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ABSTRACT

The size distribution of main-belt of asteroids is determined primarily by collisional
processes. Large asteroids break up and form smaller asteroids in a collisional cas-
cade, with the outcome controlled by the strength-vs.-size relationship for asteroids.
We develop an analytical model that incorporates size-dependent strength and is

able to reproduce the general features of the main-belt size distribution.

In addition to collisional processes, the non-collisional removal of aster-
oids from the main belt (and their insertion into the near-Earth asteroid (NEA)
population) is critical, and involves several effects: Strong resonances increase the
orbital eccentricity of asteroids and cause them to enter the inner planet region;
Chaotic diffusion by numerous weak resonances causes a slow leak of asteroids into
the Mars- and Earth-crossing populations; And the Yarkovsky effect, a radiation
force on asteroids, is the primary process that drives asteroids into these resonant
escape routes. Yarkovsky drift is size-dependent and can potentially modify the
main-belt size distribution. The NEA size distribution is primarily determined by
its source, the main belt population, and by the size-dependent processes that de-
liver bodies from the main belt. All of these processes are simulated in a numerical
collisional evolution model that incorporates removal by non-collisional processes.
This model yields the strength-vs.-size relationship for main-belt asteroids and the
non-collisional removal rates from the main belt required for consistency with the ob-
served main-belt and NEA size distributions. Our results are consistent with other
estimates of strength and removal rates, and fit a wide range of constraints, such
as the number of observed asteroid families, the preserved basaltic crust of Vesta,

the cosmic ray exposure ages of meteorites, and the observed cratering records on



asteroids.

Finally, our analytical and numerical models are applied to the collisional
evolution of the trans-Neptunian objects (TNOs). We show that the TNO popula-
tion likely started with a shallow initial size distribution, and that bodies 22 10 km
in diameter are likely not in a collisional steady state. In addition, we show that the
population of bodies in the TNO region below the size range of recent observational
surveys is likely large enough to explain the observed numbers of Jupiter-family

comets.
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CHAPTER 1

Introduction

The work of Opik (1951) and Piotrowski (1952, 1953) showed that main-belt as-
teroids collide with one another at velocities of ~ 5 km/s, and that these collisions
occur frequently over geologic time. Since those early works, the evolution of the as-
teroid size distribution due to such collisions has been considered by many authors.
The theoretical models of Dohnanyi (1969), Greenberg and Nolan (1989), Williams
and Wetherill (1994), and Tanaka et al. (1996) all showed that for a population of
self-similar colliding bodies (all bodies have the same collisional response parame-
ters, such as strength per unit mass), the steady-state is a differential power-law

size distribution

AN = BD™PdD (1.1)

where D is the diameter, dN is the incremental number of bodies in the size range
[D, D+ dD], B is a constant, and the power law index p = 3.5, independent of the
details of the collisional physics. See Appendix A for how the differential size dis-
tribution is related to other commonly used representations of the size distribution,

such as the cumulative number distribution and the log-incremental distribution.

Ag theoretical understanding of the evolution of the main-belt size dis-
tribution has improved, so has our knowledge of the actual population from ob-
servational studies. Extensive survey programs such as Spacewatch (Jedicke and
Metcalfe, 1998), the Sloan Digital Sky Survey (SDSS) (Ivezi¢ et al., 2001), and the
Subaru Sub-km Main Belt Asteroid Survey (SMBAS) (Yoshida et al., 2003), with
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appropriate corrections for observational biases, give estimates of the main-belt size

distribution down to diameters as small as ~ 500 m.

The main-belt size distribution differs significantly from the single power
law predicted by earlier theories, and is in fact ‘wavy’ with an average power law
index p less than the classical value of 3.5. This disagreement with theory is due pri-
marily to the fact that, as we discuss in Chapter 2, contrary to earlier assumptions,
the strength of an asteroid does depend on its size: For small bodies (D < 1 km),
material properties such as the flaw distribution control the strength, making them
weaker with increasing size; Larger bodies, which have significant self-gravity, be-
come stronger with increasing size due to gravitational self-compression and even if
they break up, they are effectively stronger due to the gravitational reaccumulation

of fragments.

Size-dependent strength is accounted for in the analytical model of O'Brien
and Greenberg (2003) (also Chapter 3 of this dissertation), as well as in numerical
collisional evolution models (Durda, 1993; Davis et al., 1994; Durda and Dermott,
1997; Durda et al., 1998; Marzari et al., 1999). In general, the power-law index p
of the population is expected to be > 3.5 when strength decreases with increasing
size and < 3.5 when strength increases with size. Therefore, on a log-log plot, the
small-body portion of the size-distribution, for which material properties dominate
the strength, should be steeper than the large-body part, where gravity dominates.
In addition, these researchers found that the transition between these two different
regimes creates ‘waves’ that propagate through the large body size distribution.
For a given set of size-dependent strength parameters for asteroids, collisions can
‘sculpt’ the main-belt size distribution. Conversely, given knowledge of the main-
belt size distribution from surveys such as Spacewatch, the Sloan Digital Sky Survey
(SDSS), and the Subaru Sub-km Main Belt Asteroid Survey (SMBAS), we are able

to place constraints on the strength law for asteroids.
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Collisions are not the only process that aflects the main-belt size distri-
bution. Numerous dynamical mechanisms (described in detail in Chapter 4) can
influence it as well: Orbital resonances between asteroids and the planets (primar-
ily Jupiter, Saturn, and Mars) provide ‘escape routes’ from the main belt; Also,
the Yarkovsky effect, a radiation force, provides semi-major-axis mobility to aster-
oids that can sweep them into these resonances and thus remove them from the
main belt. The Yarkovsky effect is size-dependent, and can therefore affect the size

distribution of the main belt.

Because of this size dependence, the shape of the main belt size distribu-
tion can be changed. Moreover, the bodies leaving the main belt through resonances
enter the near-Earth asteroid (NEA) population. Indeed, the size distribution of
NEAs is determined by the main-belt population from which they came and the
size-dependent dynamical processes that helped deliver them. Thus, observational
estimates of the NEA population from surveys such as Spacewatch and the JPL
NEAT survey (Rabinowitz et al., 2000) and the MIT Lincoln Lab LINEAR survey
(Stuart, 2001; Harris, 2002) serve as a constraint on the dynamical transport mech-
anisms between the main belt and NEAs, as well as a constraint on properties of

the main-belt population itself.

A comprehensive model of main belt and NEA evolution must treat both
collisional and dynamical processes. Without collisional evolution in the main belt,
asteroid sizes depleted by dynamical mechanisms would never be replenished. Both
the main belt and NEA populations would then have severe gaps in their size
distributions. Likewise, without dynamical mechanisms operating, there would be
no NEA population. With both processes acting coevally, the NEA population
is sustained by the input of material from the main belt and the bodies removed
from the main belt are partially replenished by fresh collisional fragments (thus

preventing a runaway depletion).
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There are 6 major observational constraints that must be satishied by ¢
comprehensive collisional and dynamical evolution model: It must reproduce (1)
the main belt and (2) the NEA size distributions; (3) collisional lifetimes of meter-
scale bodies must be consistent with the cosmic ray exposure (CRE) ages of stony
meteorites; (4) the number of collisional disruption events involving bodies on the
order of 200 kin or larger must be consistent with the number of currently observ-
able asteroid families; (5) the level of collisional intensity must be low enough that
the basaltic crust of Vesta is preserved; And (6) the population of km-scale and
smaller bodies must he consistent with the observed cratering records on Gaspra,
Ida, Mathilde, and Eros. Such a model must also be consistent with independent
estimates of asteroid strength in the literature, and must be consistent with dy-
namical models of the delivery of NEAs. No previous single model has attempted

to reconcile all of these constraints.

In Chapter 2 we discuss the observational constraints just described, and
discuss asteroid strength in terms of appropriate definitions, parameterizations, and
theoretical and experimental constraints. In Chapter 3 we develop the first ana-
lytical collisional evolution model that incorporates size-dependent strength. That
model is able to reproduce the general features of the main-belt size distribution
(constraint 1), such as the transition in slope between small and large bodies and

the development of a wave due to that transition.

Chapter 4 provides a review the dynamics involved in the transport of
material between the main belt and NEA population, and identifies the results of
previous dynamical studies that we will incorporate into our numerical model. In
Chapter 5, we give a review of the Yarkovsky effect and derive an approximate
relation for the removal rate from the main belt as a function of size. In Chapter 6
we develop a numerical model to treat the simultancous collisional and dynamical
evolution of the main belt and NEAs. We present the strength law and dynamical

parameters that best fit the constraints 1-5, and show that our results ave consistent
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with the estimates of asteroid strength by other authors and the dynamical results
presented in Chapters 4 and 5. Finally, in Chapter 7 we show that the best-fit
main-belt population presented in Chapter 6 is consistent with the final constraint,

the cratering records observed on asteroids.

A natural application of the analytical and numerical tools that we have
developed for studying asteroids is to model the collisional evolution of the trans-
Neptunian object (TNO) population, which, like the asteroid belt, is a population
that evolves under the influence of mutual collisions. The population of TNOs
has recently been estimated, from an HST survey, down to a diameter of ~ 10
km (Bernstein et al., 2003). In Chapter 8, we use our analytical and numerical
models to help constrain the evolutionary history of the TNOs, and to infer what
the population of TNOs below ~ 10 km may be. Our results can potentially explain
the discrepancy, noted by Bernstein et al. (2003), between observational estimates
of the TNO population and dynamical models of the delivery of Jupiter-family

comets,
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CHAPTER 2

Background

This chapter consists of two sections. In the first section, we present the six pri-
mary observational constraints on the collisional and dynamical evolution of the
asteroid belt., In the second section, we present the different definitions of aster-
oid strength in terms of appropriate definitions, parameterizations, and theoretical
and experimental constraints, and we summarize published estimates of asteroid

strength.

2.1 Observational Constraints

2.1.1 Main-Belt Size Distribution

The population of main-belt asteroids is ‘observationally’ complete to ~ 30 km
in diameter. For smaller asteroids, the Spacewatch survey (Jedicke and Metcalfe,
1998) provides a good estimate of the population down to a few km. The observed
magnitudes of these asteroids can be converted into diameters using albedos derived
from IRAS observations (which are available as a function of size and position in the
main belt), as discussed by Durda and Dermott (1997, 1998). We use their values
for the size distribution of asteroids larger than ~ 3 km in diameter (D. Durda,
private communication). Two recent observational surveys allow us to extrapolate
this population down to smaller sizes. The Sloan Digital Sky Survey (Ivezié¢ et al.,
2001) finds a power-law index p = 2.3 £ 0.05 (1.3 4 0.05 curoulative) for the size
distribution of asteroids between ~ 400 m and 5 km in diameter, but estimates about

a factor of two fewer small bodies than the Spacewatch survey at similar sizes. This
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discrepancy is likely due to a normalization error resulting from the much smaller
section of sky searched by the SDSS (R. Jedicke, private communication). Here
we adopt the slope found by the SDSS, but normalize the numbers by a constant
factor to fit the Spacewatch results at 3-5 km. In this way we extend the estimate of
the main-belt size distribution down to sub-km sizes. The Subarau Sub-km Main-
Belt Asteroid Survey (SMBAS) (Yoshida et al., 2003) found a power-law index
p = 2.19:40.02 for asteroids in the 500 m - 1 km diameter range, which is very close
to the SDSS estimate in that size range, and can also be used to extrapolate the
Spacewatch estimate down to sub-km sizes. A plot showing all of these estimates

of the main belt size distribution is shown in Fig. 2.1.

2.1.2 NEA Size Distribution

The population of near-Earth asteroids (defined as asteroids with perihelia ¢ < 1.3
AU and aphelia ¢ > 0.983 AU (Rabinowitz et al., 1994)) has been estimated by sev-
eral surveys. Converting the results of these surveys into diameters is difficult since
independent determinations of NEA albedos are not as extensive as the main-belt
IRAS observations. Moreover, those albedos that have been determined (generally
by ground-based IR observations) have a much wider range of values than those of
main-belt asteroids (Delbé et al., 2003). Hence, we describe the NEA size distribu-
tion in terms of the absolute magnitude H rather than diameter D. H is defined
as the visual magnitude an object would have if it were 1 AU from the Sun and
observed at a distance of 1 AU at a phase angle of zero. If the visual geometric

albedo py is known, the diameter (in kilometers) can be found from

1347

D = e L) 2.1
i 1)
(see Bowell et al. (1989), Eq. A6). For an albedo py = 0.11, H = 18 corresponds to a

diameter of approximately 1 km. Assuming a constant albedo, as the H-magnitude
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Figure 2.1: Observational estimates of the main belt size distribution. The solid
line is the population of observed asteroids, and open circles are from Spacewatch
main-belt observations (Jedicke and Metcalfe, 1998). These data, converted to
diameters, were provided by D. Durda. The triangles are an extrapolation based on
the Sloan Digital Sky Survey (Ivezié¢ et al., 2001), and the upside-down triangles are
an extrapolation base on the Subaru Sub-km Main Belt Asteroid Survey (Yoshida
et al., 2003).
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of a body increases, its diameter decreases.

Direct observations yield population statistics that are reasonably complete
up to about H = 15 (we use the JPL DASTCOM database!). Using Spacewatch
data along with data from JPL’s Near Earth Asteroid Tracking (NEAT) program,
Rabinowitz et al. {2000) estimnated the NEA H-magnitude distribution down to an
H magnitude of 30 (4 m in diameter for an albedo py=0.11). Based on MIT"s Lin-
coln Lab’s LINEAR survey, Stuart (2001) estimated the H-magnitude distribution
of NEAs down to H == 22.5. Harris (2002), using the same dataset but a different
technique to correct for observational biases, extended the NEA estimate down to
H = 25.5 (the actual data are reported in Brown et al. (2002)). The estimates of

the NEA H-distribution based on these observational surveys are shown in Fig. 2.2.

Werner et al. (2002) used the lunar cratering record to derive the impacting
population on the lunar surface (i.e. the NEAs). Their results give an NEA popu-
lation in terms of diameter, as opposed to the absolute magnitudes obtained from
observational data. Figure 2.3 shows the estimates obtained from lunar craters con-
verted to absolute magnitudes using albedos py of 0.11 and 0.40. The low-albedo
curve best fits the larger (small H) NEAs and the high-albedo curve best fits the

smaller NEAs.

2.1.3 Meteorite Cosmic Ray Exposure Ages

Another important observable quantity is the cosmic-ray exposure (CRE) age dis-
tribution of meteorites. CRE ages give the length of time a body has been exposed
in space as a meter-scale object or near the surface of a larger body. Material in
the interior of an asteroid or on the surface of the Earth is not exposed to cosmic
rays. Thus, CRE ages tell us the time between when a meteoroid was liberated from

its parent body and when it landed on Earth. The most common meteorites, the

Uhttp:/ /ssd.jpl.uasa.gov/sb.elem. html
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Figure 2.2: Observational estimates of the NEA size distribution. The solid line is
the cataloged population of NEAs from the JPL DASTCOM database. Squares and
triangles are the Rabinowitz et al. (2000) estimate using Spacewatch and NEAT
data. Diamonds are the Stuart (2001) estimate using LINEAR data, and pentagons
are the Harris (2002) extension of that estimate, published in Brown et al. (2002).
Assuming a constant albedo, as the H-magnitude of a body increases, its diameter

decreases.
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Figure 2.3: Estimate of the NEA size distribution from lunar cratering data
(Werner et al., 2002) superimposed on the observational data from Fig. 2.2. The
crater-derived data is originally in terms of diameter, and has been converted (us-
ing conversion factors from Werner et al.) to absolute magnitude H using albedos
py of 0.11 and 0.40. Assuming a constant albedo, as the H-magnitude of a body
increases, its diameter decreases. It is clear from this plot that the low-albedo curve
best fits the larger NEAs (small H) and the-high albedo curve best fits the smaller
NEAs, indicating that the albedo of NEAs is likely a function of size.
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ordinary chondrites, have CRE ages ranging from a few million years to ~ 100 Myr
with a mean age of around 20 Myr (Marti and Graf, 1992). The different subclasses
of ordinary chondrites have peaks at different ages, such as the prominent 8 Myr
peak for the H chondrites, which is possibly the result of a significant impact event.
Figure 2.4 shows the distributions of CRE ages for the different chondrite types.
Achondrites have CRE ages similar to those of ordinary chondrites (Welten et al.,
1997). Tron meteorites, on the other hand, have CRE ages on the order of 100 Myr -

1 Gyr, a factor of 10-100 larger than those of stony meteorites (Caflee et al., 1988).

Complex exposure histories, which occur when the geometry of irradiation
changes, can be found in some meteorites. Such geometry changes could occur
if & meteorite was on the surface of a larger parent body or buried at a shallow
depth within the body, was liberated by a collision, then accumulated more expo-
sure before arriving at Earth. The presence of a large number of meteorites with
complex CRE histories would indicate that the precursor bodies of meteorites were
relatively small (10 m or less in diameter), such that most of their mass was not
strongly shielded from cosmic rays. Conversely, the lack of meteorites with com-
plex CRE histories would indicate larger parent bodies. It has been estimated from
some models of meteorite delivery that a significant fraction of meteorites should
have complex exposure histories (e.g. Wetherill (1985), Vokrouhlicky and Farinella
(2000)). Complex exposure histories, however, require high precision measurements
of different isotope ratios to detect, so there is not a large number of meteorites with
positively identified complex CRE histories. Thus, we do not consider complex CRE

histories to be a significant constraint on our models.

