the inter-annual variability of maximum NDVI for shrublands and 

they are in a decreasing relationship with shrubland productivity. However, spring 

precipitation and summer temperature presented an increasing relationship with the inter-

annual variability of the maximum NDVI for shrublands. These results suggest that the 

interseasonal temperature for all seasons plays an important role in the inter-annual 

variability in shrubland in the area.  

The regression model between the inter-annual variability in NDVI-related productivity 

for frost area (pinon-juniper woodlands) and the potential explanatory variables showed 

very low correlation: R
2
 =0.09 for maximum NDVI CoV, R

2
 = 0.28 for cumulative NDVI 

CoV (see table7). Table 7a illustrates the results for the inter-annual variability of 

cumulative NDVI. An aspect driver seems to have strong impacts on forested areas; this 

can be explained by the variation in sun light in these areas covered by this vegetation 

type. The inter-annual variability in maximum NDVI for forest areas was not in strong 

relationship with the potential explanatory variables used in the study because of amount 

of the variability explained in the model, only 8% (see table 7b). This suggests that the 

variability in maximum NDVI for forested areas is not controlled by the variability in the 

climatic drivers that were used in this study. 
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Conclusion   

This paper discussed the inter-annual variability of vegetation dynamics over Hopi tribe 

and Navajo Nation lands in the context of a changing climate and anthropogenic pressure 

during the last 22 years. This study provided key information related to the existing 

relationship between vegetation dynamics and environmental drivers in the lands of the 

Hopi tribe and Navajo Nation. The research framework based on the multi-sensor NDVI 

time series, data, and methodology adopted by this study can be useful to assess 

vegetation responses to climate variability across the world and particularly in arid and 

semi-arid areas. 

 Due to the relatively coarse spatial resolution of the data used in the study, our results 

could be improved by using finer spatial resolution. This matter is particularly related to 

the vegetation and climate datasets used in this study. For instance, the 2005 North 

American Land Cover at 250 m spatial resolution database used in this study simplified 

the landscape in the area. Across Hopi alone the landscape varies from pinon-juniper 

woodlands to barren land.  Future research should rely on: (1) developing a new 

classification of landscape across the study area, and (2) using local weather station data 

to generate the different climate variables used in this study. This approach will require 

increasing the number of weather stations in the area. 

Two annual NDVI proxy vegetation related productivity parameters were derived from 

the NDVI time series from 1989 to 2010. The spatial distribution of the inter-annual 

variability of these parameters suggested that: 



111 
 

 

1. The highest inter-annual variability of cumulative NDVI was observed at middle 

elevations where needleleaf forest is the dominant vegetation type, 

2.  For the inter-annual variability of maximum NDVI, the larger CoV values were 

observed over lower elevations and over some areas located at middle elevations. 

These areas are dominated by shrubs and grasses. This indicates that these areas 

have undergone more temporal variability over the last 22 years, 

3. It is important to note that grassland at low elevations show the highest inter-

annual variability. More variability was observed among shrublands, indicating 

that this vegetation type is more sensitive to climate variability across the area due 

to the spatial distribution of shrublands along elevation gradients.   

Based on a stepwise regression model this work identified the key environmental drivers 

of the spatial temporal patterns in vegetation productivity in the lands of the Hopi tribe 

and Navajo Nation. Potential environmental drivers, based on the confidence level of 95 

% (p < 0.05), were selected using a stepwise regression model. The results showed that 

the number of environmental variables contributing to the inter-annual variability in 

vegetation productivity varies across NDVI-related productivity measurements employed 

in this study. The spatial variation in inter-annual CoV of cumulative NDVI was better 

explained by climate drivers than by topographic drivers. Specifically, the inter-annual 

variability in spring precipitation and temperature seem to be the most significant drivers 

that correlate positively with the inter-annual variability in vegetation productivity in the 

study area. However, the inter-annual variability in summer precipitation and temperature 
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showed a decreasing relationship with the inter-annual variability in vegetation 

productivity and they showed a strong impact of vegetation productivity. It was found 

that the inter-annual variability in winter, spring and summer temperature aspect were the 

most powerful drivers in the inter-annual variability in maximum NDVI for shrubland 

areas.  Those positive correlations between the inter-annual variability in vegetation 

productivity and spring precipitation and temperature can be explained by the change in 

soil moisture levels. For example, the strong correlations between spring temperature and 

vegetation productivity in the area may relate to the local vegetation species response to 

the warmer season (spring season). This variability in spring temperature can easily effect 

the evaporative demands which basically the main key of vegetation growth in the area. 

In terms of the inter-annual variability in maximum NDVI, spring temperature and 

summer precipitation and temperature were the most forceful drivers (see table 4). This 

can be explained by the effect of those drivers on soil moisture levels that help the local 

vegetation grow. The regression model used to assess the relationship between vegetation 

dynamics and environmental drivers among vegetation types showed that spring 

precipitation was in a positive relationship with the inter-annual variability in cumulative 

and maximum NDVI for shrubland areas (see table 10). However, the inter-annual 

variability in forest didn’t show any correlation with climate drivers in the area. 

This study showed a strong interaction between vegetation productivity dynamics and 

precipitation and temperature regimes in the area, specifically along areas dominated by 

shrubland.   
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The study also shows that information related to vegetation productivity derived from 

remote sensing is useful for studying inter-annual variability of vegetation productivity in 

arid areas. The proposed framework adopted by this study was valuable in identifying the 

major forces driving the region’s vegetation cover variability. 
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Tables  

Table 1: Explanatory variables used in this study including climate drivers (dynamics 

variables) and topography drivers (static variables). 