2.1.4 Asteroid Families

It has been known for nearly a century that there are clusterings of asteroids in

orbital element space that are not random, but in fact result from the breakup of
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a large parent body (Hirayama, 1918). The instautaneous, or osculating, orbital
elements generally experience long- and short-period oscillations in their values due
to planetary perturbations, which hide family clusterings (as reviewed by Knezevié
et al. (2002)). Proper elements eliminate these oscillations, and thus are nearly
constant in time. Proper elements can be calculated from osculating elements either
through analytic theory or with a fully numerical procedure (‘synthetic’). We use
the synthetic proper elements from the database of KneZevié and Milani (2003)2.
Figures 2.5a and 2.5b show plots of the semimajor axis a vs. the eccentricity e and

vs. the inclination 4 for all of the numbered asteroids.

There are 8 asteroid families whose parent bodies were larger than 200
km in diameter (Davis et al., 1985). Several of them are immediately apparent in
Figs. 2.5a and 2.5b, and have been known since the work of Hirayama (1918). More
recently, Zappald et al. (1995) used two different statistical methods on a large
dataset of proper elements to identify smaller families. They found a total of 63
statistically significant clusterings with both methods, classifying either 30 or 32 of
them as actual families and the rest as ‘clumps,” which are statistically significant

clusterings that are less pronounced than families.

Recently, Marzari et al. (1999) developed a numerical collisional evolution
simulation that tracks the evolution of the entire main belt as well as individual
families (formed from parent bodies larger than 100 km in diameter) as they are
created. They found that the largest families (those with parent bodies larger than
200 km) would remain identifiable after 4.5 Gyr. Up to 90% of smaller families
formed over the history of the solar system, however, would no longer be distin-
guishable due to collisional erosion. While their results are dependent somewhat on
the collisional parameters they use, their general result that families formed from
the breakup of the largest parent bodies can survive for the history of the solar

systern is likely to be true for any reasonable parameter choices.

“http://hamilton.dm.unipi.it/astdys
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The existence of the 8 large asteroid families requires that, in our model,
about 8 parent bodies larger than 200 kin break up over the history of the solar sys-
tem. As the nunber of sinaller families that are currently observable depends more
sensitively on the collisional parameters used, and is much more computationally

intensive to track, do not consider the smaller families as a constraint on our model.

2.1.5 Vesta’s Basaltic Crust

The asteroid Vesta has a nearly intact crust of basaltic composition, as determined
from ground-based spectra (McCord et al., 1970), and indeed is the likely parent
body of the HED basaltic achondrite meteorites (Consolmagno and Drake, 1977;
Feierberg and Drake, 1980). Such a crust is the product of bulk compositional dif-
ferentiation within the asteroid shortly after its formation. Hence, the preservation
of this crust places a limit on the intensity of the collisions Vesta has experienced
(Davis et al., 1985). For our model to be successful, it must minimize the possibility
of the catastrophic fragmentation of Vesta-sized (500 km) bodies, since catastrophic
fragmentation, while not destroying Vesta, would likely have disrupted the surface
and mixed the crust with underlying material to a degree that would be detectable

spectroscopically.

2.1.6 Craters on Asteroids

A final constraint on our model comes from spacecraft observations of asteroids.
Four asteroids have been observed by spacecraft—Gaspra and Ida by Galileo and
Mathilde and Eros by NEAR—and from these observations the crater population
on those asteroids can be measured. Fig. 2.6 shows the crater statistics for Gaspra
from Chapman et al. (1996) (their Table I) for smaller craters and from Greenberg
et al. (1994) for large craters; for Ida from Belton et al. (1994) (their Fig. 5b) and
Chapman et al. (1996) (their Table IT); for Mathilde from Chapman et al. (1999)
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Figure 2.6: Crater populations on asteroids observed by spacecraft. Data is from
Chapman et al. (1996) and Greenberg et al. (1994) for Gaspra, Belton et al.
(1994) and Chapman et al. (1996) for Ida, Chapman et al. (1999) for Mathilde,
and Veverka et al. (2000) and Chapman et al. (2002) for Eros. We plot the original
error bars when given in the original sources. For data that were published without
error bars, we estimate them based on counting statistics and information given in
the original source.
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(their Fig. 3); and for Eros from Veverka et al. (2000) (their Fig. 10) and Chapman
et al. (2002) (their Fig. 1). Cratering records on asteroids can be used to infer the
impacting population (e.g. Greenberg et al. (1994) for Gaspra and Greenberg et al.
(1996) for Ida), although given the uncertainty regarding details of impact effects,
they do not necessarily vield a unique solution. Asteroid crater records serve as a
constraint on the size distribution of asteroids at the very small end, down to about

10 m in diameter for Gaspra and Ida and less than 1 m for Eros.

2.2 Asteroid Strength

There are two generally used definitions of asteroid strength. (g is the amount of
energy per unit mass of the target required to catastrophically fragment a body,
leaving the largest fragment with half the mass of the target. Q7 is the amount
of energy needed to fragment a body and disperse half of the mass. The notation
used here was adopted at the 5th Workshop on Catastrophic Disruption in the Solar
System (1998). For bodies smaller than ~ 1 km, Qg and @} are equal, since the
gravitational binding energy is negligible. For larger targets, (0}, is larger than Qg,
since gravity can significantly impede the dispersal of fragments. In that case, Q0
is determined primarily by the mass (and hence gravitational field) of the target,
the amount of collisional energy partitioned into the collisional fragments, and the

mass-velocity relationship amongst the fragments.

Analytical scaling arguments, as well as numerical modeling and laboratory
studies, have shown that material strength parameters vary with size. The strength
(Rs and ()} of asteroids < 1 km in diameter decreases with increasing size due to
a couple of factors (Farinella et al., 1982; Housen and Holsapple, 1990; Holsapple,
1994; Ryan and Melosh, 1998; Housen and Holsapple, 1999; Benz and Asphaug,
1999). The flaw distribution within a material is conventionally given as a Weibull

distribution



nle) = k,e™, (2.2)

where € is the strain, n(e¢) is the number density of flaws that have failure strains
less than ¢, and k,, and m,, are positive, material-dependent constants (Jaeger and
Cook, 1969). Because larger bodies contain more flaws than smaller bodies, the
weakest flaw in a large body is likely to be weaker than the weakest flaw in a
smaller body. The weakest flaw dominates the fracture process, so larger bodies
are generally weaker than smaller bodies (Fujiwara, 1980). Second, since a large
projectile will apply a load to the target for a longer period of time than a smaller
projectile, larger projectiles will give those flaws activated by the impact more time
to propagate, coalesce, and cause widespread fragmentation (Housen and Holsapple,
1990). The result of these effects is that as the target size increases, the projectile
size necessary for fragmentation, as a fraction of the target size, decreases. Thus
the strength parameters Qg and Q}, decrease with increasing size. We refer to the
portion of the population where this relationship holds (diameter < 1 kin) as the
‘strength-scaled regime.” Qs and Q7, are equal in this regime, because, if a body

fragments, the gravity is too weak to keep the pieces from escaping.

For asteroids 2 1 km in diameter, gravity dominates the effective strength
of the material. Qg increases with increasing size because gravitational self-
compression makes it more difficult to fragment a target (Davis et al., 1985; Housen
and Holsapple, 1990; Housen, 1991; Ryan and Melosh, 1998). @}, increases with
increasing size because the stronger gravity of larger targets makes it more difficult
to disperse collisional fragments (Davis et al., 1985; Petit and Farinella, 1993; Hol-
sapple, 1994; Love and Ahrens, 1996; Melosh and Ryan, 1997; Benz and Asphaug,

1999). We refer to this portion of the population as the ‘gravity-scaled regime.’

In addition to varying with size of the target, Qs and (7, also vary with

the impact angle relative to the target’s surface. Most laboratory experiments
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and numerical models of catastrophic fragmentation and disruption assume head-
on impacts, but in reality, impacts occur at all possible angles, from head-on to
grazing. As shown in laboratory experiments (e.g. Fujiwara and Tsukamoto (1980))
and numerical hydrocode simulations (e.g. Benz and Asphaug (1999)), the values
of Qg and @7, when averaged over all possible impact angles are about a factor of 3
larger than their values for head-on impacts, due to less efficient coupling of energy

and momentum to the target.

Estimates of (Jg and @}, are summarized in Figs. 2.7 and 2.8, respectively.
At smaller sizes where gravity is not important, Qg and (7, are equal. At larger
sizes, both Qs and @, begin to increase with increasing size, but hy definition Q7
is larger than Qg, since it is easier to fragment a large body than it is to give those
fragments enough energy to escape from one another to infinity. Note that in these
plots, the curves for the Benz and Asphaug (1999) strength law lie above the others.
These curves have a higher effective strength because the strength is averaged over

all impact angles, whereas the other curves are all calculated for head-on impacts.

The parameter fx g is the fraction of impact energy that is partitioned into
fragment kinetic energy. A small fi implies that the fragments will be difficult to
disperse (hence a large @0},), while a large fi g implies easier dispersal and a smaller
Q3% (see, eg. Davis et al. (1989)). fxg is likely size-dependent. For example, above
~ 1 km in diameter, larger targets, which require a larger projectile/target mass
ratio for fragmentation due to increasing (s with size, will have larger fixp than
smaller targets that have a smaller threshold projectile/target mass ratio (Davis
et al., 1989; Melosh and Ryan, 1997). The opposite trend will hold for bodies
smaller than ~ 1 km in diameter, for which Qs decreases with increasing size. This
is because for small projectile/target mass ratios, energy is deposited very quickly
in a very small spot, while for large projectile/target mass ratios, the energy is
deposited in a larger volume of the target over a longer time. For large, 100 km-

scale targets, fyp can be larger than 0.1 and for small laboratory scale targets, it
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Estimates of Asteroid Strength Against Fragmentation
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Figure 2.7: Estimates of the strength of asteroids against catastrophic fragmentation
(g, defined as the amount of energy required to fragment a body such that the
largest fragment contains half of the mass of the target.
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can be less than 0.01, but the exact values are not well constrained (Davis et al.,
1989).

Some recent numerical collisional evolution models (e.g. Durda et al.
(1998)) have used ()}, as the primary input parameter, as it encapsulates a large
amount of collisional physics in a single parameter. The analytical model in Chap-
ter 3 would not be possible without the simplification brought about by using Q7.
For numerical simulations, however, that simplification is not necessary, and we
have found that using @}, as the primary input parameter is probably an over-
simplification. @, is indeed the primary factor determining the final evolved aster-
oid population, but as we will show, variations in )¢ and fxg, even if @}, remains
the same, can affect the final collisionally evolved population. In fact, the observa-
tional constraints on the character of the asteroid population in Section 2.1 cannot

be explained unless Qg and fxp vary in a specific way with size.



CHAPTER 3

Steady-State Size Distributions for Collisional Populations: Analytical

Solution with Size-Dependent Strength

This chapter was originally published in Icarus as O’Brien and Greenberg (2003).

Minor modifications have been made to the text for inclugion in this dissertation.

3.1 Introduction

To interpret the statistics of main-belt asteroids, Dohnanyi (1969) analytically mod-
eled a population of self-similar bodies (same collisional response parameters, such
as strength per unit mass) in a collisional cascade and found that the steady-state
power-law index of the differential size distribution of such a population is 3.5. That
model included debris from both cratering and catastrophic shattering events, but
concluded that the effect of cratering debris is negligible. Greenberg and Nolan
(1989) constructed a simple analytical model which includes only catastrophic frag-
mentation that also yields a steady-state population index of 3.5. The value of
the population index, 3.5, is independent of many of the parameters describing the
fragmentation process, such as the power-law index of the fragment distribution in a
catastrophic collision. Even if the fragment distribution varies with impact energy,
as is seen in laboratory and numerical experiments (i.e. more energetic collisions
on a given body give a stecper fragment distribution), the steady-state population
index remaing 3.5 (Williams and Wetherill, 1994). Tanaka et al. (1996) showed this
to be true for any fragmentation model that is independent of the size of the target.
Thus, a value of 3.5 is frequently cited as the expected steady-state power-law index

of a collisionally evolved population, such as the asteroid belt.
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This value of the population index, however, is based on the assumption
that bodies of every size have the same strength per unit mass. As described in
Chapter 2, analytical scaling arguments (Davis et al., 1985; Farinella et al., 1982,
Housen and Holsapple, 1990; Holsapple, 1994) as well as numerical modeling (Ryan
and Melosh, 1998; Love and Ahrens, 1996; Melosh and Ryan, 1997; Benz and
Asphaug, 1999) and laboratory studies (Housen and Holsapple, 1999) have shown
that material strength is in fact a size-dependent property. For bodies < 1 km in
diameter, material properties cause strength to decrease with increasing size. For
larger bodies, strength increases with size due to gravitational self-compression and

the gravitational reaccumulation of collisional fragments.

Nuinerical collisional evolution models have found that in general, the
power-law index of the population is larger than 3.5 when strength decreases with
increasing size and smaller than 3.5 when strength increases with increasing size,
hence the small body population where material properties dominate the strength
should be steeper than the large body population where gravity dominates (Durda,
1993; Davis et al., 1994; Durda and Dermott, 1997; Durda et al., 1998). In addition,
all of these researchers found that the transition between these two different regimes

creates waves that propagate through the large body size distribution.

Here we derive those results analytically. In Section 3.2, we derive an
expression for the steady-state power-law index of a collisional population in which
the material strength varies with size as a single power law and show that the
canonical 3.5 value only holds for constant strength. In Section 3.3, we show that
if the strength is described by a jointed power law (i.e. decreasing with size for
small bodies and increasing with size for large bodies), the population indices in
these two regimes are the same as would be calculated in the single-slope case——this
result implies that, in terms of the population index, the large body population has
no effect on the small body population and vice versa. We also confirm analytically

that for the jointed power law case, waves are introduced in the large end of the
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population as perturbations about a power law, and we derive simple expressions

for their amplitude and wavelength.

In Section 3.4, we compare the results of our analytical model with a numer-
ical collisional evolution model and obtain excellent agreement. Finally, in Section
3.5 we use our analytical results to determine the strength law needed to fit the
asteroid belt, and compare our results to results in the literature from collisional

modeling, analytical theory, and experiments.

3.2 Single-Slope Collisional Model

First consider the steady-state of a colliding population of bodies whose strength is

described by a single power law. The population is described by the power law

AN = BD?dD, (3.1)

where dN is the incremental number of bodies in the interval [D, D+dD]. Equation
3.1 is referred to as the differential or incremental size distribution. As there are
more small bodies than large bodies, the coefficient B should technically be negative.
However, in the context of an incremental size distribution, B is defined to be
positive to avoid physically unrealistic notion of negative numbers of bodies in a
given size interval. p is the power-law index of the population, or simply, the
‘population index.” On a log-log plot, Eq. 3.1 would plot as a line with a slope
of —p. For the Dohnanyi (1969) solution, p = 3.5. See Appendix A for how
the differential size distribution is related other commonly used representations
of the size distribution, such as the cumulative number distribution and the log-

incremental distribution.
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3.2.1 Collisional Destruction

The criterion for an impact to result in catastrophic disruption is conventionally pa-
rameterized by the the critical specific energy @07, which is defined as the minimum
collisional energy per unit mass of the target to fragment the target and disperse
half of its mass to infinity (this standard notation was adopted at the 5th Workshop
on Catastrophic Disruption in the Solar System, 1998). By definition, an impact oc-
curring with a specific energy of exactly @7, will yield a largest remaining fragment
that is a fraction f; == 0.5 of the target mass. Impacts occurring with a specific en-
ergy greater than Q% will give a smaller collisional remnant (f; < 0.5). We assume
that impacts occurring with a specific energy less than ], contribute relatively
few collisional fragments, consistent with laboratory work indicating that there is a
relatively abrupt transition between small crater formation and widespread target
damage (Fujiwara et al., 1977). As shown by Dohnanyi (1969), cratering debris has

a negligible effect on the steady-state size distribution.

Here we are concerned with defining the rate at which bodies of diameter
D are disrupted (in Section 3.2.2 we parameterize the size distribution of small
bodies produced by such an event). The diameter Dy of the smallest body that
can catastrophically disrupt a target of diameter D can be found by equating the
kinetic energy of the projectile to the total energy required for disruption (assuming

the same density of projectile and target):
J 2

1 4 Drlis s 2 4 D 31 *
5137 (»«;iw) PtV ——’é'ﬂ" (“5') P, (3.2)

where the average collision velocity V' is assumed to be independent of size. This

yields the relation
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Here we consider the case where the impact strength @}, is given by a power law:

Qp = QD% (3.4)

where (J, is a normalization coustant and s is the slope of Eq. 3.4 on a log-log plot.

Inserting Q% from Eq. 3.4 into Eq. 3.3 gives
2 WD ‘

s

l)diﬂ == Ridis D 33“7 (35)

where the constant kg, depends on fixed parameters:

1
20,\* r
kclis == ( V20> . (56)

The rate of destruction of targets of a given size range [D,D + dD] is
proportional to the number of disruptors (bodies larger than Dy;,) times the cross

sectional area of the target (o< D?) times the number of targets dN

<md(dN )) o —Nsp,,, D*AN. (3.7)
dt dest ‘

The number of disruptors (bodies greater than or equal to the minimum disruptor
size) is given by integrating over the population (Fq. 3.1) for all bodies with a
diameter equal to or larger than Dy, (given by Eq. 3.5). Because Dy, is always
much smaller than the target, and hence much smaller than the largest asteroid,
we can integrate to oo without significantly affecting the result, so long as p > 1

(i.e. there are more smaller bodies than larger bodies), which is always the case;
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[nserting Eq. 3.8 into Eq. 3.7 gives
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d{ dest
which can be written as
d(dN {N ;
( d 1) =22 (3.10)
df dest T
where 7 is the mean collisional lifetime of bodies of diameter D:
7= K DI (3.11)

and K is a constant of proportionality. Inserting 7 and dN (from Eqns. 3.11 and
3.1) into the right hand side of Eq. 3.10 gives the collisional removal rate for bodies

of diameter D:

d(dN)\ _ BDAD B, seen
( (1t ) dest - I"'D gﬁfﬂ%ﬂbﬁ:;@. - ]{' D 3 dD « (3. 12)

3.2.2 Collisional Production

The size distribution of the fragments produced by the catastrophic distuption of
a target of size D, can be described by a power law of similar form to Eq. 3.1 but
with a different power-law index ¢ (Greenberg et al., 1978; Greenberg and Nolan,

1989);



AN = CD™4dD. (3.13)

The actual size distribution of fragments may be more complex than this (eg. Petit
and Farinella (1993) and Chapter 6 of this dissertation), but Eq. 3.13 is a fairly
good approximation, especially for impacts between bodies that are small enough
that the gravitational reaccuinulation of fragments is negligible. If the diameter of
the largest fragment is b0, (where b is related to the fractional mass of the largest
)

fragment f; by b = , the normalization constant ' is found by requiring the

cumnulative number of fragments equal to or larger than b0, to be 1

JDTIAD =1, (3.14)
Jup,
which yields
C = (qg-1)(bD,)" " (3.15)

Eq. 3.15 shows that the value of the coefficient C' depends strongly on the
size of the largest fragment bD,, and hence on b. What value of b should we adopt?
Impacts with barely enough energy to disrupt the target yield b = (1/2)/3. Because
the impactor population is a steep power law, most impactors are not much larger
than the critical size Dg,, but the population of impactors does include larger
projectiles that can yield debris with much smaller b for the same target size. Thus
the effective ‘typical’ value of b for any target size is difficult to determine. Here we
simply assume that whatever the eflective value of b is, it is independent of 12,. We
will ultimately show (Section 3.2.3) that our results are independent of the actual

value of the effective b, as long as b is independent of 1J,,.

The relation between the power-law index ¢ of the fragment size distribution

and the fractional size b of the largest fragment is found by equating the volume of
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fragments to the volume of the parvent body, where the number of fragments dN of
diameter D is given by Eq. 3.13. The minimum diameter of the fragments is taken
to be zero, and the maximum diameter is bD,, which is by definition the largest

fragment produced. We assume here that ¢ is less than 4 so that the total mass of

the fragments is finite even though we integrate from D = 0. Thus,
4 (D\° /”—"v 4 (D\?
= | =] = | -] dN

:”( 3 ) Jo 37\2

b N 3
[ 4 D

- / 57 (7)«) (g — D)D) ' D™dD. (3.16)

0 +, E=4

Integration yields

bD, )y

(g — 1)(bD,)*! ( = DB, (3.17)

4—q

D, cancels out in Eq. 3.17. Solving Eq. 3.17 for ¢ gives:

B+ 4

= 3.1
q b3+1? (3 8)

just as found by Greenberg and Nolan (1989).

The production rate of fragments of a given diameter D due to the breakup
of bodies of diameter D, is given by the product of the number of fragments of
diameter D produced by the breakup of a body of diameter D, (Eq. 3.13, with C

from Eq. 3.15) and the breakup rate of bodies of size D, (Eq. 3.12)

37 . R0 alp1) .
(“,SZ;V)> = (g — DD DD 1@;5 D 4D, (3.19)
g prod

The total production rate is then given by integrating Eq. 3.19 over all D, that

can produce fragments of size D. Since the largest fragment is given by b0, the



smallest parent body capable of producing a fragment of diameter D has a diameter
of D /b, so that this is the lower limit on the integration. It can be shown (using the
relationship that will be given in Iq. 3.24) that the exponent of D, in the following
integral is less than -1 for all ¢ less than 4. Since ¢ must be less than 4 to prevent
the total fragment mass from becoming infinite, this integral will always be finite
and setting the upper integration limit to oo is essentially equivalent to setting it
to the diameter of the largest hody, as long as most bodies are much smaller than

the largest body. Thus,

ﬂgyl (q - l) fzbr)««lpwqdl) > D(I 2 By - ~.§£‘M}.i (l[)ﬂ
dt prod K 1; A
- B (1-q) prr=a+ S == 282 gy (g o)

I‘C]“*'g““a)l) M__],).

3.2.3 Collisional Steady State

In a steady state, the rate of destruction (Eq. 3.12) of bodies of diameter D matches

the rate of production (Eq. 3.20) of bodies of diameter D:

B pggp-szzy B (1~4q) pep—a+ 2B gy stesl) (3.21)
K [ﬂ q - b 3~ Zp 5(77 )]
B, K, and D cancel, leaving
(1 M Q) [)2;;»4+1£?’5~1) == 1. (322)

g+ 3~ 2p~ 2N

Rearranging Eq. 3.22 to put p on the left (except where it appears in an exponent),

and using Eq. 3.18 to eliminate ¢ gives
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The form of this equation precludes standard algebraic solution techniques for p,
which is the steady-state power-law index of the population. However, by inspection

we find that Eq. 3.23 is satisfied by

T+ 3%
T 3.24
p= s (3.24)

The population index p is independent of b, indicating that the exact nature
of the fragmentation process has little effect on the final collisionally evolved pop-
ulation. For s = 0, which corresponds to size-independent strength ()7, this gives
the classical Dohnanyi steady-state solution of p = 3.5. However, if the strength Q7},
varies with size (s # 0), p can differ significantly from the Dohnanyi steady-state
result, with p > 3.5 for s < 0 and p < 3.5 for s > 0. We show in the following

section that Eq. 3.24 is a unique solution to Eq. 3.23.

3.2.4 Proof of Uniqueness of Analytical Solution

Here we show that the relation between p and s derived in Sec. 3.2.3 is a unique
solution to Eq. 3.23, the equation for a collisional steady state. Equation 3.23 can
be rewritten by grouping the terms that do not depend on p into constants Cy

through C4

where
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The left hand side of Eq. 3.25 is a monotonically increasing function of p. Since b
(the fractional diameter of the largest fragment) is always between 0 and 1, and the
constants Cy and Cy are positive for s > —6 (where s is unlikely to be much less than
~1), the right hand side is a monotonically decreasing function of p (regardless of the
sign of € and Cy). Since a monotonically increasing function and a monotonically
decreasing function can only intersect at a single point, Eq. 3.24 is the only solution

to Eq. 3.23.

3.3 Two-Slope Collisional Model

So far we have only considered the case where a single power law describes the
strength (%, However, as described in Chapter 2, over the size range of bodies in
the asteroid belt (1000 km down to sub-meter sizes), material strength is generally
believed to be controlled by different effects, depending on the portion of the size
range. Asteroids with diameters < 1 km in diameter are in the ‘strength-scaled
regime.” Larger asteroids are in the ‘gravity-scaled regime.’” In these two different
regimes, two different power laws (Eq. 3.4) can approximate the ()}, vs. size rela-
tionship, each with its own slope 5. In the strength-scaled regime, s is negative and
in the gravity-scaled regime, s is positive. Various estimates of ¢}, are shown in

Fig. 2.8.

In this section, we address the expected size distribution for a population
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with strength @}, following one power law with slope s, (‘strength-scaled’) for bodies
smaller than diameter D,, connected to another power law with slope s, (‘gravity-

scaled’) for large bodies as shown in Fig. 3.1.

3.3.1 Gravity Scaled Portion of the Population

The gravity scaled portion of the population (D > D,) is fed entirely by collisional
fragments from larger bodies (in the gravity-scaled regime), and except for target
bodies close to the tramsition diameter D, they are destroyed by bodies within
the gravity regime as well. Because the gravity-scaled regime is approximately ‘self-
contained’ in this manner, its population index p, is simply given by the single-slope

solution (Eq. 3.24), with subscript g added to indicate the gravity-scaled regime

742
Py = W

2+

(3.27)

Since s, is positive in the gravity-scaled regime, Eq. 3.27 yiclds a population index

Pg less than 3.5 in the gravity-scaled regime

However, some targets in the gravity-scaled regime (those only slightly
larger than D;) will be destroyed by bodies in the strength-scaled regime, where
the population may not follow the same power law as in the gravity-scaled regime.
Those events will lead to perturbations to the gravity-scaled population. In Sec-
tion 3.3.3, we show that these perturbations are wavelike oscillations about a power
law with an index p, given by Eq. 3.27, and these perturbations affect neither the
destruction rate of bodies in the gravity-scaled regime nor the production rate of
bodies smaller than D; by bodies in the gravity-scaled regime. Therefore, even
though the population in the gravity-scaled regime may be perturbed from a strict
power law of index pg, it still follows the general trend of a power law of index p,

and it still behaves (in terms of collisional production and destruction) as if it were
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log D

Figure 3.1: Hypothetical @7, law for a population with different strength properties
for large and small bodies (cf. Fig. 2.8). @Q%, consists of two different power laws with
slopes s, and s, joined at the transition diameter [);. In the strength-scaled regime,
material properties control the effective strength, while in the gravity-scaled regime,
gravity dominates the effective strength through self-compression and gravitational
reaccumulation of collisional fragments.



a power-law size distribution with index p,.

3.3.2 Strength Scaled Portion of the Population

The strength-scaled portion of the population (D < D,) is broken up almost ex-
clusively by bodies within the strength-scaled regime, since the minimum sized
impactor for disruption is generally much smaller than the target body in the as-
teroid belt and there are many more small bodies than large ones. However, the
production of new bodies in the strength-scaled regime is due to the fragmentation
of larger bodies in both the strength- and gravity-scaled regimes. We assume that
strength-scaled portion of the population follows a power law with index p,, which
is likely to be different from the population index p, in the gravity-scaled regime.
Thus, we must explicitly account for the contribution of collisional fragments from
hoth regimes, Equation 3.20 for the production rate of fragments in the single-slope

case can be extended to treat a population described by 2 power laws:

; De vagp, - ssleaml)
(d(dN)) - ((] _ 1)-—1-37{[)(1"113"(1(1]) / D01+2 2ps 3 dDo
dt  / prea K, Jo

sglpg—~1)

B, . % o9 . taPe=l)
+ (¢— D)=L D-dD / DI ®TETAD,, (3.28)
I{.‘? Dy
Here we ignore the deviation from a power law among bodies with D > Dy, which as

noted in Section 3.3.1 will have a negligible effect on the production rate of bodies

with D < D;. Eq. 3.28 can be integrated and rearranged to give
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A relation between B, and B, can be derived from the fact that the numbers
g
of bodies must match at D,. Following Eq. 3.1,
B,D; " = B,D;". (3.30)

Similarly, the relation between K, and K, can be found by equating the lifetimes

(Eq. 3.11) at D,

Spgmsgtrgsg 9 Bpamsatpass=y

K,D; 3 = K.D, % . (3.31)

Combining Eqgns. 3.30 and 3.31 gives

Bg Br, . 2(;[)( wps).~A’h:iﬂ.£’L ,,Q.;'i‘i
A 2 5, 3.32
Kg K, t ( )

Substituting Eq. 3.32 into Eq. 3.29 gives
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In a steady state, the destruction rate must match the production rate. Equating
the destruction rate of bodies in the strength-scaled regime (given by Eq. 3.12, with
proper subscripts to indicate that all projectiles and targets are in the strength-
scaled regime) with the production rate from Eq. 3.33 (by bodies in both the gravity-

scaled and strength-scaled regimes) yields

f? [)3"”2 o 5-5”,,@(1%,5; 1) “gi (1 - q) ( . ()2;,34.,4.,*,. :'.’,ﬁ,(l?g,:}l D;‘;m 2]«,9,,&1&2%;&1
b B3 q+ 3 — 2p, — 2
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(1=a)b ( D ) ok
1 1

- , — - -~ (3.34)
q+3—2p, — iig—’»%—il q-+ 3~ 2pg ~ fi(-%ﬂl
Note that the left hand side and the first term on the right hand side of Eq. 3.34
have the same form as the single-slope expression (Eq. 3.21). The last term depends
on both p, and p,, and accounts for the fact that the population index p, in the
gravity-scaled regime (given by Eq. 3.27) likely differs from the population index
ps in the strength-scaled regime, and this may affect the production rate. Eq. 3.34
relates pg, the slope of the population smaller than Dy, to known quantities. The
form of Eq. 3.34 precludes a simple algebraic solution. However, note that when we

insert p, from Eq. 3.27, the last term goes to zero if

T4 %

24 %

Dy = (3.35)

Moreover, this solution makes the left hand side of Eq. 3.34 match the first term on
the right hand side, solving Eq. 3.34 entirely. Since s, is negative in the strength-
scaled regime, Eq. 3.35 yields a population index p, greater than 3.5 in the strength-

scaled regime.

This result shows that the population index in the strength-scaled regime
! 828
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(Eq. 3.35) is completely independent of the population index and the slope s, of
(0}, in the gravity-scaled regime, and indeed has the same form as the solution for
a case where strength ()}, follows a single power law (Eq. 3.24). Evidently, the
production rate of bodies in a colliding population is unaffected by a change in
power-law index of that population at larger sizes. This result can be understood
as follows: Even though the population index in the gravity-scaled regime is smaller
(i.e. the population has a shallower slope) than in the strength-scaled regime and
would therefore contain a relatively larger munber of bodies than would be predicted
if strength-scaling continued to large sizes, the increased strength of bodies in the
gravity-scaled regime exactly offsets these increased numbers, such that the total
breakup rate of bodies of a given size (and hence the fragment production rate by
bodies of a given size) is not affected. For that reason, the last term in Eq. 3.34

oes to zero and the solution for p, (Fq. 3.35) is independent of p, and s,,.
g 3 i : q g

3.3.3 Waves in the Size Distribution

The population indices of the two portions of the size distribution (larger and smaller
than D;) are independent of one another, as shown in Sections 3.3.1 and 3.3.2
respectively. In each regime, the index p depends only on the slope s of the @7,
law describing the strength for that size range. However, as noted in Section 3.3.1,
effects of the transition in strength and population index near D, introduces some
deviation from a strict power law for bodies larger than D;. In this section, we
quantify this deviation and show that it does not affect the general population
index p, in this regime, nor does it have significant effect on the population index

for smaller bodies.

In the derivation of the population index p, in the gravity-scaled regime
3 [ : ./
(Section 3.3.1), we assumed that all asteroids were disrupted by projectiles whose

numbers were described by the same power law. However, for those targets just



larger than I, (i.e. near the small end of the gravity-scaled regime), projectiles
are mostly smaller than D,, and hence are governed by the strength-scaled size
distribution. Consider the two steady-state power laws describing the population
in the strength- and gravity-scaled regimes, joined at the transition diameter D,
(Fig. 3.2a). Let Dy

diameter D;. Due to the transition from the gravity-scaled regime to the strength-

i

be the diameter of the body that can disrupt a body of

scaled regime below Dy, bodies of diameter ;. are more numerous than would be

i s

expected by assuming that all bodies are gravity scaled, leading to a configuration

that is not in a steady state.