Variable Derived variables Spatial 

resolution  

Source 

Topographical 

characteristics  

 

- Elevation**  

- Aspect ** 

- Slope** 

30 m     ASTER 

Climate data  -    Seasonal precipitation* 

-    Seasonal temperature * 

       4 km PRISM 

Vegetation types  - Vegetation communities ** 

 

250 m NALCMS 

*There are four seasons: winter (JFM), spring (AMJ), summer (JOS).  

** Static variables.
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Table 2: Number of dynamic and static variables included to model of the inter-

annual variation in response variables. For instance, the inter-seasonal of w winter, 

spring and summer of precipitation and temperature were present in the regression 

mode for the inter-annual variability of cumulative NDVI. 

Explanatory Variables 

 

Response Variables 

Dynamic 

Variables 

Static 

Variable 

Total Variables 

CoV of Cumulative NDVI 8 2 10 

CoV of Maximum  NDVI 7 3 10 
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Table 3: Statistical results obtained by the multiple linear regression models (stepwise 

regression model) for the response variable (the inter-annual variability of cumulative 

NDVI) showing the estimated error, standard error, and p-value for each explanatory 

variable as well as for the whole model results. 

Variables Estimated Coefficient Standard errors P-Value 

Spring Precipitation 0.001 0.02 1.003 e
-11

 

Spring Temperature   0.4 0.18 0.03 

Summer Precipitation -0.2 0.01 1.7e
-38 

Summer Temperature -1.25 0.01 2.56e
-09

 

Winter Temperature -0.04 0.013 0.0016 

Aspect -1.3e
-04

 9.3e
-07

 1.36e
-36

 

Elevation  -8.58e
-05

 5.47e
-06

 3.1 e
-52

 

Vegetation Types 0.001 4.82e
-04

 4.56e
-05

 

Whole Model  Intercept = 0.48 

RMSE = 0.002 

R-Square = 0.34 

P-value = 2.24e
-210
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Table 4: Statistical results obtained by the multiple linear regression models (stepwise 

regression model) for the response variable (the inter-annual variability of maximum 

NDVI) showing the estimated error, standard error, and p-value for each explanatory 

variable as well as for the whole model results. 

Variables Estimated Coefficient Standard errors P-Value 

Spring Precipitation  0.08 0.02
 

0.002 

Spring Temperature  0.86 0.2 0.001 

Summer Precipitation -0.23 0.02 6.17e
-29

 

Summer Temperature -2.45 0.3 4.8e
-17

 

Winter Temperature -0.07 0.01 1.85e
-04

 

Aspect -1.35e
-04 

1.2e
-05 

1.8e
-04

 

Elevation -9.07e
-05

 7.04e
-06

 7. 9e
-37

 

Whole Model Intercept = 0.48 

RMSE = 0.06 

R-Square = 0.26 

P-value = 9.5e
-521 
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Table 5: Statistical results obtained by the multiple linear regression model (stepwise 

regression model) for the response variable (a: the inter-annual variability of 

cumulative NDVI and b: the inter-annual variability of maximum NDVI) showing the 

estimated error, standard error, and p-value for each explanatory variable as well as 

for the whole model results for grasslands. 

 

 

 

 

 

Variables Est-

Coeff 

Std.Err P-Value 

Summer 

Precip 

-0.13 0.03 8.3e
-04

 

Aspect -9.2e
-05 

2.8e
-05 

0.001 

DEM -4.68e
-05 

1.6e
-05

 0.004 

Whole 

Model  

Intercept = 0.33 

RMSE = 0.03 

R-Square = 0.14 

P-value = 9.1e
-05

 

 

Variables Est-

Coeff 

Std.Err P-Value 

Elevation -4.7e
-04

 4.4e
-05

 5.02e
-20 

Whole 

Model  

Intercept = 2 

 RMSE = 0.11 

R-Square = 0.46 

P-value = 5.02
-20

 

 

(a) (b) 
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Table 10: Statistical results obtained by the multiple linear regression model (stepwise 

regression model) for the response variable (a: the inter-annual variability of 

cumulative NDVI and b: the inter-annual variability of maximum NDVI) showing the 

estimated error, standard error, and p-value for each explanatory variable as well as 

for the whole model results for shrublands. 

 

 

          

. 

 

 

 

Variables Est-

Coeff 

Std.Err P-Value 

Spring  

Prec 

0.11 0.01 1.4e
-09

 

Summer 

Prec 

-0.2 0.016 6.9e
-35

 

Summer 

Tempe 

-0.82 0.19 2.9e
-05 

Aspect  -1.21e
-04

 1.02e
-05

 3.9e
-33

 

Elevation -7.78e
-05

 5.28e
-06

 1.4e
-46

 

Whole 

Model  

Intercept = 0.37 

                    RMSE = 0.04 

R-Square = 0.27 

                   P-value = 2.35e-138 

 

Spring 

Prec 

0.24 0.07 8e
-04

 

Spring 

Temp 

-2.9 0.96 0.002 

Summer 

Prec 

-0.16 0.05 0.005 

Summer 

Temp 

2.96 0.88 7.99
e-04 

Winter 

Temp 

-0.98 0.29 7.3
e-04 

Elevation -3.9
e-04 

2.06
e-05 

6.8e
-77 

Whole 

Model  

Intercept = 0.94 

RMSE = 0.17 

R-Square = 0.31 

                   P-value = 9.13e-162 

 