A steady-state configuration can be achieved by ‘sliding’ the population in
the strength-scaled regime down in number, as shown in Fig. 3.2b. To determine the
magnitude of the shift, consider the production and destruction rates of bodies of
diameter D;. Since the destruction rate is proportional to the number of projectiles
(Eq. 3.7), an excess Alog N(Dy,,,) of bodies of diameter D, that are capable of de-
stroying bodies of diameter Dy causes a proportional increase in the destruction rate
of bodies of diameter D;. However, since the destruction rate is also proportional
to the number of targets (Eq. 3.7), a decrease Alog N(D;) of bodies of diameter Dy
results in a proportional decrease in the destruction rate of bodies of diameter D,.
We assume here that the production rate of bodies of diameter Dy stays constant,
despite these changes (this was noted in Section 3.3.1, and will be shown to be true
later in this section). In a steady-state, the destruction rate of bodies of diameter
D; is equal to the production rate. With the excess Alog N(Dy,,,) of projectiles
and the depletion A log N(D,) of targets, the destruction rate of bodies of diameter

D, is related to the production rate by

og ((JANDDN -y, (AAN(DY)
‘ dt dest 08 dt prod

+ Alog N(Dy, )+ Alog N(Dy). (3.36)
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Figure 3.2a: Beginning of a sequence of figure showing how waves form in the
population as a result of a change in strength properties at Dy. For a @}, law such
as that shown in Fig. 3.1, the resulting steady-state population is steeper for smaller,
strength-scaled bodies (population index ps) than for larger, gravity-scaled bodies
(population index p,). Thus, impactors capable of destroying bodies of diameter D,
are overabundant relative to what would be expected by extrapolating the gravity
regime slope. This configuration is not in a collisional steady state.
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Figure 3.2b: To counteract the overabundance of impactors, the number of bodies
of diameter D; and smaller decreases by a factor Alog N(D;) so that there are fewer
‘targets’ of diameter D, and fewer impactors of diameter Dy, .
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Figure 3.2c: The decrease in bodies of diameter [, leads to an overabundance of
bodies that can be destroyed by impactors of diameter Dy, which in turn leads to
a depletion of larger bodies and so on. Thus, a wave is formed in the large-body
population.
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From the previous equation, the production and destruction rates are equal (and the
system is in a true steady state) when Alog N(D,,,,) and Alog N(1);) are equal and
opposite, as shown in Fig. 3.2b. To caleulate the magnitude of the shift A log N (D),

we first find the logarithmic difference between D, and Dy, (using Eq. 3.3):

20)
Alog D = log Dy — log Dy, = w% log (%ﬂ , (3.37)

where @y = Q7 (D;). Using Eq. 3.37 and the difference between the two population

indices p, and p,, we calculate

1, (20, N
AlogN(D) = 106 (5% ) (0~ o). (3.59

In reality, the shift in number of bodies at D, given by Eq. 3.38 does not re-
sult in a simple discontinuity as shown in Fig. 3.2b, but instead causes perturbations
to the size distribution in the gravity-scaled regime (D > D;). The under-abundance
Alog N(Dy) of bodies of diameter Dy (a ‘valley’) leads to an overabundance of bod-
ies that impactors of diameter D, are capable of destroying (a ‘peak’), which in turn
leads to another ‘valley’ and so on. This results in a wave of amplitude |A log N(D,)|

that propagates through the large body size distribution as shown in Fig. 3.2c.

The average power-law index p, of the population in the gravity-scaled
regime will not be significantly changed by the initiation of this wave. A ‘peak’ in
the wave will have |Alog N(D,)| more bodies relative to a straight power law, but
the following valley will have |Alog N(D,)| fewer bodies than a straight power law
and so on—the wave oscillates about a power law of slope py (given by Eq. 3.27).
Likewise, the production rate of smaller bodies (D < D;) by bodies in the gravity-
scaled regime will not be significantly affected by the wave. While a ‘peak’ in the
wave may have |A log N(D;)| more target bodies than expected from the power-law

case, the bodies capable of disrupting those target bodies lie in a ‘valley’ and are



hence lower in number by a factor of |Alog N(D)|. The increase in number of
targets is offset by a decrease in the number of impactors, such that the breakup
rate and hence the fragment production rate is unchanged. The opposite is true
as well, Bodies that lie in a ‘valley’ are catastrophically disrupted by bodies at a
‘peak’. The end result is that the waviness induced in the gravity-scaled portion of

the size distribution does not change the production rate of smaller bodies.

The position of the peaks and valleys of the wave can be found from
Eqgns. 3.5 and 3.6, Equation 3.6 is written in terms of the normalization constant
Qo, which in this case is the value @}, would have at 1 m or 1 km (depending on the
units used for diameter) if it followed a single power law of slope s,. Using Eq. 3.4,
Q, can be written in terms of the more intuitive values ¢, and D, as Q, = Q. D;™
Given the diameter D, where there is a valley (such as at D,), the peak that follows

will be at the diameter D,

1
20, \ Ty . L3
P (zf/g“) " DFI DT, (3.39)

Conversely, when the diameter D, where a peak occurs is known, the diameter 1),

of the valley that follows is given by

1
20,\ T f i
D, = ( é?f) P DFI IS (3.40)

Thus, with Eqns. 3.27 and 3.35 we can find the power law indices that de-
scribe the strength- and gravity-scaled portions of the population, and with Equa-
tions 3.38, 3.39, and 3.40 we can quantify the ‘wavy’ structure that is superimposed

on the power law describing the gravity-scaled portion of the population.



60

3.4 Comparison to Numerical Results

In this section we compare our analytical results with numerical collisional evolu-
tion simulations. Our numerical model tracks a population binned in logarithmic
intervals dlog D in diameter. The number of bodies in each bin is dN. At each
timestep, the minimum disruptor diameter Dy, for bodies in each bin is caleulated
by Eq. 3.3, assuming a ()}, law and a mean collision velocity (we use V' = 5300 m/s,
from Bottke and Greenberg (1993) and Bottke et al. (1994b)), but the results are
not substantially different for values 20% larger or smaller than this). The lifetime

of bodies in each bin is calculated by

4
N(> Dais) DR,

T = (3.41)

where P, is the intrinsic collisional probability, which is approximately 3 x
1078 km™? yr for the asteroid belt (Farinella and Davis, 1992; Bottke and Green-
berg, 1993; Bottke et al., 1994b; Durda and Dermott, 1997), and N(> Dgys) is
calculated by summing over all bins equal in size to or larger than Dy, The re-
moval rate of bodies from each bin is then calculated from Eq. 3.10, and this is used
to calculate the number of bodies removed from each bin during each timestep. For
each body removed by catastrophic disruption, fragments are produced according
to the distribution given by Eqns. 3.13 and 3.15, and this is used to determine the
number of new fragments added to each bin during each timestep. Cratering debris

is neglected in this model.

We first performed a series of munerical simulations to determine the vari-
ation of population index with the slope of the scaling law @},. We use an initial
population with index 3.5 (the predicted Dohnanyi steady-state value), evolve it

in time for 4.5 Gyr with strength law slope s ranging from -1 to 2, and measure
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the final power-law index p of the population. Fig. 3.3 shows the excellent agree-
ment between our numerical results and the analytical relation given in Eq. 3.24.
We performed similar simulations with initial populations having different power-
law indices, and found that the results are essentially the same as those shown in
Fig. 3.3 (i. e. the final population index does not depend on the starting index).
Durda (1993) presented a figure similar to Fig. 3.3, derived entirely from numerical
results, for s from -0.3 to 0.3, and a slightly revised figure appeared in Durda and
Dermott (1997) in which a “second-order effect” (i.e. a somewhat nonlinear rela-
tionship between p and s) was noted. Our more extensive numerical results match
those of Durda (1993) and Durda and Dermott (1997), and our analytical results
confirm and explain their numerical results, including the second-order effects noted

in Durda and Dermott (1997).

Next, we performed a series of simulations with jointed power laws de-
scribing the strength law (0}, in order to test our analytical predictions. Fig. 3.4
shows the results of such a simulation, comparing the initial population (with a
power-law index of 3.5) and the final population 4.5 Gyr later. The curve labeled
‘Strength+Gravity Scaling’ is evolved with 2 power laws fit to the Benz and Asphaug
(1999) Q% scaling law (s, = —0.36, s, = 1.36, D, = 0.7 km, and @, = 200 J/kg) (see
Fig. 3.5), while the curve labeled ‘All Gravity Scaled’ has been evolved assuming
that even for bodies smaller than Dy, @7, follows a power law with s; == s, = 1.36.
Note the waves that appear in the large body population when there is a transi-
tion in the slope of the ()}, scaling law. The population is binned and plotted in
logarithmic intervals dlog D, so the slopes on the plot are 1 larger than the expo-
nent —p in g, 3.1. Thus, for example, the Dohnanyi steady-state power-law index
p = 3.5 would appear as a slope of —2.5 if plotted in Fig. 3.4 (the relation between
the incremental and log-incremental distributions is presented in detail in Appendix
A). When referring to our plot, we give the value of p to facilitate comparison to

our analytical predictions.
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Population Index vs. Strength Law Slope
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Figure 3.3: Comparison between our analytical relationship between the slope s
of the strength law @7, and the steady-state power-law index p of population
(Eq. 3.24), and series of numerical simulations. The analytical relationship is shown
as a solid line, and the results from numerical simulations are shown as open circles.
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4.5 Gyr Numerical Simulation
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Figure 3.4: Results of a 4.5 Gyr numerical collisional evolution simulation. The solid
line is the initial population, the long-dashed line is the final population assuming
all bodies have a gravity-scaled (%, and the short-dashed line is the final population
where small bodies have a strength-scaled @7, and large bodies have a gravity-scaled
Q7. For the latter case, the transition between the two different strength regimes
leads to ‘waves’ that propagate through the large-body population. Arrows show
the positions of the ‘peaks’ and ‘valleys’ as predicted by Eqns. 3.39 and 3.40.

}
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Strength vs. Diameter
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Figure 3.5: @}, law used in the numerical simulation presented in Fig. 3.4, consisting
of 2 power laws fit to the Benz and Asphaug (1999) law. The actual Benz and
Asphaug (1999) Q7 is plotted for comparison. The sharply joined, 2 power-law fit
is used in the simulations to make the positions of the peaks and valleys of the wave
more clear.
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The population evolved with pure gravity scaling has p, = 3.04, which is
exactly the value predicted by Eq. 3.27 for s, = —1.36. However, there is some

> 10 km in diameter due to the fact that

deviation from this slope for bodies
above ~ 10 km, the mean collisional lifetimes of bodies begin to approach or exceed
4.5 Gyr and hence the population does not have enough time to reach a steady
state. Running the simulation for longer times (20 Gyr and 100 Gyr) decreases this
deviation but does not completely eliminate it, indicating that even after 100 Gyr,
the largest bodies are not fully collisionally relaxed (i.e. not in a collisional steady

state).

The exact size below which a collisional steady state is achieved after a
given time depends on the specific strength law used. From a large number of
numerical simulations performed for the work presented in Chapter 6, a general
rule of thumb is that asteroids < 1 km in diameter reach a collisional steady state
within ~ 100 Myr, asteroids < 10 km in diameter will reach a collisional steady
state over the lifetime of the solar system (4.5 Gyr), and bodies 2 10 km in diameter
may approach, but will not fully achieve, a collisional steady state over the age of

the solar system.

For the population evolved with both strength and gravity scaling, the
index of the strength-scaled portion of the population (D < Dy) is p, = 3.66, which
is exactly the value predicted by Eq. 3.35 for s, = 0.36. The gravity-scaled portion
of the population (D > D;) is wavy, and oscillates about the population evolved
with pure gravity scaling (p, = 3.04). This example, along with other simulations
we have performed, confirms our predictions that: (1) The population index in the
strength-scaled regime is independent of the population index and @7}, law in the
gravity-scaled regime, and (2) While the gravity-scaled portion of the population is
wavy, it follows the general trend of a power law with index p, that is independent

of the population index and % law in the strength-scaled regime.
)
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The amplitude of the wave |Alog N(D,)] in the simulation is found to be
0.48, which is very close to the value of 0.50 from Eq. 3.38. The wave amplitude
decreases slightly for the following peak and valley, and there is effectively no peak
formed around 100 km because the collisional lifetime of 100 km bodies is so large
and there are few larger bodies to resupply new 100 km bodies by collisions. Arrows
on Fig. 3.4 show the positions of the peaks and valleys predicted from Eqns. 3.39
and 3.40. The predicted positions overestimate the actual positions by about 30

percent.

When we run longer numerical simulations (20 Gyr and 100 Gyr), we find

that there is still some variation in the amplitudes of the peaks and valleys (i.e. they

are not all the same as |Alog N(Dp)]). In addition, there is still some discrepancy
between the predicted positions of the peaks and valleys and the actual positions.
This is due in part to the fact that even after 100 Gyr, the largest bodies may not
be fully collisionally relaxed. In addition, numerical modeling can more accurately
simulate the collisional evolution process, uncovering second-order effects that our

analytical model does not account for.

3.5 Summary and Implications

We have analytically derived the steady-state power-law index of a collisional cas-
cade in which the material strength varies as a function of size. Earlier work had
only treated collisions that are entirely self-similar, in which every body has the
same strength per unit mass. Our results are applicable to actual collisional pop-~
ulations, such as the asteroid belt, where material strength has been shown to be

strongly size-dependent.

For the case where a single power law describes the dependence of strength
on size, we show that there is a simple analytical relation between the power-law

slope s of the ()}, law describing the strength and the steady-state power-law index
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p of the population (Eq. 3.24). For the self-similar case (s = 0), our result vields
the classical Dohnanyi result of p == 3.5, but for other values of s, the steady-state

population may have p quite different from 3.5.

bl

For the case where large (‘gravity-scaled’) and small (‘strength-scaled’) bod-
ies are controlled by different power-law expressions for (7,, we find that the steady-
state population index p, in the strength-scaled regime is independent of the steady-
state population index p, and slope s, of Q% in the gravity-scaled regime and vice
versa. The steady-state population index in both regimes can be described by the
same relation as in the single-slope case (Eq. 3.24), with p, depending only on s,
and p, depending only on s,. Thus, for a plausible @7, law with s, = —0.36 for

bodies < 700 m in diameter and s, = 1.36 for larger bodies (Benz and Asphaug,

the different population indices in the strength- and gravity-scaled regimes leads to
wavelike perturbations about a power law in the gravity-scaled regime. We have
derived simple analytical expressions for the amplitude of these waves (Eq. 3.38)
and the spacing of the peaks and valleys of the wave (Eq. 3.39 and 3.40). Our
analytical results have been tested and validated by comparison with a numerical

simulation.

Our analytical solution provides a tool for interpreting the size distribution
of the asteroid belt in order to infer its strength properties. It should be noted,
however, that effects not treated in our analytical solution could potentially alter
the size distribution of asteroids and lead to discrepancies between our predictions
and the actual strength properties of asteroids. For example, a small size cutoff in
the size distribution due to Poynting-Robertson drag and solar radiation pressure
can potentially introduce a wave in the size distribution (Durda, 1993; Campo
Bagatin et al., 1994; Durda and Dermott, 1997). Such a wave would begin in the
strength-scaled regime and could interfere constructively or destructively with the

waves generated by the transition between strength- and gravity-scaled regimes.
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The actual degree to which small particles are removed from the asteroid belt by
the Poyuting-Robertson effect and solar radiation pressure is not well known, and
detailed analysis of such effects can only be done numerically—hence these effects
are not treated here. In addition, the actual asteroid population may differ from
our analytical predictions if the size distribution of collisional fragments differs
significantly from the single power law assumed in Eq. 3.13 or depends significantly
on the size of the target. These effects are difticult to model analytically, and hence

are not treated here.

A number of recent estimates of the main belt population with D > 1 km
have been published (Jedicke and Metcalfe, 1998; Ivezi¢ et al., 2001), and cratering
records on asteroids such as Gaspra, Ida, Mathilde, and Eros (Greenberg et al.,
1994; Greenberg et al., 1996; Chapman et al., 1999; Chapman et al., 2002) can be
used to estimate the population of asteroids down to a few meters. Thus, we have
estimates of the asteroid size distribution in both the strength- and gravity-scaled

regimes.

Greenberg et al. (1994, 1996) found that the crater population on both
Gaspra and Ida was fit best by an impacting population that had a power-law
index of p = 4 below 100 m in diameter. These bodies are small enough to be
in the strength-scaled regime (Fig. 2.8). Using Eq. 3.35, we find that an index of
p = 4 for the population implies a slope of 5 = —1 for the ¢}, scaling law. This is
significantly steeper than any predictions for the strength-scaled regime shown in
Fig. 2.8, where the steepest predicted slope of the scaling law is s = —(.61, a value

for weak mortar (Ryan and Melosh, 1998).

For larger asteroids (3 < D < 30 km), Jedicke and Metcalfe (1998) find
that the population is very wavy and the population index varies significantly with
absolute magnitude. These bodies are large enough to be in the gravity-scaled

regime (Fig. 2.8). Using their Tables IV aud VI, we find that the average value of
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the population index pg is between 2.8 and 2.9, which, using Eq. 3.27, corresponds
to a slope s, between 1.9 and 2.3 for the @}, scaling law. The values of 5, we
find are consistent with the estimate of Davis et al. (1985) but somewhat steeper
than the estimates of Holsapple (1994), Love and Ahrens (1996), Melosh and Ryan
(1997) and Benz and Asphaug (1999) (see Fig. 2.8). Since the population in this
size range is so wavy, it is possible that the average p, we use would be different
if we included data for larger or smaller bodies than those treated by Jedicke and
Metealfe (1998), hence our estimate of s, could be skewed. Likewise, if the larger
bodies (those around 30 km in diameter) observed by Jedicke and Metcalte (1998)

are not in a collisional steady state, this would also affect our estimate of s,.