(a) (b) 
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Table 6: Statistical Results obtained by stepwise regression results from the multiple 

linear regression for the response variable (a: cumulative NDVI and b: maximum 

NDVI) showing the estimated error, standard error, and p-value for each explanatory 

variable as well as for the whole model results for shrublands 

 

 

 

 

 

 

 

Variables Est-

Coeff 

Std.Err P-Value 

Summer 

Temp 

-0.6 0.26 0.02 

Aspect -1.32
e-04 

3e
-05 

3.04
e-05 

Elevation 7.6e
-05

 1.7e
-05

 3.1e
-05 

Whole 

Model  

Intercept = 0.32 

  RMSE = 0.036 

R-Square = 0.27 

P-value = 2.691e
-09 

 

Variables Est-

Coeff 

Std.Err P-Value 

Elevation -2.2e
-04

 6.31e
-05

 4.14e
-4 

Whole 

Model  

Intercept = 1.54 

  RMSE = 0.13 

R-Square = 0.09 

  P-value = 4.14e
-04

 

 

(a) (b) 
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Figures  

Figure 1:  Map of study area showing the distribution of weather station sites 
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Figure 3: Map of elevation gradients across the area at 5.6 km. 
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Figure 4: Map of the dominant vegetation types (2005 North American Land Cover at 

250 m spatial resolution database). 
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Figure 5:  Conceptual model showing different components of vegetation productivity 

used in this study. Two vegetation productivity metrics are computed from March to 

October for each year. The maximum annual and the annual cumulative were 

extracted for each pixel. The annual cumulative NDVI (∑NDVI) was computed by 

integrating the area under the curve for each pixel 
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Figure 6: The spatial distribution of the inter-annual CoV cumulative NDVI 
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Figure 7: The spatial distribution of inter-annual CoV of maximum annual NDVI 
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Figure 8: Box plot illustrating the variation of COV of NDVI-related productivity in 

the study area. Each box shows upper and lower quartiles along with 75th and 25th 

percentiles, median. The inter-annual coefficients of variation are shown on the y-

axis. The different NDVI-related productivity is shown on the x-axis:   
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Figure 11: Box plot illustrating the variation of CoV of cumulative NDVI, (i) CoV of 

maximum NDVI, and (ii) relative NDVI  among  shrubland (A), grassland (B), and 

needleleaf forest (C). Each box shows upper and lower quartiles along with 75th and 

25th percentiles, and median. The inter-annual coefficients of variation are shown on 

the y-axis.  Cumulative distribution (i1 through i3) and maximum NDVI(ii1 through 

ii3)  of CoV of each vegetation type resulting from Kolmogorov–Smirnov test 

showing the maximum absolute difference in the cumulative probability curves which 

are scaled to be between 0 and 1. 
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Figure 15: spatial distribution of residuals resulting from the multiple regression 

models: (a) for inter-annual CoV of cumulative NDVI, (b) for inter-annual CoV of 

maximum NDVI. 
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Abstract  

Land surface phenology is an integrative science capable of addressing key questions 

about the impacts of climate change on ecosystems states and functions. Studying the 

phenology of natural or managed land in a global context requires the use of remote 

sensing to address the scale and coverage. What remains unclear is how accurate 

remote sensing based data are from the observable phenology of crops on the ground. 

Specifically, three challenges remain: (1) how to validate remote sensing-based land 

surface phenology; (2) how to compare extracted parameters with actual phenological 

field observations in light of the complex and heterogeneous nature of remote sensing 

observations; and (3) how to evaluate the overall performance of the most common 

land surface phenology algorithms. To address these questions, we propose an 

assessment of the capability of four land surface phenology algorithms, the Half -

Maximum method, Savitzky-Golay, Asymmetric Gaussian, and Double Logistic 

methods; to accurately characterize the phenology of irrigated crops at the University 

Arizona Maricopa Agriculture Center (MAC). These crops allow for adequate remote 

sensing analysis due to their spatial extent and the dynamics of their green cover (0-

100% during the growing season). For the remote sensing component, we used the 

MODIS 250m daily and16-day record of vegetation index (VI). For the validation we 

used phenological data observed in the field at MAC. Four key phenology metrics 

were compared across these data sets, Start, End, Peak date of the growing season, 

and the peak of VI value of the growing season. The aim was to characterize the 

extracted metrics and assess the performance of these algorithms. Our results suggest 

that the start and the end of the growing season derived from daily VI are earlier than 

the 16-day composite VI. We found that the Half-Maximum algorithm always detects 
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the start of growing season late compared to Gaussian, Double-Logistic, and 

Savitzky-Golay. The Savitzky-Golay estimated the start of growing season earlier 

than other algorithms (Gaussian and Logistic). The difference in terms of days can 

vary between 1 to 8 days depending on the thresholds. The results suggested that the 

Half-Maximum algorithm detects the end of growing season earlier than the Gaussian, 

Double-Logistic, and Savitzky-Golay algorithms. The Savitzky-Golay usually 

identifies the end of growing season later than any algorithms for all vegetation 

indices. The study demonstrates the fundamental role that remote sensing can play 

globally within the agriculture sector. 