For the near-Earth asteroid (NEA) population, estimates are available down
to around 10 m in diameter (Rabinowitz et al., 2000). However, as we discuss in
the following chapter, the NEA size distribution is significantly influenced by size-
dependent dynamical processes during the delivery of NEAs from the main belt.
Inclusion of these dynamical processes in an analytical model is beyond the scope
of this work. In Chapter 6 we develop a numerical model to treat the simultaneous

collisional and dynamical evolution of the main belt and NEAs.

At the time this work was originally published, the size distribution of
trans-Neptunian objects (TNOs) was not well determined below about 100 km in
diameter. Recently, Bernstein et al. (2003) released the results of an HST survey
of the trans-Neptunian region that extends the size distribution of TNOs down to
approximately 10 km. That survey, and the application of this analytical model to

it, are discussed in Chapter 8.



CHAPTER 4

Dynamical Link Between the Main Belt, Meteorites and NEAs

In this chapter we review the dynamics involved in the transport of bodies between
the main-belt and NEA populations. In Section 4.1 we summarize the ‘classical’
scenario of the delivery of NEAs and meteorites and review the developments over
the past decade that have led to the ‘modern’ scenario describing the dynamical link
between NEAs, meteorites and the main belt. In section 4.2 we focus on the gimula-
tions of Bottke et al. (2000, 2002) and summarize the results from those simulations

that serve as constraints and input parameters for our numerical simulations.

4.1 Development of the ‘Modern’ Delivery Scenario

Even before the discovery of the first asteroid, Chladni and Hoppe (1794) suggested
that meteorites were of extraterrestrial origin. The similarities between NEAs and
main-belt asteroids have been known since the discovery of Eros in 1898, but there
was no known mechanism that could transfer bodies from the main belt to near-
Earth space. The fact that the Kirkwood gaps in the asteroid belt (Kirkwood,
1867) correspond to mean-motion resonances with Jupiter and the vy secular reso-
nance with Saturn corresponds to the inner boundary of the main belt (Williams,
1969: Williams and Faulkner, 1981), as shown in Figs. 2.5a and 2.5b, indicates that
material is probably being remnoved from the main belt by these resonances, but it
was unclear exactly how it was removed, and how it could possibly be transported
to near-Earth space. Until relatively recently, cormets were seen as a much more
likely source of NEAs, given that they were obviously able to reach near-Earth space

(Wetherill, 1976).



Over the last 25 years, our understanding of the link between main-
belt asteroids and near-IZarth asteroids and meteorites has progressed significantly
(see Morbidelli (1999) for a review). Wetherill (1979), reporting the work of
J. G. Williams, first showed a potential link between the main belt and NEAs.
This work showed that the 1 secular resonance with Saturn, which occurs when
the precession rate w of an asteroid’s perihelion corresponds to the precession rate
of Saturn’s perihelion, is capable of boosting an asteroid’s eccentricity to over 0.25
on timescales of a million years, allowing it to cross the orbit of Mars and be per-
turbed further into the terrestrial planet region. A few years later, Wisdom (1982,
1983) showed that the 3:1 mean-motion resonance with Jupiter could also perturb
asteroids to Mars-crossing orbits on a million year timescale. For detailed reviews
of the literature on mean-motion resonances, see Moons (1997), and for secular

resonances, see Froeschle and Morbidelli (1994).

Several authors developed models based on these results in order to try
and explain the distribution and statistics of the NEAs and the meteorites found on
Earth (Greenberg and Chapman, 1983; Wetherill, 1979; Wetherill, 1985; Wetherill,
1987; Wetherill, 1988). For a review of these models, see Greenberg and Nolan
(1989). The general idea behind these models is that asteroid collisions inject frag-
ments into a resonance that increases their eccentricities to Mars-crossing or possibly
Earth-crossing values. Subsequent encounters with terrestrial planets perturb these
fragments out of resonance and cause them to evolve through the terrestrial planet
region. The fragments ‘die’ within about 100 Myr by colliding with a terrestrial

planet or being ejected on a Jupiter-crossing orbit,

This ‘classical scenario’ changed significantly with the availability of faster
computers and the development of fast, efficient numerical integration algorithms,
such as Wisdom and Holman’s (1991) symplectic mapping algorithm, which has
been modified to treat close encounters with planets in a widely used orbit integrator

by Levison and Duncan (1994). Farinella et al. (1994), using an earlier code, showed
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that asteroids in the v and 3:1 resonances can have their eccentricities increased
to the point that they collide with the Sun on million-year timescales. Gladman
et al. (1997) studied a large number of test bodies in the v, 3:1, and 5:2 resonances
and found that they have a median dynamical lifetime’ of only a few million years.
Even the small fraction of bodies that are removed from the resonance and enter

the terrestrial planet region have a maximum dynamical lifetime of only ~ 10 Myr.

Applying the results of hundreds of numerical integrations to the problem of
meteorite delivery to Earth, Morbidelli and Gladman (1998) found that the orbital
distribution of fireballs observed by camera networks in the U.S. and Canada is
consistent with the injection of asteroids into the vg and 3:1 resonances. Their
model also predicts a PM/AM ratio for meteorite falls, which is an indicator of
how orbitally ‘mature’ the meteorites are (Greenberg and Nolan, 1989)—Dbodies
just becoming capable of colliding with the Earth will have perihelia of 1 AU and
will all hit the Earth on its trailing side (12:00 PM - 12:00 AM), while bodies that
have evolved further will have a higher chance of colliding with the Earth between
12:00 AM - 12:00 PM. The PM/AM ratio predicted by Morbidelli and Gladman
(1998) is 14% smaller than the observed value, which they argue is reasonable given

the bias towards observing meteorite falls later in the day or evening.

A significant difference between the Morbidelli and Gladman (1998) model
and observations is that the dynamical lifetimes of bodies in their model (a few
Myr) are significantly shorter than the CRE ages of meteorites (~ 20 Myr for
stones), implying that meteoroids must have spent most of their lifetimes in the main
belt before entering a resonance. This rules out the direct injection of collisional

fragments into a resonance as the primary source of meteoritic material.

The most plausible mechanism for allowing fragments to slowly drift into

'We use the term ‘dynamical lifetime’ to refer to the length of time for which a body survives
before being eliminated, generally by collision with the Sun, collision with a terrestrial planet, or
ejection from the inner solar system by an encounter with Jupiter.



73

resonances, and accumulate cosmic ray exposure along the way, is the Yarkovsky
effect. This effect was first described in a pamphlet written (and evidently lost,
since no copies remain) by the Polish/Russian engineer I. O. Yarkovsky around
1900, and developed further by subsequent authors. The Yarkovsky effect is a
force on a rotating body orbiting the Sun that is caused by a difference between
the direction of absorption of sunlight and the direction of re-emission of thermal
radiation. This force can cause a drift in semi-major axis, as well as changes in other
orbital elements. Hartmann et al. (1999) give detailed review of the Yarkovsky effect
literature and the history of its discovery, and Bottke et al. (2000) gives a good

overview of its mathematical formulation.

The ‘classical’ effect originally described by Yarkovsky is now generally
termed the ‘diurnal’ effect, and is due to the rotation of a body around its axis.
It is maximum when the body’s axis is perpendicular to its orbit (zero obliquity)
and zero when its axis is parallel to its orbit (90¢ obliguity). The diurnal effect can
cause the semimajor axis to change, with prograde rotation causing an increase and
retrograde rotation causing a decrease. Another variant of the Yarkovsky effect,
introduced much later by Rubincam (1995), is called the ‘seasonal’ effect, and is
due to the orbit of a body around the sun. It is maximum at 90° obliquity and zero
at zero obliquity, and always causes the semimajor axis to decay. In reality, these
effects are end-members of a continuum-—any real body will experience a Yarkovsky
force that is due to both rotation and revolution around the sun, and which is not

necessarily an additive combination of the diurnal and seasonal effect.

The Yarkovsky effect is size-dependent, losing effectiveness for bodies that
are 80 small that they become isothermal, or for bodies so large that they are too
massive to experience significant drift in semi-major axis. For regolith-free stony
bodies, the diurnal effect peaks around 0.1 m or smaller in diameter (depending
on the rotation rate) and the seasonal effect peaks around 10 m in diameter. The

maximum semi-major axis drift rate ¢ can be on the order of ~ 1073 —10"% AU/Myr



for both the seasonal and the diurnal effects (assuming realistic rotation rates). The
magnitude of the Yarkovsky effect depends on the thermal conductivity of asteroidal
material, such that iron bodies, with high thermal conductivities, will have smaller ¢
than stony bodies because they are legs able to sustain a thermal asymmetry. The
presence of an insulating regolith can also affect the Yarkoveky effect, generally
diminishing the seasonal effect and accentuating the diurnal effect. In Chapter 5 we
present a simple mathematical description of the Yarkovsky effect and illustrate in
more detail the size-dependence of the Yarkovsky effect, its dependence on thermal
parameters, and how it relates to the size-dependent removal rate of bodies from

the main belt.

The Yarkovsky effect was mostly forgotten after its initial discovery, until it
was reintroduced by Opik (1951) and Radzievskii (1952). Opik had seen Yarkovsky’s
pamphlet decades earlier and coined the name “Yarkovsky Effect’ in honor of its
original discoverer. 1t re-appeared again several decades later in its application to
the field of meteorite delivery with the work of Peterson (1976) and Rubincam (1995)
(as well as a general review of radiation forces in the solar system by Burns et al.
(1979)). Both Peterson and Rubincam discuss the fact that the Yarkovsky effect
is stronger for stony bodies than iron bodies, and hinted that this may explain the
much greater CRE ages of iron vs. stony meteorites-—iron meteorites are stronger
and drift more slowly in semimajor axis, such that they would be able to drift
for longer times before reaching Farth. They generally assumed, however, that
meteorites would drift all the way from the main belt to Earth, with only a small
discussion of the action of resonances. Afonso et al. (1995) first modeled the
dynamics resulting from the combined effects of resonances and the Yarkovsky effect,
and demonstrated that the Yarkovsky effect could cause meteoroids to drift to a
nearby strong resonance and be captured by it. The resonance would then be able
to boost its eccentricity to Earth-crossing values in a much shorter time than it

would take to drift the entire distance to Earth under the Yarkovsky force.
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Following these early works, there has been a significant increase in our
understanding of the Yarkovsky effect as well as its importance. Detailed analyti-
cal modeling of the Yarkovsky effect has been performed by Vokrouhlicky (1998a,
1998b, 1999), Vokrouhlicky and Farinella (1998, 1999) and Vokrouhlicky and Broz
(1999), and numerical modeling has been done by Spitale and Greenberg (2001,
2002). Recently, the Yarkovsky effect has been shown to best explain the dispersion
secn in astercid families (Bottke et al., 2001), and orbital change has been obser-
vationally detected during decade-long tracking of the near-earth asteroid Golevka

(Chesley et al., 2003).

Farinella et al. (1998b) and Farinella and Vokrouhlicky (1999) combined a
model of the semimajor axis drift rates due to the Yarkovsky effect with a collisional
simulation of the asteroid population, in which spin-axis reorientations can change
the direction of the diurnal Yarkovsky drift. They found that stony asteroids on
the order of a few meters in diameter could drift up to about 0.1 AU during their
collisional lifetime; Iron asteroids, while they drift more slowly, survive impacts
for much longer and could drift up to 1 AU during their collisional lifetime. This
offers a qualitative explanation for the long CRE ages of meteorites (teus of Myr for
stony meteorites, 10-100 times longer for irons) relative to their dynamical transport
times via resonances (only a few million years), since the Yarkovsky effect can allow
a meteoroid to drift in the main belt and accumulate cosmic ray exposure for a
significant period of time before encountering a resonance such as the vy or 3:1,
which would then quickly send it into near-Earth space. The much lower drift rates
of iron meteoroids and their larger strength allows them to drift for a longer time
and accumulate more cosmic ray exposure than stony bodies before encountering a
resonance. Using a Monte-Carlo model, Vokrouhlicky and Farinella (2000) were able
to model the meteorite delivery process more quantitatively, and found that they
could reproduce the observed CRE age distributions of chondrites. Additionally,

they noted that a wide range of asteroids, even those not close to a resonance, have
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the potential to contribute to Earth’s meteorite flux.

Bottke et al. (2000) more rigorously modeled the interaction of resonances
with the Yarkovsky effect by using a version of the Levison and Duncan (1994)
integrator that they had modified to incorporate Yarkovsky forces. They showed
that meter- to hundred-meter-diameter bodies can drift for significant distances in
the main belt under the influence of the Yarkovsky effect and can sometimes become
temporarily trapped in weak, higher-order resonances or jump between higher-order
resonances. Despite such effects, after tens of Myr most of these small asteroids end
up being trapped in a strong resonance (eg. the vg or 3:1) and delivered to near-

Earth space.

Migliorini et al. (1998) demonstrated that another route is more important
for large Earth- and Mars-crossing asteroids (5 km or larger), of which there were 10
Earth-crossers and 354 Mars-crossers known when their paper was written. Given
short dynamical lifetimes of bodies in resonances like the 14 and 3:1, they noted
that the delivery of Mars- and Earth-crossing asteroids through these routes would
require the injection of approximately 100 large bodies into those resonances per
million years to maintain the population in steady state. Since bodies this large are
unlikely to have significant Yarkovsky mobility, and collisional events large enough
to create multi-kilometer fragments and inject them into resonance are rare, such
routes did not seem viable. In addition, direct delivery through the 4 and 3:1
resonances would lead to a significantly higher ratio of Earth-crossers to Mars-

crossers than is observed, since those resonances increase the eccentricity so rapidly.

Migliorini et al. (1998) found that weaker resonances probably dominate
the delivery process for multi-kilometer asteroids. These weak, high order reso-
nances include the 3:5 and 7:12 with Mars, the 7:2 and 10:3 with Jupiter, and

three-body mean motion resonances with Jupiter and Saturn or with Mars and



Jupiter. Nesvorny and Morbidelli (1998) and Morbidelli and Nesvorny (1999) de-
scribe these types of resonances in detail, and show that there are on the order of
hundreds throughout the entire main belt. Morbidelli and Nesvorny (1999) show
that there is a relatively constant ‘diffusion background’ where essentially every as-
teroid experiences some eccentricity change, punctuated by ‘main diffusion tracks’
that correspond to stronger, more chaotic, resonances that give larger eccentricity

changes and supply the majority of the Mars-crossers.

Migliorini et al. showed through numerical integrations that such weak
resonances can cause asteroids in the inner main-belt (inwards of the 3:1 resonance
at 2.5 AU) to slowly increase in orbital eccentricity to Mars-crossing values. In their
simulations, which began with asteroids whose eccentricities were high enough to
make them near-Mars-crossers, nearly 25% of the asteroids in the inner-main belt
reach Mars-crossing eccentricities within 100 Myr. Then, encounters with Mars
cause these asteroids to wander in semimajor axis until they enter the vg and 3:1
and become Earth-crossers. Integrating a large number of Mars-crossers in the
inner- and central- (between the 3:1 resonance at 2.5 AU and the 5:2 resonance
at 2.8 AU) main belt, they find that the Mars-crossing asteroids are capable of
supplying the observed number of Earth-crossers. The median time for the largest
group of Mars-crossing objects (those below the vg resonance) to become Earth-
crossers through this route is on the order of 20 Myr, and the median dynamical
lifetime of those bodies is about 25 Myr. Most of them are ejected from the inner

solar system by Jupiter encounters or collide with the sun.

The Migliorini et al. theory quantitatively reproduces the observed numbers
of Earth- and Mars-crossing asteroids, as it allows for the injection of a much larger
amount of material into Mars- and Earth-crossing orbits than direct injection or
Yarkovsky drift into the 14 and 3:1 resonances. In addition, the Migliorini et al.
theory explains the observed ratio of Earth-crossers to Mars-crossers, since asteroids

taking this route spend a relatively long time in the Mars-crossing population before



being perturbed into Barth-crossing orbits. The material removed f{rom the weak
resonances through this route would have to be replenished somehow in order to
maintain a steady state. Migliorini et al. suggested that collisional events and/or
the Yarkovsky effect provide replenishment: Given the close spacing of the high-
order resonances throughout the main belt, small changes in semimajor axis would
be sufficient to push a new asteroid into one of these resonances. Farinella and
Vokrouhlicky (1999) noted that the Yarkovsky drift rates for multi-km objects (on
the order of 0.01 AU over their collisional lifetimes) are consistent with this picture.
In addition, Morbidelli and Nesvorny (1999) suggest that low-eccentricity bodies in
the asteroid belt, which were not included in the Migliorini et al. simulations, could
diffuse to higher eccentricities via weak resonances and resupply some of the bodies

that are removed.

4.2 The Bottke et al. Simulations

Bottke et al. (2000, 2002) performed a large number of numerical integrations of test
bodies starting in various orbits, including the 14 and 3:1 resonances, Mars-crossing
orbits, the outer main-belt (which contains numerous strong resonances like the 5:2
as well as numerous three-body resonances) and Jupiter-family comet (JFC) orbits.
From these integrations, they constructed maps of the orbital element distribution
of bodies evolving from these different source regions. They then compared these
results to the orbital and absolute magnitude distribution of NEAs observed by
Spacewatch, and working backwards they inferred the relative numbers of bodies
in the NEA population coming from each of the different source regions. The g,
intermediate-source Mars-crossing (IMC) population (Mars crossers below the vy
resonance), and 3:1 resonance are the largest sources of NEAs, with the outer main

belt and non-active JFCs being secondary but still important sources.

Bottke et al. (2000, 2002) place strong constraints on both the dynamical



removal rate of large (km-scale, or H > 18) asteroids from the main-belt, and the
dynamical lifetimes of those bodies once they enter the NEA population. Table
4.1 shows the steady-state numbers N, injection rates I into the NEA region,
and mean dynamical lifetimes {7,.,) in the NEA region for components of the NEA
population that originated in each of the primary NEA sources (from Bottke et al.
(2002) Table I11).

Dynamical Properties of NEA Source Regions

Vg IMC 3:1 OB JEC Total
Nyeo (H < 18) 360490 240440 2204£90 79412 61443 960 £ 120
I Myrh) 55418 6615 10050 570+ 120 - 790 £ 200
(Tnea) (Myr) 6.54 3.75 2.16 0.14 - -

Table 4.1: Dynamical properties of bodies coming from the different NEA source
regions studied by Bottke et al. (2002).

From Table 4.1, the total injection rate I from the main-belt sources (ev-
erything but the JFCs) into the NEA population is 790 £ 200 bodies with H < 18
per Myr (Bottke et al. (2002) did not explicitly calculate I and {re.) for the JFC
population). A simulation by Morbidelli and Vokrouhlicky (2003), which explicitly
models the injection of asteroids into the 14 and 3:1 resonances via the Yarkovsky
effect, is consistent with the injection rates I for the v and 3:1 from Bottke et al.

(2002).

In a steady state, the influx rate I from a given source region into the NEA
population is equal to the rate of dynawmical elimination of those bodies from the

NEA population, such that for a given source,
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(Bottke et al., 2002). The mean dynamical lifetime of all bodies in the NEA popu-

lation coming from main-belt sources is therefore

(ﬂ‘zf:a.)rnb == z jv:n.fm Z 1 s (42)

] mb

where the subscript ‘mb’ refers to summation over all of the main-belt sources
(everything but the JFCs). With the values in Table 4.1, (Tye0)mp i 1.14 Myr. For
all main-belt sources except the IMCs, (Tuea)mb-rarc 18 0.91 Myr, and for just the
IMCS, <7"nea>1MCv' is 3.75 I\/Iyl‘,

It is likely that (7,..) is size-dependent, as smaller bodies with larger
Yarkovsky drift rates can jump weak resonances and will be preferentially delivered
through strong resonances like the 14 and 3:1, while larger, less Yarkovsky-mobile
bodies will be more likely to come through weak resonances like those in the IMC
region. However, the OB region contains both strong and weak resonances, and is
unclear from the Bottke et al. (2002) whether or not it would have a preference for

small or large bodies.

4.3 Summary and Discussion

In the last decade, the asteroid community has vastly improved its understanding of
asteroid dynamics and the link between main-belt asteroids, NEAs, and meteorites.
The ‘classical’ scenario of collisional injection of asteroid fragments into resonances
and their subsequent 100 Myr random walk through the terrestrial planet region
due to planetary perturbations has been replaced with a new scenario involving
the complex interplay between resonances and the Yarkovsky effect. Small aster-
oids (< 1 km in diameter), drift rapidly under the action of the Yarkovsky effect,
jumping over weak resonances until they are trapped in a strong resonance like the

v or 3:1 and sent to the terrestrial planet region, where they hit a planet, collide
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with the sun, or are ejected from the solar system within a few Myr. Larger aster-
oids drift more slowly, and can become trapped in higher-order resonances that are
densely packed throughout the asteroid belt. They undergo a slow chaotic diffusion
that increases their eccentricity to Mars-crossing values, at which point planetary
perturbations can drive them into the NEA region. In addition to an an improved
qualitative understanding of this process, our quantitative understanding had im-
proved substantially as well. The work of Bottke et al. (2000, 2002) in particular
has determined the debiased orbital distribution of NEAs, the supply rate of NEAs
from different source regions within the asteroid belt, and the lifetimes of NEAs

coming from different source regions.

One outstanding issue remains, however. While the results of Bottke et al.
(2000, 2002) place a strong constraint on the number of large (H < 18) bod-
ies removed from the main-belt and their lifetimes as NEAs, the removal rate of
smaller bodies and the general size-dependence of the removal rate has not been
well-determined. In the next section, we give a review of the Yarkovsky effect
and derive an approximate relationship for the removal rate from the main belt as a

function of size due to the combined action of the Yarkovsky effect and resonances.
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CHAPTER 5

The Yarkovsky Effect and Asteroid Removal

In this chapter, we present a simple mathematical description of the Yarkovsky
effect, based on the early analytical models by Peterson (1976) and Burns et al.
(1979) as presented in Farinella et al. (1998b). While many derivations of the
‘arkovsky effect exist in the literature, they generally don’t yield simnple analytical
expressions for the semimajor axis mobility as a function of size (especially in the
case of the ‘seasonal’ effect). Here, we give a simplified description of the Yarkovsky
effect that, while an approximation, yields simple analytical expressions for the rate
of change in semimajor axis that agree very well with published results from more
complex analytical models (e.g. Farinella et al. (1998b)). Using the expressions we
derive, we estimate the removal rate of bodies from the main-belt due to the action
of the Yarkovsky effect and resonances. This estimate of the removal rate, while
certainly not exact, provides a loose constraint on the actual removal rates from
the main belt (i.e. the actual removal rates will likely follow the same general trend

and not be wildly different from our estimate here).

We follow the general convention of treating the ‘diurnal’ and ‘seasonal’
effects separately, primarily because it is far easier mathematically. In reality, these
are end-member cases and the Yarkovsky force experienced by a given body will be
due to the simultaneous rotation about its axis and revolution around the Sun. For
small eccentricity, Vokrouhlicky (1999) showed that the total effect in most cases
is well approximated, to within a tenth of a percent, by a linear combination of
the diurnal and seasonal effects. Numerical models of the Yarkovsky effect show

that, at high eccentricity, this assumption breaks down (Spitale and Greenberg,
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2001; Spitale and Greenberg, 2002). This could potentially have profound effects
for asteroids once they enter a resonance and have their eccentricities increased to

high values.

5.1 Diurnal Yarkovsky Force

The simplest case of the Yarkovsky effect is the ‘diurnal’ effect originally proposed
by Yarkovsky. This force is due to the fact that a rotating body orbiting the Sun
absorbs radiation from the Sun, but rotates a bit before that energy is re-emitted as
thermal radiation, leading to a longitudinal asymmetry between absorption and re-
emission. This situation is analogous to the fact that it is hotter at 2 or 3 PM than
at noon on Earth. The radiated energy causes either a positive or negative force
along the track of the body’s orbit, depending on whether the rotation is prograde
or retrograde—prograde rotation causes a positive force, and hence semimajor axis
increase, and retrograde rotation gives a negative force that causes semimajor axis
decrease. The diurnal effect is maximum at zero obliquity, when the body’s spin
axis is perpendicular to the orbital plane, and vanishes at 90° obliquity. Figure 5.1
shows the force resulting from the diurnal Yarkovsky effect for the case of prograde

rotation and zero obliquity.

Equating the incoming solar flux to the radiated flux from the asteroid and

solving for the average temperature T' gives

7z’R2(1 - A)S = dr R%eoT? (5.1)
1
- (1—-A)S|4 -
T = {WE&)—M , (5.2)

where A is the albedo (assumed to be zero), € is the emissivity (assumed to be 1),

and § is the solar flux (about 340 W/m? at 2 AU and 220 W/m? at 2.5 AU). The



Figure 5.1: Diagram illustrating the ‘diurnal’ Yarkovsky effect for zero obliquity and
prograde rotation. Because of the body’s rotation, there is an asymmetry between
the direction of absorption of sunlight and the re-emission of thermal radiation.
This asymmetry leads to a force, indicated by the dark arrows, that causes the
semimajor axis to increase. In the case of retrograde rotation, the semimajor axis
will decrease. The effect diminishes as the obliquity tends towards 90°.
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diurnal Yarkovsky effect relies on a temperature asymmetry about this mean value
T, and hence its effectiveness diminishes when the heating on one side of the body
begins to affect the other side. From Farinella et al. (1998b), this occurs when the
asteroid’s radius is comparable to or less than the thermal penetration depth given
by

T\
where K is the thermal conductivity, p is the density, C, is the thermal conduc-
tivity, and w is the rotation frequency (27/F,u, where P, is the rotation period).
Assuming P, of 5 hours, which is reasonable for kin-scale asteroids (Binzel et al.,
1989), and the material parameters for basalt from Table 5.1, I is 5.6 cm. For
the case where P, = 5 hr x (D/1 kim), which yields spin rates for cm-scale bodies
that are consistent with laboratory experiments (Farinella et al., 1998h), all bodies

larger than about 3 microns are larger than their corresponding l4.

Thermal Parameters
Material p (kg/m®) K (W/(m K)) C, (J/(kg K))

Basalt 3500 2.65 680
Regolith 1500 0.0015 630
Iron 8000 40 500

Table 5.1: Material parameters for Yarkovsky model, from Farinella et al. (1998b).

The parameter © (Farinella et al., 1998b) is the ratio of the thermal emission
timescale to the rotation timescale. For large ©, energy absorbed at one point in the
bodies rotation will be re-emitted over a significant fraction of the rotation cycle,
such that teraperature profile will get ‘smeared out’. For small ©, the absorbed
energy will be re-emitted relatively quickly, such that a significant temperature

asymumetry is present over the surface. For the diurnal Yarkovsky effect,
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Vo (5.4)

where w is the rotation frequency 27/F.,. From Farinella et al. (1998b), the

along-track Yarkovsky force (per unit mass) is given by

faa 4
<t
~—r

.F} B T f (g) ! ( "

where f({) is the obliquity term

F(C) == cos(C) (5.6)

and é;fi is the effective temperature difference between the ‘AM’ and ‘PM’ hemi-

spheres given by

ATy 2 Oy -
T~ 31+20,+ 262 (5.7)

(Farinella et al., 1998b).

5.2 Seasonal Yarkovsky Force

The seasonal Yarkovsky effect is due to latitudinal asymmetries between radiation
absorption and re-emission occurring during a body’s orbit around the Sun. It is
maximum when the body’s spin axis lies in the orbital plane (90° obliquity) and
vanishes at zero obliquity (the opposite of the diurnal effect). This variant of the
Yarkovsky effect is due to the fact that a body illuminated on a given hemisphere
will move in its orbit before the energy absorbed is re-radiated as thermal encrgy.

The seasonal effect depends somewhat on rotation, but as long as a body is rotating
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fast enough to minimize longitudinal temperature variations (as we assume here) the
effects of rotation are second-order. The force that results from the seasonal effect is
always opposite the direction of orbital motion, and thus always gives a semimajor

axis decay. Figure 5.2 shows the seasonal Yarkovsky effect at 90° obliquity.

Since the heating timescales involved in the seasonal effect are significantly
longer than for the diurnal effect, the thermal penetration depth I of the seasonal

thermal wave

(5.8)

where n is the mean motion (27/FP,u), and hence the size of a body below which
the seasonal effect diminishes, is larger than for the diurnal effect. Assuming an
orbit at 2 AU (P = 2.83 yr) and the material parameters for basalt from Table
5.1, s is about 4 meters. The results of Farinella et al. (1998b) indicate that the

peak seasonal effect occurs when the diameter D ~ 4l,.

The mathematical description of the seasonal effect is somewhat more com-
plicated than for the diurnal effect. However, we find that the seasonal effect (for
bodies larger than about 4l in diameter) can be quite reasonably approximated
by treating it like a diurnal effect with frequency n rather than w and taking into
account the fact that the seasonal asymmetry is present for only a fraction of the
orbit. The %’ﬁ calculated by treating the seasonal effect like the diurnal effect must

be multiplied by a factor f, to account for this.

Consider a circular orbit with a rapidly rotating body of radius R whose
spin axis lies in the orbital plane, as shown in Fig. 5.3. If the mean anomaly M is
zero when the southern hemisphere is fully illuminated and the northern hemisphere
is totally dark, then it is easy to calculate the surface area of each hemisphere that is

illuminated by the sun as a function of M. What is more important, however, is the



Figure 5.2: Diagram illustrating the ‘seasonal’ Yarkovsky effect for an obliquity of
90°. Because of the body’s motion along its orbit, there is an asymmetry between
the direction of absorption of sunlight and the re-emission of thermal radiation.
This asymmetry leads to a force, indicated by the dark arrows, that causes the
semimajor axis to decrease. The effect diminishes as the obliquity tends towards
Zero.
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Figure 5.3: Diagram showing the geometry used for calculating the asymmetry
factor f, in our derivation of the magnitude of the seasonal Yarkovsky effect. At
a given mean anomaly M in the orbit, the surface spanning the angles ¢ = 0 to
¢ = m — M in the southern hemisphere and the angles ¢ = 7 — M to ¢ = =«
in the northern hemisphere will be illuminated. From this, we can calculate the
projected areas of these regions as seen from the sun, and hence the asymmetry of
solar heating between the northern and southern hemispheres as described in the
text.
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projected area illwminated by the sun, which is directly proportional to the amount
of heat received by the body. For the northern hemisphere, we find the projected
area Ay by integrating over the angle ¢ shown in Fig. 5.3 from 0 to n — M (¢ is
like a longitude, but does not correspond to the actual longitude on the body) and
the angle 6 from 0 to 7 (6 is like a colatitude, but does not correspond to the actual

latitude on the body)

v M pr
Ay = / R d@ Rsin(f) d¢ sin(0) sin(¢). (5.9)
4

/o Jo
For the southern hemisphere we integrate the same expression over ¢ from 7w — M

to w. The projected area illuminated in each hemisphere as a function of M is then

2

Ay = %@w (1~ cos(M)) (5.10)
122

As = -7%'1 (1 + cos(M)) . (5.11)

We define the asymmetry factor f, as

Ag — An

= cos(M), (5.12)

fo=

and the average value f, for a circular orbit is given by

L2 [ 2 AN
Jo =~ / cos(M) dM = {; sin(M )} = e, (5.13)

T Jo 0 W

The seasonal effect can now be calculated in the same manner as the dinrnal

effect with

o

Qe
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and

AT, 2 O,

=3 5.
7T 3T 38, 19610 (5.15)

which is multiplied by the asymetry factor f,. Inserting these values into Eqgn. 5.5

with the obliquity term

F(¢) = —sin*(¢) (5.16)

(Farinella et al., 1998b) gives Fy for the seasonal effect, which is accurate for bodies
larger than about 4/, in diameter. Explicitly calculating the seasonal force for bodies
smaller than this is mathematically much more difficult. Instead, we assume here
that for bodies smaller than 4l,, the seasonal Fy o< D%?2 such that Fy drops with
decreasing size. This assumption is reasonably accurate, as compared to explicit

calculations by Farinella et al. (1998b) and Bottke et al. (2000).

5.3 Semi-major Axis Mobility due to the Yarkovsky Effect

The along-track Yarkovsky force per unit mass Iy can be converted to a semimajor

axis change with

25y
i = “Tf{?‘ (5.17)

(Farinella ct al., 1998b), where 7 is the mean motion (27/Fyepit)-

Figure 5.4 shows a range of cases for comparison with the results presented
in Farinella et al. (1998b) and Boftke et al. (2000). Note that, as clarified in
Farinella et al. (1998a), the plotted values of the seasonal effect in Farinella et al.

(1998b) are a factor of 2 smaller than they should be, due to a mumerical error (their



mathematical derivations do not contain this error). In Fig. 5.4, the semimajor-axis
drift rate a of stony bodies at a == 2 AU is plotted as a function of diameter for a
variety of different cases: Diurnal effect on a regolith-free body with a 3-hour spin
period (Fhy); Diurnal effect on a regolith-free body with Py = 5 hr x (D/1 km);
Diurnal effect on a regolith-covered body with Foy = 5 hr x (D/1 km); Seasonal
effect on a regolith-free body; And seasonal effect on a regolith-covered body. The
obliquity is 09 for the diurnal cases and 90° for the seasonal cases, such that the
plotted & are the theoretical maximum values. For regolith-free bodies, the material
parameters for basalt from Table 5.1 are used. For regolith-covered hodies, material
parameters for regolith from Table 5.1 are used except in Eq. 5.5, where the density
for basalt is used. OQur results agree quite closely with Farinella et al. (1998b)
and Bottke et al. (2000) for the diurnal cases, as expected since we use essentially
the same derivation as Farinella et al. (1998b). Additionally, our results agree
quite well with Farinella et al. (1998b) and Bottke et al. (2000) for the seasonal
cases (except for the physically unrealistic case of regolith-covered hodies below
~ 1 m in diameter), indicating that our simplified derivation of the seasonal effect

is reasonable.