Keywords: Land Surface Phenology, Vegetation Index, Crops.
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Introduction   

Monitoring and understanding land surface phenology over space and time has become a 

key indicator of the complex relationship between climate factors and vegetation 

dynamics (Heumann et al., 2007; Zhang et al., 2003; Zhao et al., 2013). Since 1950, the 

global mean temperature has been rising due to increasing greenhouse gases, such as 

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), in the atmosphere 

(IPCC, 2007). This increase in greenhouse gas concentrations is contributing to a change 

in the earth’s climate, and altering regional and local climatic and weather patterns 

(IPCC, 2007). The consequences of climate change are observed through many events, 

such as melting glaciers, more extreme weather events, and shifting seasons and biomes 

(IPCC, 2001).  The combination of climate change and global population growth 

threatens agricultural production, processing, and related services, as well as global food 

security (Atzberger, 2013; Colditz et al., 2008; Dixon, 2012). 

The current debate on global and climate change is for the most part dominated by the 

fate of natural systems due to their spatial extent, momentum, and complexity (Rohr et 

al., 2013; Tompkins et al., 2004).  Although they play a major role, cropped and managed 

lands figure very little into this debate, perhaps due to the fact that their managed state 

makes it difficult to tease out any natural from unnatural changes. However, the 

sensitivity of crop production to variability in climate is important due to the high 

percentage of cropped lands (Osborne et al., 2013; Traore et al., 2013). To this end, a key 

aspect of crop production that is expected to show immediate response to climate change 

is the crop growing season, or phenology.  Crop phenology defines the nature and 
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progress of the growing season and is an integrator of all environmental factors 

controlling crop production (Peña-Barragán et al., 2011; Shaykewich, 1995). 

Remote sensing has long played an important role in monitoring and studying agricultural 

activities due to its ability to provide necessary and reliable data on a timely basis 

(Atzberger, 2013; Espindola et al., 2013; Lloyd, 1990). Vegetation development stages, 

or phenology, depend on climate and environmental variables, such as soil moisture and 

condition, and air temperature, among others. These factors play an important role in 

plant productivity and condition, particularly in agricultural production (Atzberger, 2013; 

Iler et al., 2013; Lloyd, 1990). Understanding and predicting crop phenology based on 

crop development stages could improve crop management practices, crop growth models, 

and decision support systems (Atzberger, 2013; Boote et al., 2013; Palacios-Orueta et al., 

2012). 

Studying the phenology of natural or managed land in a global context requires the use of 

remote sensing data (Atzberger, 2013; Kerr et al., 2003).  Land surface phenology is 

presented as an integrative science capable of addressing key questions of the impacts of 

climate change on ecosystems states and functions, especially when coupled with remote 

sensing-based growing season extraction algorithms. Three fundamental challenges need 

addressing in the context of estimating land surface phenology with remote sensing 

observations: 1) how to validate remote sensing-based land surface phenology metrics; 2) 

how to compare the extracted parameters with actual field observations of phenology 
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given the heterogeneous nature of remote sensing observations; and 3) how to evaluate 

the overall performance of the most common land surface phenology algorithms. 

To address these questions, and circumvent the limitations of field-based observation of 

species phenology (plants, buds, flowers, etc.) we proposed to use cropped land to help 

characterize the performance of remote sensing-based land surface phenology algorithms.  

Cropped land provides key traits that are fundamental to this work: (1) homogeneous and 

well defined land cover with sufficient spatial coverage; (2) detailed record keeping by 

farmers and managers of the crop growing season; and (3) abundant quantitative 

information about the crop productivity, biomass, yield, water use and carbon storage. 

These characteristics may help address the earlier questions. 

The field site for this work is the University of Arizona’s Maricopa Agriculture Center, 

located northwest of Tucson, Arizona.  This center grows a wide range of irrigated crops 

like alfalfa, corn, sorghum, and cotton. These crops are typical of the area, and will 

change from 0% to 100% green cover during the growing season.  For the remote sensing 

component, we used the MODIS Terra daily and 16-day record of vegetation Index 

(NDVI, EVI, and EVI2).  Following White et al.’s (2010) intercomparison of land 

surface phenology algorithms, we extracted four growing season metrics (Start and End 

of Season, Date of growing season peak, and the growing season maximum VIs). Most of 

these metrics are simple time-related phenometrics (phenophases) that are fairly easy to 

validate and compare.  We compared these metrics with the farmers’ record of plantings, 

emergence, flowering, fruiting, and harvest dates. 
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The aim of this study was therefore to understand and characterize the accuracy of the 

remote sensing derived land surface phenology parameters and assess the performance of 

the various extraction algorithms using farm crops growing season phases.  

 Data and Methods  

a) Study Area, Remote Sensing Data, and Analysis  

The study area is the University of Arizona’s Maricopa Agriculture Center, located 

northwest of Tucson, Arizona. This center grows irrigated crops such as alfalfa, corn, 

and cotton. This center corresponds to the MODIS tile h08v05, covering the US 

southwestern region. The field observation of crop development stages were extracted 

from the Center’s  crop records. For this study, two fields were selected - F-6 and F-

38 (see Fig 1). The records kept track of the grown crops, the planting, and the 

harvesting dates. Table 1 illustrates the selected fields with the planted crops and 

planting and harvesting dates.  The selected fields were large enough to cover at least 

one homogenous pixel of 250m. This was one of the main criteria for selecting the 

fields. 

b)  Background: Growth and Development Stages of Cotton and Corn 

- Cotton Physiology 

 After introducing cotton seeds to moist soil, the cotton plant follows a general time 

frame during which the plant crosses different development stages. Under favorable 

conditions, the planted cotton seed enters the germinating or emergence phase in about 

four to nine days. After the first stage, the second stage in the cotton life cycle is the 
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seeding stage during which leaves appear in about two to four weeks from planting.  

Table 2 shows the average number days needed for each stage of the cotton plant. 

- Corn plant cycle 

The corn plant cycle varies by geographic location depending on planting dates, 

environmental factors, and locations. Many development stages occur between the 

emergence stage and the stage of physiological maturity. The length of time between 

each growth phase is strongly dependent on factors such as soil moisture, planting date, 

as well as environmental factors. The corn growth stage is divided between vegetative 

and reproductive stages. The complete vegetative phase consists of many sub-stages 

starting form emergency (VE), to nth leaf (Vn), with n referring to the number of leaves 

on the plant. Table 3 illustrates the six stages of the vegetative phase of the corn plant 

cycle. Figure 2 outlines some of the stages of the corn plant.  

c) Remote sensing data  

  Spectral vegetation indices (VIs), defined as the arithmetic ratio of two or more bands 

associated with the spectral characteristics of vegetation, are widely used to monitor 

spatial and temporal vegetation activity and structural variations in the canopy (Gitelson 

et al., 2002; Tirelli, 2013; Tucker et al., 1980; Tucker, 1979). Because they are closely 

linked to the chlorophyll content and structural characteristics of green vegetation VIs 

derived from satellite image data have become the primary source for numerous remote 

sensing  applications related to vegetation dynamics, phenology monitoring, and mapping 

land use/land cover change at different spatial and temporal scales (Atzberger, 2013; 
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Baret et al., 1991; Begue et al., 2011; Grahame et al., 2002; Li et al., 2013; Prince, 1991; 

van Leeuwen et al., 2010).  

 Vegetation indices, such as the Normalized Difference vegetation index (NDVI) and  

Enhanced Vegetation Index (EVI, Huete et al., 2002) and (EVI2, Jiang et al., 2006), 

have found wide application in  monitoring the earth's vegetation cover (Jiang et al., 

2008; Saleska et al., 2007).  NDVI is the most used index due to its simplicity and 

rationing properties that reduces noise caused by changes in sun angles, topography, 

cloud shadow, as well as atmospheric conditions (Justice et al., 1998). The Enhanced 

Vegetation Index (EVI) (Huete et al. 2002) has been proposed to reduce the influence 

of atmospheric and canopy background on the vegetation signal (Luzio et al., 2008; 

Garbulsky et al., 2013; Jiang et al., 2008). In this study, the primary VI data sources 

are the 16-day NDVI and EVI and daily NDVI from the NASA Terra Satellite’s 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The reason we 

selected those VI’s is to see how the difference in phenological metrics derived from 

the VIs by the different proposed algorithms.  Pre-processing remotely sensed data  

Cloud cover, aerosols, shadows, and viewing geometry (Bidirectional Reflectance 

Distribution Function, BRDF) have major effects on vegetation indices (Atzberger et al., 

2011; Paudel et al., 2013). In order to minimize the impact of cloud cover, atmospheric 

contaminants, and shadows on the vegetation index quality, both daily and 16-day 

composites of the MODIS vegetation index were filtered using the MODIS vegetation 

index pixel level quality assurance (QA) information.  Only pixels with MODLAND_QA 
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of 00 (observation with no cloud and no other contaminant) or 01 (observation may have 

aerosol or other issues) (Roy et al. 2002) were considered for this analysis.  To further 

eliminate poor quality data we looked at the aerosol load. Although  MODIS data is 

corrected for aerosols (Justice et al., 2002), the performance of the atmosphere correction 

algorithm depends on the aerosol quantity.  Low to average aerosol loads are corrected 

fairly easily and accurately, but at high aerosol loads or in case the algorithm cannot 

estimate the aerosol load and uses standard profiles the correction is no longer efficient 

(Vermote et al., 1997) and the data may be inaccurate.  In this study only pixels with no 

to average aerosol loads are retained, all other observation are discarded to minimize 

errors in the time series profiles. The resulting profile with missing dates was gap filled 

using a simple linear regression approach (Figure 3a and 3b).  

Extraction of Phenological Information 

The annual phenological metrics, or phenometrics, were derived from the NDVI and EVI 

time series for both daily and 16-day composites for the selected fields and years based 

on the assumption that the seasonal vegetation cycles can be defined through a regular 

pattern. The seasonal vegetation cycle can be represented by two stages: (1) the first stage 

represents the permanent background level, and (2) the second one describes the seasonal 

changes which are known as seasonal dynamics (Clerici et al., 2012; Lambin et al., 2001; 

Li et al., 2013; Mas, 1999) . This seasonal dynamics of vegetation are characterizing the 

vegetation growth, such as start and end growing season.  
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Four phenological algorithms were used in this study to assess and understand their 

differences.  This  includes the Half-Maximum Method (Coops N.C. et al., 2012; White 

et al., 1997), Savitzky-Golay, Asymmetric Gaussian, and Double logistic methods using 

the TIMESAT software (Jonsson & Eklundh, 2004) were used in this study to derive four 

phenometrics (figure 4). For the three algorithms used by the TIMESAT time-series 

analysis software, consistent NDVI thresholds for start of growing season, 20% , 30% , 

and 40%, were used to control the phenological retrieval. Lower thresholds did not work 

well and failed to indicate the start of growing season. It should be noted that the use of 

these user defined thresholds introduce a bias in the different developmental stages of the 

crops. For example, a lower threshold may show an earlier start of growing season, while 

a higher threshold may indicate a later start of the growing season. Using these 

thresholds,  three timing and greenness metrics were extracted: (1) start of growing 

season - the time for which the left edge of the curve, or VI value, has increased by 20% , 

30% or 40% of the distance between the pre−season minimum and the seasonal 

maximum; (2) the end of growing season wherein the right edge of the curve has 

decreased to the same threshold levels; (3) the date of the season’s maximum VI signal; 

and (4) the season’s maximum VI value. These phenometrics are strong and valuable 

indicators for understanding vegetation growth trends and changes in seasonality for 

different vegetation types (Baeza et al., 2010; Sala, 2000; van Leeuwen et al., 2013).  