Figure 5.5 shows the semimajor-axis drift rate & of iron bodies at o = 2
AU as a function of diameter for a variety of different cases: Diurnal effect on a
regolith-free body with a 5-hour spin period (F,.); Diurnal effect on a regolith-free
body with P, = 5 hr x (D/1 km); And seasonal effect on a regolith-free body.
The obliquity is 0° for the diurnal cases and 90° for the seasonal case. Material
parameters for iron from Table 5.1 are used. Our results agree well with Farinella
et al. (1998b). Note that the drift rates are nearly a factor of 10 smaller than the
corresponding stony cases from Fig. 5.4, a fact invoked to explain the larger CRE

ages of iron vs. stony meteorites as discussed in Chapter 4.

Pravec et al. (2002) show that asteroids between ~ 0.15 km and 10 km in

diameter have average rotation periods on the order of 6 hours, with bodies 2 10 kmn
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Yarkovsky Drift Rates (Stony Bodies)
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Figure 5.4: Plot of the semimajor-axis drift rate @ of stony bodies at a=2 AU
as a function of diameter for a variety of different cases: Diurnal effect on a re-
golith-free body with a 5-hour spin period (F); Diurnal effect on a regolith-free
body with P, = 5 hr x (D/1 km); Diurnal effect on a regolith-covered body with
P,or = 5 hr x (D/1 kin); Seasonal effect on a regolith-free body; Seasonal effect on
a regolith-covered body. The obliquity is 0° for the diurnal cases and 90° for the
seasonal cases. For regolith-free bodies, the material parameters for basalt from
Table 5.1 are used. For regolith-covered bodies, material parameters for regolith
from Table 5.1 are used except in Eq. 5.5, where the density for basalt is used.
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Yarkovsky Drift Rates (iron Bodies)
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Figure 5.5: Plot of the semimajor-axis drift rate a of iron bodies at a=2 AU as a
function of diameter for a variety of different cases: Diurnal effect on a regolith-free
body with a 5-hour spin period (Pr.,); Diurnal effect on a regolith-free body with
Pt = 5 hr x (D/1 km); Seasonal effect on a regolith-free body. The obliquity is
0° for the diurnal cases and 90° for the seasonal case. Material parameters for iron
from Table 5.1 are used. Note that the drift rates are nearly a factor of 10 smaller
than the corresponding stony cases from Fig. 5.4.



in diameter having average rotation periods up to a factor of 2 or so longer. These
rotation periods are long enough that even if the asteroids were rubble piles with
no material strength, they could be kept together purely by gravity, Below ~ 0.15
km in diameter, however, nearly all asteroids that have had their rotation periods
measured have rotation periods so short that they must be solid, monolithic bodies
or they would be torn apart. As asteroid diameter decreases below ~ 0.15 km, the
rotation period seems to decrease as well. The fastest rotator found so far, 2000
DOg, is about 80 meters across and has a spin period of about 1.3 minutes. Rotation
statistics for bodies smaller than ~ 0.15 km are biased towards faster rotators, since
it is easier to get lighteurves for them. While the transition in rotation period around
~ 0.15 km in diameter is certainly real, the statistics at this point are insufficient
to infer the actual P, vs. D relationship, especially extending down to meter-scale
and smaller bodies. As a reasonable estimate of asteroid rotation rates, we use
Prot = 6 hr for bodies larger than 0.15 km and P, o< D (Farinella et al., 1998b)

for smaller bodies:

Py = 6hrx(D/0.15km) (D < 0.15 km),
P, = 6hr (D > 0.15 km). (5.18)

In addition to a transition in rotation period, the data presented in Pravec
et al. (2002) indicate that a diameter of ~ 0.15 kin may divide regolith-free bodies
from those capable of retaining a significant regolith. Accordingly, we model the
Yarkovsky effect for bodies smaller than 0.15 km in diameter using surface thermal
parameters (density and thermal conductivity) for bare rock and use regolith ther-
mal parameters for bodies larger than 0.15 km, with these parameters transitioning

smoothly around 0.15 km
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——— YT E e
P Pregt Prock = Preg (1 + tanh | 2log E)ii)}ﬂ{ (5.19)
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K = K+ Wﬁf&ﬁ (1 + tanh (2 log (0 1 l))km) ))  5.20)

where procw and Koo are the thermal parameters for basalt and p.., and K., are

the thermal parameters for regolith from Table 5.1.

Figure 5.5 shows the diurnal and seasonal a of stony bodies at a = 2.5 AU
with P,y given by Eq. 5.18 and p and K given by Egns. 5.19 and 5.20 (except in
Eq. 5.5, where the density for basalt is always used). The obliquity is 0° for the

diurnal case and 90 for the seasonal case,

5.4 The Yarkovsky Effect and Asteroid Removal

The Yarkovsky semimajor-axis drift rate ¢ can be converted to fr..,(D), the fraction

of bodies of diameter D removed per unit time with

a(D)

.frem(D ) = "'A""C;I"'

NT’(.’H) (5-21)

where Aa is the effective width of the asteroid belt and N, is the number of
resonances in the asteroid belt that are capable of removing asteroids of a given
diameter. Since the large majority of asteroids lie between the 14 resonance around
2.1 AU (for zero inclination) and the 2:1 resonance around 3.3 AU, Aa is approxi-
mately 1.2 AU. Sub-kilometer asteroids, which have drift rates high enough to jump
weak resonances, can be removed by 6 strong resonances—the vg, 3:1, 5:2, 7.3, 9:4,

and 2:1 (Bottke et al., 2002).

Km-scale and larger asteroids drift slowly enough that they can be signifi-

cantly affected by the weaker resonances in the asteroid belt and be pushed into the
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Figure 5.6: Plot of the diurnal and seasonal semimajor-axis drift rate a for stony
bodies at ¢ = 2.5 AU that change smoothly from regolith-free to regolith-covered
The spin period P, is 6 hours for bodies larger
than 0.15 km in diameter, and P, = 6 hr x {0/0.15 km) for smaller bodies. The
obligquity is 0° for the diurnal case and 90° for the seasonal case.

around 0.15 km in diameter.
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Mars- and eventually Earth-crossing populations, as described by Migliorini et al.
(1998). There are hundreds of these resonances throughout the main belt (Nesvorny
and Morbidelli, 1998; Morbidelli and Nesvorny, 1999). Using Ny, = 100 or more
with the a values from Fig. 5.6, however, gives a removal rate for multi-kilometer
bodies that is far larger than estimates by Morbidelli and Nesvorny (1999) of about
4 bodies larger than 5 km per Myr (frem ~ 0.0002 Myr~!) for the inner-main
belt (probably a factor of a few larger for the entire main belt). Instead, we use
Nyes == 25, which is the number of strong resonances plus the approximate number
of ‘main diffusion tracks’ in the entire main-belt, scaled up from the inner-main
belt estimate of Morbidelli and Nesvorny (1999). This approach yields much more

reasonable removal rates,

In our calculation of the removal rate, we assume that the weak resonances
first become effective for bodies around 0.1 km and all of them are fully effective
for bodies 10 km in diameter or larger, such that N, = 6 (the number of strong
resonances) at D < 0.1 kin and N,,s = 25 at D > 10 km, with a linear variation

between them (in log space).

The effective 4 for Eq. 5.21 is a combination for the seasonal and diurnal
effects. The seasonal effect always gives a semimajor axis decrease, but the diur-
nal can cause either an increase or a decrease depending on the obliquity. The
magnitude of both effects depends on the obliquity. The mean absolute values of
the obliquity terms f(¢) (Equns. 5.6 and 5.16) can be found by integrating over all

possible spin axis directions

/2 p2m
0D =57 [ [ 1Olsing0) do ac. (5.22)

which vields



Q) = 1/2
(fQsly = 2/3.

The maximum and minimum absolute values of 4 are

{almin = abs(2/3 |ay(¢ = 90°)| - 1/2 |ag(¢ = 0%)])
lalmae = abs(2/3 [ay(C = 90°)] + 1/2 Jaa(C = 0°))),

and the average value is

. Mf’min + l(}'tmcuﬂ
(@) = SR
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(5.23)
(5.24)

(5.25)
(5.26)

(5.27)

Figure 5.7 shows the removal rate as a function of diameter due to the action

of resonances and the Yarkovsky effect, calculated using Equs. 5.21 and 5.25-5.27,

with the & values from Fig. 5.6 and the assumptions about the number of effective

resonances discussed above. These removal rates do not take into account the effects

of collisional reorientation of the spin axis, which can cause the diurnal Yarkovsky

effect to switch direction and lead to a random walk in semimajor axis, rather than

a continuous drift. Farinella et al. (1998b) estimate that several collisional re-

orientations should occur for most bodies over their collisional lifetimes, and thus

the effective diurnal @ would be decreased by a factor 1/v/ N, where N is the number

of collisional reorientation events over a body’s collisional lifetime (a factor of 1/2

assuming N = 4).

In addition to collisional re-orientation of the spin axis, several other effects

can modify the spin state of an asteroid or the magnitude of the Yarkovsky effect.
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Yarkovsky-Driven Removal Rates

0,1 » LA At R ¢ LI R a4 T LA M} AL e A LA e A
- 4
9 p

5 o.cn§
o
[+ N
B
-
g 0.001 |
1] N
o
o
S
S
£ 0.0001 ¢

19"05 deemeednd dbidt] Sl ettt tdad Lttt daa] Aottt Sermdendode ok b bomnebeanlonodod bk
0.0001 0.001 0.01 0.1 1 10 100

Diameter (km)

Figure 5.7: Plot of the removal rate as a function of diameter due to the action
of resonances and the Yarkovsky effect, calculated using Eqns. 5.21 and 5.25-5.27,
with the a values from Fig. 5.6 and the assumptions about the number of effective
resonances discussed in the text.
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The YORP effect, a radiation force that can modify the spin rate and spin-axis ori-
entation of asteroids, can preferentially drive asteroids into certain obliquity states
(Rubincam et al., 2002; Vokrouhlicky and Capek, 2002). As discussed in Spitale
and Greenberg (2002), most asteroids are not perfect spheres, and it is possible that
many asteroids are in a state of non-principal-axis rotation (tumbling or wobbling).
As effects such as these are not included in the simple analytical model we present
here, the actual removal rate of asteroids from the main belt likely differs somewhat
from our estimate, but is likely to follow the same general trends and be of the same
order of magnitude. Normalized to the estimates of Bottke et al. (2000, 2002) for
the removal rate of H < 18 bodies from the main-belt, the estimated removal rate
calculated in this section provides a loose constraint on the range of allowable values
of frem(D) that can be used as inputs to the model we describe in the following

section.
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CHAPTER 6

Numerical Collisional and Dynamical Evolution Model

OQur simulation of the evolution of the main-belt and NEA size distributions is
based on a modification of Petit and Farinella’s (1993) algorithm for calculating
collisional outcomes, which in turn is a refinement and extension of earlier models
beginning with Greenberg et al. (1978). Our modifications to the Petit and Farinella
(1993) algorithm allow for a broken power-law representation of the fragment size
distribution (different power-law indices for small- and large-mass bodies) as well
as correct for an error in their calculation of the escape velocity. Our modified
algorithm, which we describe in Section 6.1.1, computes the fragment distribution
resulting from a collision between a given pair of bodies. All types of collisions are
treated, from small cratering impacts to super-catastrophic fragmentation events. In
Section 6.1.2, we use this algorithm to construct a matrix of all possible collisional
outcomes for a given set of input parameters that is then used in a numerical
simulation to evolve the entire main-belt and NEA populations under the influence
of mutual collisions and dynamical effects. In Section 6.2, we perform a number
of simulations to determine the effect of changing the different input parameters
to the model. Finally, in Section 6.3, we present the strength law and dynamical
parameters that best fit the constraints 1-5 outlined in Chapter 2 and show that
our results are consistent with estimates of asteroid strength and dynamical models

by other authors.
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6.1 NEA and Main Belt Collisional and Dynamical Evolution Model

6.1.1 Qutcome of Single Collisional Events

Recall (Section 2.2) that the strength of material against catastrophic fragmentation
is generally parameterized as the amount of energy per unit mass Qg necessary to
fragment a body such that the largest intact fragment has half the mass of the
original body. Here we use Qg averaged over all possible impact angles (e.g. Benz

and Asphaug (1999)), not just the value for head-on impacts.

The amount of kinetic energy in a collision between two masses My and M,

is

b L MMy,

el TR T Pl S D 6.1
LTS+ M, (6.1)

Assuming that the energy is partitioned equally between the target and the pro-
jectile (i.e. each gets E,q/2), fragmentation occurs when E,.¢ > 2Qg¢M; (Greenberg
et al., 1978; Petit and Farinella, 1993). Below this threshold, cratering occurs. The
actual energy partitioning likely depends on factors such as the projectile/target
mass ratio, but that dependence is not well-constrained and is therefore not in-
cluded in our model. There are three possible outcomes of a collision between
two bodies: both are catastrophically fragmented; one is cratered and the other
is catastrophically fragmented; or (rarely at asteroidal collisional velocities) nei-
ther is disrupted, both are cratered, and they potentially stick together. In any
case, the size distributions of escaping fragments from both bodies in a collision
must be individually calculated and then combined to determine the final fragment

distribution.



Catastrophic Fragmentation

In a catastrophic fragmentation event, the fractional mass of the largest fragment

is given by

1 QsM N\

(Fujiwara et al., 1977). The actual mass of the largest fragiment is then my . = M fi,
where M is the mass of the body before fragmentation. Petit and Farinella (1993)
use a single-slope power law, truncated at a small-mass cutoff, to describe the size

distribution of fragments smaller than my,,..

Here we introduce a more realistic two-slope power law. Both laboratory
fragmentation studies (Fujiwara et al., 1977; Davis and Ryan, 1990; Nakamura and
Fujiwara, 1991) and hydrocode models (Melosh et al., 1992; Ryan and Melosh,
1998) find that a two-slope power law is a much more realistic description of the
fragments resulting from catastrophic fragmentation. Accordingly, the differential,

or incremental, fragment size distribution can be given by the piecewise function

by Bam ™~ 1dm, m < my
’
AN = ¢ b Bym~" = dm + §(m — Mmaz)dm my < M < Mimae (6.3)
0 M > Mg,

where there is a single largest fragment of mass My, and a transition in slope at
my. by-+1 and by-+1 are the large- and small-mass indices, respectively. We define ry
as the ratio by /by and ry, as the ratio my/Mye. (both ratios are less than 1, and are
fixed as input parameters). Requiring continuity at the transition mass my yields

the relation
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By = ?iBlmg?ﬂ'“’”. (6.4)
(1)2

From the incremental distribution in Eq. 6.3 we can derive the cumulative

distribution

%

X ()
N{=m) / dN = / b Bym = 0 dm,
7

i) {3

= Bym™" (6.5)

for m > m, and

0 g oo
N(Zm) = / AN = by Bom %2 dm + by Bym ™ " dm
T < v My

= Bym™% 4+ B m;”b" — Bymg b

= By~ (- 1)Bm™ (6.6)

2

for m < my. Since N(Z Mypesz) = 1 by definition, from Eq. 6.5 we find

By = m (6.7)

TaL "

We can also derive the cumulative mass distribution

M(<m) = / mdN = / by Bym ™2 dm
0 Jo

b 3 i X

for m < m, and
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“TrLg m It T
M(< m) == / mdN + / mAN = by Bom b2 dm, + / by By dm

0 oy v () T
- 0 By mt-h : l)ngmﬂ""”f by B;[’I’I?,t]mt“
- 1ty 1 by 1 -
l)l ,Bi ml“l’l 1 1 . 1
e o o b }17 7] lml);
1~ b =Dy 1y ) v

(6.9)

for m > my. See Appendix A for the relations between the distributions presented

above and other cornmonly used representations of the size and mass distributions.

From the cumulative mass distribution, we can derive the relation between

fi and by. By definition, M(< Mpge) = M(1 — [;), where M is the target mass.

Using M (< Mypge) from Egns. 6.8 and 6.9, along with 7, = my/Myneq,

by Bymb- by by Lot
_f . TIL . o B p b1
M1~ 1) T=b, \T=h 15 2t™

by by by 1--by 1=b;
= ; - ! | By AT .
[1-1>1+(1~b2 1—~b1>7m i

Since By = m¥ . and My, = M fi,

y . bl, bl bl‘ by T
A[(l f’) - [1*{)1 + (1“()2 1_61)7m J\[/l

With 7y = by /by, Eq. 6.11 becomes

1—fi — by i by _ by )rlwbl
fi 1—b L=ty 1=b/) ™

(6.10)

(6.11)

(6.12)

Given f; from Eq. 6.2 and the parameters v, and ry, Eqg. 6.12 can be iteratively

solved for by.
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Cratering Impacts
For impacts below the catastrophic disruption threshold (E.. < 2QsM) we follow

the method of Petit and Farinella (1993) for calculating the mass of cratering debris

in terms of the relative kinetic energy F,q and «, the crater excavation coefficient:

M
J\‘/fc:rat = ﬂ‘k’rel for bw'al < 100c
9 . M 1-20Qsa . M |
.Z\"‘j oro - e T — .[.1/’1»&1 o e e f ar EY“F? 8 . ) » l :
ot = e 1o Y T T 50005 O P oo (649

The parameter a ranges from about 4 x 107 to 107 s*/m?® for ‘soft’ and ‘hard’
materials, respectively (Stoeftler et al., 1975; Dobrovolskis and Burns, 1984). The
normalization in Eq. 6.13 gives a linear variation in M., with E,q for all E,., but
for large F, it is normalized such that the largest possible crater contains 1/10
the mass of the target, in agreement with large craters observed on asteroids and
hydrocode modeling of large impacts into asteroids (e.g. Greenberg et al. (1994),
Nolan et al. (1996)).