Furthermore, timing of these phenol-metrics is an indicator of the carbon cycle strength 

and timing (Di-Bella et al., 2004; Prince.S.D., 1991).  Metrics related to greenness, such 
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as the maximum seasonal NDVI, are widely used to capture seasonal vegetation 

productivity (Jonsson & Eklundh, 2002; Sala, 2000). 

Results and Discussion  

- Extraction phenological information of Corn F6-2012 

Since the overall objective of the study is to validate satellite derived land surface 

phenology related to crop development stages, four different algorithms were tested to 

derive four phenological phases. The 2012 corn field was planted on April 18
th

 

(DOY=109 DOY) and harvested on December 13
th

 (DOY=347). The time from planting 

to emergence usually takes between 4 and 5 days. Table 4 shows the start of growing 

season derived from the different remotely sensed data using the proposed algorithms. 

The Half-Maximum algorithm indicates a start of growing season of July 1
st
 for the daily 

NDVI, July 2
nd 

for the 16-day composite EVI, and July 3
rd

 for the 16-day composite EVI. 

This suggests that the Half-Maximum algorithm detected the start of growing season at 

the16-leaf fully emerged stage. The three thresholds algorithms Gaussian, Logistic, and 

Savitzky-Golay were used with three thresholds 20%, 30%, and 40%.  With the 20% 

threshold, the daily NDVI indicates a start of growing season of June 12
th
 for Savitzky-

Golay, June 13
th
 for Gaussian, and June 15

th
 for Double-Logistic. These dates correspond 

to the 12 leaf fully emerged stage. The 16-day NDVI and EVI fell at the 12-leaf fully 

emerged stage. Figure 5 shows the start of growing season for each vegetation index with 

the thresholds used for each algorithm. It is important to note that the start of growing 
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season derived using the Savitzky-Golay algorithm showed an early start of growing 

season.  

The corn field was harvested on December 13
th
 (DOY=347). The end of growing season 

derived by each algorithm for all vegetation indices are shown in table 5. The Half-

Maximum algorithm showed an early end of growing season compared to the threshold 

algorithms. However, the Savitzky-Golay with all thresholds shows a later end of 

growing season compared to Gaussian and Logistic methods.  Figure 6 shows the 

differences between the start of growing season derived from daily NDVI and the 16-Day 

composite. The difference in days varies from one algorithm to another, from 1 to 4 days 

between Savitzky-Golay and Gaussian, and Logistic. However, the different between 

Half maximum and others can reach 20 days depending on the thresholds (see table 5) 

Table 6 shows the maximum vegetation index for corn, as well as the day of the year 

corresponding to the maximum VIs. It appears as though the Half-Max algorithm derived 

an early maximum NDVI (i.e. DOY 229 for the daily NDVI), while Gaussian shows a 

late maximum NDVI. In terms of maximum NDVI, the Savitzky-Golay algorithm 

derived larger NDVI values during the annual corn cycle. The Savitzky-Golay, Gaussian, 

and Logistic algorithms captured the day of year of the maximum VIs at the maturity 

stage across the daily and 16-day composite VI. However, the Half maximum algorithms 

captured the day of the year of the maximum VI at the dent stage.   Figure 7 shows the 

different stages captured by each vegetation index, according to the threshold percentage 

used by the various algorithms. 
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- Extraction of phenological information for cotton field F38 

Temperature and moisture play an important role in the growth of cotton plants. The 

developmental phases of cotton plants follow five main stages: (1) germination and 

emergence, (2) seedling establishment, (3) leaf area and canopy development, (4) 

flowering and boll development, and (5) maturation. Field 38 was planted with cotton on 

April 26th, 2012. Under favorable conditions, cotton plants take 4 to 9 days to emerge 

after planting. This means that the emergence stage took place around May 4th 

(DOY=125). Table 7 illustrates the start of growing season derived from each algorithm 

for the vegetation indices. The start of growing season derived from daily NDVI and 

16day-NDVI and EVI using the Half-Max algorithms was detected around July  27th and 

28th. These dates corresponded to the flower to open-boll growth stage of the cotton 

plant. 

The Savitzky-Golay extracted an earlier start of growing season across the vegetation 

indices compared to the Gaussian and Double-Logistic methods, as well as the Half-Max 

method.  For instance, the start of growing season derived from the VI time series using 

Savitzky-Golay with the threshold of 20 % was detected on June 16th for daily NDVI, on 

June 18th for daily EVI2, on June 17th for 16-day composite NDVI, and on June 24th for 

16-day composite EVI. This indicates that the start of growing season derived from 

remotely sensed data can vary from one index to another. It’s important to note that the 

20% threshold captured both square stage for daily NDVI and flower stage for 16-day 
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composite NDVI and EVI. However, the 30 and 40% thresholds across all VIs and 

algorithms were able to capture the first flower stage. 

On November 28
th
, the field was treated with Ethephon, a growth regulator for cotton 

plants. The use of Ethephon usually accelerates the opening of mature unopened cotton 

bolls and enhances defoliation which readies the plant for harvest. Table 8 illustrates the 

end of growing season extracted by the various methods considered in this work. The 

Half-Max algorithm detected the end of growing season on November 19
th

 for daily 

NDVI, on November 17
th
  for 16-day composite NDVI, and on November 16

th
 for 16-day 

composite EVI. The Savitzky-Golay detected the end of growing season late compared to 

all other methods. Figure 8 shows the comparison of the end of growing season for 

cotton.  

The Half-Max algorithm detected an early day of maximum vegetation index, which was 

September 17
th
 for daily NDVI and September 12

th
 for both 16-day composite NDVI and 

EVI2. However, among all algorithms, the Savitzky-Golay algorithm showed an early 

day of maximum VI across all vegetation indices. The Half-Max provided the larger 

maximum vegetation indices during the seasonal development of cotton. Table 10 

illustrates the day of the year with the maximum vegetation indices generated by the 

algorithms. 

Conclusions  

This work compared and validated a series of land surface phenology (LSP) extraction 

algorithms.  Our results indicate that these remote sensing based metrics, derived from 
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the different vegetation indices and algorithms, produce results that are quite different 

from the actual biological phenophases for the two crops used in this study. The 

algorithms evaluated here are widely used across different vegetation types from the local 

to global scale, yet the observed differences point to some serious issues that must be 

considered before data derived from these algorithms are used.  

Validation of remote sensing land surface phenology is fundamental to research and 

proper applications, particularly for global scale biosphere atmosphere interaction 

studies. Incorporating field observations of crop development stages with satellite-

derived land surface phenology allowed us to understand and characterize the 

performance of the considered algorithms. 

Using the MODIS 16-day and daily NDVI and EVI data records we compared land 

surface phenology metrics extracted by four different algorithms using two crops. The 

results suggest: 

- The Half-Maximum algorithm always detects the start of growing season late 

compared to Gaussian, Double-Logistic, and Savitzky-Golay, especially when 

using a threshold of 20 %;  

- The Savitzky-Golay estimated the start of growing season earlier than other 

algorithms (Gaussian and Logistic). The difference in terms of days can vary 

between 1 to 8 days depending on the thresholds This is valid across all 

vegetation indices;  
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- The Half-Maximum algorithm detects the end of growing season earlier than the 

Gaussian, Double-Logistic, and Savitzky-Golay algorithms. The Savitzky-Golay 

usually identifies the end of growing season later than the other algorithms for all 

vegetation indices; 

- The day of year which corresponds to the maximum seasonal VI was detected by 

Half maximum algorithms earlier than the other algorithms; 

- The Gaussian and logistic algorithms seem to underestimate the maximum VI 

across both crops used in this study. This can be related to noise in the VI time 

series. However, The Half-Maximum and Savitzky-Golay  are less sensitive to 

noise in the VI time series and provide a reasonable VI maximum values;  

- Results suggest that the start and the end of growing season derived from daily VI 

are earlier than the 16-day composite VI.  

The results also showed that the proposed thresholds used by the algorithms to detect the 

start of growing season were not able to detect the emergence stage of corn and cotton 

(see Fig 5). However, the 20 % threshold was able to detect the 12-leaf fully emerged 

phase of corn, the 30 % threshold captured the 14-leaf fully emerged stage, the half 

maximum and the 40 % threshold detected the 16-leaf fully emerged phases of corn e 

(see Fig 5).  
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With potential to aid decision-making in agriculture, satellite-derived land surface 

phenology can provide key information about crop sensitivity (growing season 

temporality and productivity) to ongoing global climate change.  
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Tables 

 

Table 1: Crop types and Date of planting and harvesting for each selected field. 

 

Field-6 

Year Crops Planting Harvesting 

2012 Corn April 18
th

  December 13
th
    

Field-38 

Year Crops    Planting Harvesting 

2012 Cotton April 26
th

  October 15
th
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Table 2: Average number of days needed for each growth stage of the cotton plant 

cycle. The Cotton Foundation: http://www.cotton.org/tech/ace/growth-and-

development.cfm.) 

Growth Stage               Days  

Planting to Emergence  4   to  9 

Emergence to First Square  27 to38 

Square to Flower  20 to 25 

Planting to First flower 60 to 70 

Flower to Open Boll 45 to 65 

Planting to Harvesting  130 to 160 

 

http://www.cotton.org/tech/ace/growth-and-development.cfm
http://www.cotton.org/tech/ace/growth-and-development.cfm
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Table 3: Average number of days considered for each phase of the corn plant. Source: 

How a Corn Plant Develops. Special Report No. 48. Iowa State University of Science 

and Technology, Cooperative Extension Service, Ames, Iowa. Reprinted 2/1996. 

 

Vegetative Stages Reproductive Stages 

Stages Approximate days 

after planting 

Stages Approximate days 

after planting 

VE Emergence  6-10 R1 Silking  60-65 

V1 First leaf 11-17 R2 Blister 66 – 74 

V2 Second leaf 18-21 R3 Milk 76 – 86 

V3 Third leaf 21-25 R4 Dough 84– 88 

V4 fourth leaf 25-29 R5 Dent 90 – 100 

V5 fifth leaf  29-33 R6 Maturity 105 – 120 

V12-V17 46-60   
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Table 4: Day of year corresponding to planting and start of growing season dates, 

defined by algorithm for corn field F6 in 2012  

Vegetation 

indices 

Planting   Threshold Gaussian Logistic Savitzky-

Golay 

 H-

Max 

 

Daily 

NDVI 

109 20% 165 167 164 183 

109 30% 173 179 173 183 

109 40% 180 184 179 183 

 

16-Day 

NDVI 

109 20% 168 178 166 185 

109 30% 178 183 175 185 

109 40% 184 188 183 185 

 

16-Day 

EVI 

109 20% 164 166 162 184 

109 30% 177 177 168 184 

109 40% 183 184 180 184 
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Table 5: Day of year corresponding to the date of harvesting and the date of start of 

growing season, defined by each algorithm for corn field F6 in 2012 

Vegetation 

indices 

Harvesting  Threshold Gaussia

n 

Logistic Savitzky-

Golay 

 H- 

Max 

Daily NDVI 347 20% 337 338 339 310 

347 30% 325 323 326 310 

347 40% 315 311 316 310 

16-Day 

NDVI 

347 20% 351 352 355 326 

347 30% 337 337 339 326 

347 40% 326 326 327 326 

16-Day EVI 347 20% 349 348 351 325 

347 30% 336 336 340 325 

347 40% 325 326 328 325 
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Table 6: Day of year corresponding to the date of maximum productivity and the 

maximum value of VI (seasonal cumulative of VI) for corn field F6 in 2012  

 Daily NDVI 16-Day NDVI 16-Day EVI2 

 DOP MAX  DOP MAX  DOP MAX 

Gaussian 243 3555 245 3537 250 2667 

Logistic 239 3562 245 3553 249 2687 

Savitzky-Golay 230 3764 243 3684 248 2726 

Hmax 229 3797 208 3545 208 2674 
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Table 7: Day of year corresponding to the date of planting and start of growing season 

defined by each algorithm for cotton field in 2012 

 

 

 

 

 

Vegetation 

indices 

Planting   Threshold Gaussian Logistic Savitzky-

Golay 

 H-

Max 

 

Daily NDVI 

117 20% 164 170 168 210 

117 30% 182 183 175 210 

117 40% 194 194 210 210 

 

Daily EVI2 

117 20% 166 167 170 210 

117  30% 180 180 182 210 

117 40% 191 193 212 210 

 

16-Day EVI 

117 20% 186 196 176  211 

117 30% 199 207 188 211 

117 40% 210 215 198 2011 
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Table 8: Day of year corresponding to the date of harvest and the end of growing 

season, defined by each algorithm for cotton field F38 in 2012 

Vegetation 

indices 

Ethephon  Threshold Gaussian Logistic Savitzky

-Golay 

 H-

Max 

Daily 

NDVI 

333 20% 347 342 348 324 

333 30% 338 334 336 234 

333 40% 330 327 335 324 

16-Day 

NDVI 

333 20% 348 346 358 322 

333 30% 341 339 349 322 

333 40% 335 333 341 322 

16-Day 

EVI 

333 20% 342 344 347 321 

333 30% 333 334 339 321 

333 40% 327 328 330 321 
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Table 9: Day of year corresponding to the date of planting and start of growing season 

defined by each algorithm for cotton field F38 in 2012. 

 Daily NDVI 16-Day NDVI 16-Day EVI 

 DOP MAX  DOP MAX  DOP MAX 

Gaussian 266 6265 281 6759 275 6613 

Logistic 270 6347 284 7098 276 6643 

Savitzky-Golay 265 7219 277 6904 275 6674 

Hmax 261 7030 256 7230 256 6845 
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Figures 

 

Figure 1: Study area with selected fields at Maricopa Agricultural Center 
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Figure 2: Corn Growth Stage Development. Source: University of Illinois Extension:  

http://weedsoft.unl.edu/documents/growthstagesmodule/corn/corn.htm# 
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Figure 3: Daily NDVI and EVI2 extract for a single pixel in the study area. (b) 16-day 

composite NDVI and EVI.  
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Figure 4:  Conceptual model showing seasonal curve of crops outlining the 

phenological phases generated by Half-Maximum and by multiple thresholds, 

20%, 30%, and 40%. 
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Figure 5: Corn development stages captured by each vegetation index using the 

Savitzky-Golay algorithm under multiple thresholds. 
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Figure 6: End of growing season by vegetation index, according to threshold 

percentage for corn field F6 in 2012. (A) for threshold of 20%, (B) for threshold of 

30%, (C) for threshold of 40%. 
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Figure 7: Day of year for maximum VI and corresponding growth stages for corn field 

in 2012.  

 

 

 

 

 

 

 

 

 

 

 

      109                                                                    222      229     238          258  
 

R4        R5          R6 

 Hmax 

And  

EVI2 

SG, DL, 

and G 

 SG= Savitzky-Golay  

DL=Double Logistic 

G= Gaussian  

Hmax= Half Maximum  

 

Stages Approximation days 

after planting 

R1 Silking 60-65  

R2 Blister  66 – 74 

R3 Milk 76 – 86 

R4 Dough 84– 88 

R5 Dent 90 – 100 

R6 Maturity 105 – 120 

 

 

 

R4: Dough stage : 70% kernel moisture. Kernels 
have reached  half of their mature dry weight. 

R5: Dent stage: 55% kernel moisture. Kernel weight 
may be reduced by stress. 

R6: Physiological maturity: Kernels are at 

maximum dry weight, and a  black layer has 
formed.  

Source: How a Corn Plant Develops. Special Report 

No. 48. Iowa State University of Science and 

Technology,Cooperative Extension Servce, Ames, 
Iowa. Reprinted 2/1996. 

 

 
Planting                                                                 DOY                                   
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Figure 8: End of growing season by VI, according to threshold percentage for cotton 

field F38 in 2012. 

 