Based on modeling of impacts (Melosh et al., 1992) and evidence from
actual craters (Melosh, 1989), the fragment distribution from cratering events is
best modeled as a single-slope power law, rather than the 2-slope power law used
for catastrophic fragmentation. The previously derived expressions for the various
number and mass distributions still apply in the cratering case, provided the pa-
rameters by and by are set equal to one another (i.e. r, = 1) and the target mass
M in those expressions is replaced by M., Given by, f; can be calculated from

Eq. 6.12:

Jr=1-by (6.14)

We use by = 0.8 (Melosh, 1989), which gives f; = 0.2,



Fragment Mass-Velocity Relationship

After solving for the cumulative size distributions (Equs. 6.5 and 6.6) of fragments
from both bodies in a collision, the fragment distributions are binned into arrays
and Fy, with elements spaced in constant logarithmie intervals. For example, the
elements can be spaced by a factor of two in mass, such that a given bin centered at
m spans the range [rm/v/2, mv/2). The next step is to assign both sets of fragments
a velocity distribution. We follow the method of Petit and Farinella (1993) for
calculating the fragment mass-velocity relationship, and we have extended their

equations to account for the use of a broken power-law fragment size distribution.

One way to express the velocity distribution is as a cumulative velocity

distribution with exponent &

M(z V) x V7*, (6.15)

Eq. 6.15 has been found to be a good description of crater ¢jecta with k = 9/4 (Gault
et al., 1963), as well as the smaller-mass fragments (smaller than m;) in experimental
results with k& ~ 2, although this may be slightly low due to a systematic bias
towards higher velocity fragments from the surface of the target (Nakamura and

Fujiwara, 1991). Alternatively, the mass-velocity distribution can be used

V=Cm™". (6.16)

Experimental results (Nakamura and Fujiwara, 1991) indicate that even fragment
size distributions described by multiple power laws generally have a velocity distri-
bution following a single power law of the form of Eq. 6.16, with an exponent r of
~ 1/6. The cumulative velocity exponent &k can be related to the exponent r in the

mass-velocity distribution in Eq. 6.16 by inserting
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\ ,c,,)/r
m(V) = (g) , (6.17)

which is the fragment mass that has the average velocity V, into Itq. 6.8, yielding

I)g Hp_

T V) = 2D (1)
M({> V) T m(V)
Lol
byBy (VT e
Comparing Egns. 6.15 and 6.18 shows that
1 b :
k == ""'"*;”"{:'Zﬂ (6.19)

Either k or r can be fixed as an input parameter. If r is fixed, Eq. 6.16 can be
used to calculate the mass-velocity relation. If k is fixed, Eq. 6.19 can be used to
calculate r as a function of by, and this value of r can be used in Eq. 6.16 to calculate

the mass-velocity relationship.

The velocity distribution (Eq. 6.16) is given a maximum velocity of Vi,
which is likely to be on the order of the sound speed in rock (several km/s) (Campo

Bagatin et al., 1994). V. corresponds to a mass of

—1/r
) . Vinau /
m Vinage ™ ("y

(6.20)

In the case of a cratering impact, the largest fragment Mg, 15 given a velocit
H WL .

Vi, = Cm>” (6.21)

TR
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while the largest fragment in a catastrophic fragmentation event has negligible ki-
netic energy, consistent with experimental results (Fujiwara and Tsukamoto, 1980;
Nakamura and Fujiwara, 1991), If the energy imparted to the fragments of each

body is given by

Ef = ffw'“éﬁ, (6.22)

where fyp is the fraction of collisional energy partitioned into kinetic energy of the
fragments, then the normalization constant C in Eq. 6.16 can then be found by the

iterative solution of

T 2 s € V? VZ VQ
Ef = / ~-§—-mdN -+ lim / et U AN "2“” M(< mvy,,,) + /\-~29~~m,,,,a;l,

maoa
o
[ty e 2

Lyt C* by By . .
Leby2r _ 1=t z,.] e 151 [7”14;1 bt ]

MVinas
21~ bf) -

m , .
t Vm,rm- 2 1 — bl — 27,, maxr
V2 bng >
T max 1—bo oy 121
I b My, e + )\mrnm(u, (623)
for my;, ., < my or

Mamaw =€ VQ ‘ V'Z - V2
Esy = 1¢im / ?mclN + —-—7};—“—‘5]\4 (<my,,,)+ Aﬁ%mnm
; 2

TL‘ e “
o iy
- g,mmé_}:gﬁ [7”} by -2 ,,nl*"br"Qr]
2 1~ b] — 2 o Vinaw
V2, [ baBy b B o
1L 1—bo RS 1-by C1by 1-2r -
R (1 o} m ), A=, 65.24
iy 2 |1- by Pz L - b] ( Vimas ' ) * 2 e ( )

for my;, . > my. The parameter A is 1 for cratered bodies and 0 for catastrophi-
ally fragmented bodies, and accounts for the fact that the largest fragment in the
fragmentation case has negligible kinetic energy while the largest fragment in the

cratering case does not.
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Escape and Reaccumulation of Fragments

Once the fragment velocity distribution has been found for both bodies involved in
the collision, the next step is to find the effective escape velocity for the fragments
resulting from the collision and determine which of those fragments are reaccumu-
lated. We use the method outlined in Petit and Farinella (1993), which we modify
to account for the use of a broken power-law fragment size distribution and to fix

an error in their caleulation.

Following Petit and Farinella (1993), we calculate the escape velocity using

the energy balance equation

€

1 | ) »
"2'(j\’[1 = Mmae,1 + A/IZ - '”%na;x:,?)vic + Hftot = VV[T,I + "'Vf'r,ﬁ + VVIM (b 5)

where W, is the total gravitational energy just before impact

5/3 sVl TM M
Wi = - 2CMI_SCMyTGMM (6.26)
5Q 5Q QM + (M,
where
~1/3
Qz(%@ ‘ (6.27)

Wi, is the gravitational potential energy of the fragments resulting from a catas-

trophic collision
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Wi = - m3AN

9 ’ _B/3b SN 5/3--b 5/3 s % 5/3~h
3G/ 3b Bymist — 3b By 3GmilE, 3G 3byBymXtT™

5¢) 5~ 3, 5  5Q 5-3b
3G S = 30 By 3G 3byBymy (6.25)
14 5 - 3by 50 B5-—3by e

where dN is the differential mass distribution from Eq. 6.3. In the case of a cratering

impact, this term is replaced by

o 3G 5 = 3 By 3G 8by By 3G(M ~ M)
crat = 5(9 5 — 3by 5(,2 H — 3by 5@

, (6.29)
where the last term accounts for the gravitational potential energy of the cratered

body. The term W) is an estimate of the gravitational potential energy of the
Y

fragments separated by a distance on the order of the Hill radius, and is given by

3G (M + My)S (3Mgy) '/

Wy, = 6.30
h 5 Ro ( )
for the case where both bodies are shattered,
30(1\’[ 1 A4éT'tLt,l)2/;3(A'{2 “+ ]\f'jam.t,l) (31"[31”%)1/3 o
Wiy = — (6.31)
2 R,
for the case where one body is shattered and the other is cratered, and
W /h. - m:%(:; (1\([ 1 - ]\]’3 - A’Im'a,t.l - 17\4(:7‘(1&,2)2/3(4’\4cmt,] + 4 ;:rmt,'?,) (Bj\ft,tun)l/a (6&2)

2 R,

for the case where both bodies are cratered. M, is the mass of the sun and K, is

the orbital radius where the collision occurs, which is on the order of 2.5 AU for the
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asteroid belt. The last two W), expressions are corrections to the Petit and Farinella
(1993) model. They used Eq. 6.30 for all cases, and that expression breaks down at
very small projectile/target mass ratios, giving positive values rather than negative
and causing V.. to be artificially lowered (to zero in some cases) and therefore
allowing many more fragments to escape than should actually be able to. This

causes significant problems when used in a full-scale collisional evolution model.

Once the different W terms are calculated, Eq. 6.25 can be solved for the
escape velocity Ve and the reaccumulation process can be treated. In the simple
deterministic case, the fragment velocities are calculated directly from Eq. 6.16. If
the fragments in any element of arrays £ and F; have a velocity larger than V.,
they escape the gravitational well and stay in the array. If the fragments have a
velocity smaller than V., they are added to the reaccumulated mass and removed

from their respective F; array..
% "

In a more realistic approach, a probabilistic velocity distribution

2 34/302 RUK
P(U; Vrms) = \/;”’VTM exp (”W) (633)

rms IS

is assumed, where V,,,s is the RMS velocity of fragments of a given mass (calculated
from Eq. 6.16). In the case of a small number of fragments in a given bin, the velocity
of each fragment is calculated at random assuming the probability distribution given
in Eq. 6.33. Fragments faster than V., stay in their respective I; array and the
slower ones are removed and added to the reaccumulated mass. For bing with a
large number of fragments, the fraction of fragments that escape the gravity well

and remain in the array is calculated from
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Vise
Jese = / P(v; Vi )dw

0

2[5 Vi 3V2, 3 Ve .
= 7V, exp (w 5 /;54‘»-) + erf s | (6.34)

s

where

‘

erf(v) = % [ exp (—a%)dz (6.35)
J O

w

Once the reaccumulated fragments have been removed from the arrays Fi
and F,, Eqns. 6.8 and 6.9 are used, along with Eqns. 6.17 and 6.19, to determine
the mass below the smallest bin that is reaccumulated (the ‘reaccumulated tail’ of
the distribution). F; and Fj are then merged into a single fragment array F. The
reaccumulated fragments are added together, along with the reaccumulated tail and
the largest fragments m,,,, in the case of catastrophic fragmentation events and/or
the cratered bodies in the case of cratering events, to give a single reaccumulated
body of mass M, that is placed at the appropriate point in the F' array. In addition,
the initial bodies of masses M; and M; are subtracted from the F' array. The F'
array, therefore, takes into account all of the bodies removed by a given collision
(the initial bodies) as well as all of the new bodies created (the fragments plus the

reaccirnulated body).

6.1.2 Full Model

The algorithm outlined in the previous section can be used to calculate the outcome
of a collision between any pair of bodies. In this section, we describe a full colli-
sional and dynamical model based on this algorithm that is capable of tracking the

simultaneous evolution of both the NEA and main-belt populations. To construct
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such a model, we must know the intrinsic collision probability F;, which describes
how frequently collisions occur, and the mean collision velocity (V). Bottke and
Greenberg (1993) and Bottke et al. (1994b) calculated P; and (V) for collisions
between main-belt asteroids, and Bottke et al. (1994a) calculated these values for
collisions between NEAs and between NEAs and main-belt objects. These values
are given in Table 6.1. (V) for NEA-MB collisions is nearly twice that for collisions
in the main belt, and (V) for NEA-NEA collisions is even higher, due to the larger

eccentricities of NIEAs versus main-belt objects.

Collision Velocities and Probabilities
Py (k™2 yrt) (V) (m/s)
MB-MB 2.86 x 1018 5.3 x 10°
NEA-MB  2.18x 107  10.2 x 103
NEA-NEA 153 x 107 185 x 108

Table 6.1: Collision Velocities and Probabilities from Bottke and Greenberg (1993)
and Bottke et al. (1994b) for the main belt and Bottke et al. (1994a) for NEAs.

The intrinsic collision probability has units of km™2 yr~!, and can be used
to calculate the frequency of collision between a single ‘target’ of radius r, and a

single ‘projectile’ of radius r, with the equation

f = B+ 1) (6.36)
Multiplying Eq. 6.36 by the number of target-projectile pairs Ny, and the time
interval At gives the total number of collisions during At

Theoll = ‘)‘i, (Tt -+ Tp ) 2 N, pairs At. (0 . ‘37)

For cases where the targets and projectiles in question are in the same size bin and

population (i.e. MB or NEA), their numbers N; and N, are equal and
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N(N, —~1 .
Mmim = ”""”I”g”““ﬁ”“"”’")“ : (6: 8)
2
For all other cases,

We start with initial main-belt and NEA population arrays Ny p and Nypa,
binned in logarithmic increments of 0.1 in diameter (which is about a factor of two
in mass). The main-belt population can start in any configuration, but the NEA
population always starts with zero bodies. Using the algorithm outlined in the pre-
vious section, along with the input parameters such as the size-dependent strength
parameters (Jg and fxp, the velocity distribution exponent k, the density p, cra-
tering efficiency «, and the fragment distribution ratios r,, and r, we generate 3-D
matrices F5* that give the fragment distribution resulting from collisions between
bodies in any two size bins, where ¢ is the target index, j is the projectile index, and
k is the fragment index. The F' matrices are symmetrical with regards to target and
projectile, such that element (4, j, k) is equal to element (4,4, k). Fap is for colli-
sions between main-belt objects, Fyga is for collisions between NEAs, and Fyy is
for collisions between main-belt asteroids and NEAs. Additional 2-D matrices f*/
are generated, using Eq. 6.36, that give the frequency of collisions between bodies in
any two size bins (fap for main-belt collisions, fxpa for collisions between NEAs,
and fuy for collisions between NEAs and main-belt asteroids). The fragments re-
sulting from an NEA-MB collision are assumed to stay in the NEA population when
the NEA is larger then the main-belt asteroid and stay in the main-belt when the

main-belt asteroid is larger.

Non-collisional removal processes act in parallel with collisional processes
and transfer material from the main belt to the NEA population. f%_ is the non-

o TEFIL

collisional removal rate, parameterized as the fraction of bodies in a given size bin
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removed per unit thme. In addition, dynamical processes remove material from the
NEA population, such that bodies in the NEA population have a mean lifetime

(Tnea), as discussed in Chapter 4.

In a given timestep Af, the change in the main-belt population due to

collisions and non-collisional removal is given by

domn Jred N (3
AN}C ‘ . ﬂl,j,]\ N EYMB TV
MBS MB ]UB MB™TTY 1 4 5

iml je=l
R Ad i AT ; j
+ (ﬁ/iilN + (Sjk).f);/;NN;\JBN}!V]?A(l - I«J) - )kf lV;\f‘EAN}J\IIB
- jvltmNjf\ullj’ At (()40)

where n is the total number of size bins. The projectile index j ranges from 1 to ¢
rather than 1 to n because of the symmetrical nature of the F' matrices. The first
term is the change resulting from MB-MB collisions, the terms on the second line
are due to MB-NEA collisions, and the term on the last line is due to non-collisional
removal. The change in the NEA population due to collisions, the influx of material

from the main belt, and dynamical removal is

im=n Je=d Nj S
ANE = fiiodik Ni DNNpa T O
NEA NFA LA NEA

=1 gl 14 5@'
+ 7‘,4,1,\] + bjk)fﬂ:;NNNFANMB .'ikflz\yNNjWBN;\'EA(l - dy5)
+ frenNirg <TN[4“; At (6.41)
nea

The first term is the change resulting from NEA-NEA collisions, the terms on the
second line are due to MB-NEA collisions, and the terms on the last line are due

to the influx of material from the main belt and the dynamical removal of NEAs.
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A simplified version of these equations, which neglects MB-NEA and NEA-NEA

collisions, is

. y 5
k . gk gy q N MAa 7 Y ok rh ) o AR
ANpyg = AR MBNMBWI 5T SremNup | At (6.42)
i}
K i k k N’ﬁ"vJ B A
TR . ] AR 224 (A
ANppa = Jrem N — Tred) At (6.43)
nea

We integrate these equations in time using an adaptive stepsize routine that makes
sure that the number of asteroids in any bin doesn’t change by more than a certain

amount (generally 1%).

Whatever size we choose for the lower limit of the Ny and Nypa ar-
rays, the bodies that can collisionally disrupt the smallest bodies in the arrays are
generally smaller than that lower limit. Ignoring the disruption of the smallest bod-
ies leads to ‘waves’ in the size distribution that would not necessarily be physical
(Campo Bagatin et al., 1994; Durda and Dermott, 1997). To prevent this, we fix
the lower 2 decades of the main-belt population in our model (generally 1 mm to
10 ¢cm) and use that part of the population only for calculating the collision rates
with larger bodies (i.e. we do not collisionally evolve it). The slope and number
of bodies in that portion of the population is calculated each timestep by extrap-
olating from the population of larger bodies that do undergo collisional evolution

(generally bodies larger than 10 cm).

Dynamical models (Petit et al., 1999; Petit et al., 2001) indicate that the
arly asteroid belt may have been hundreds of times more massive than it currently
is and was cleared of most of its mass by gravitational interactions with Jupiter and
planetary embryos in the early solar system (probably on a timescale of a few Myr).
Our model gives the option of multiplying the initial population by a constant factor

during the first phase of evolution in order to simulate this.
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6.2 Effects of Different Collisional Parameters

In this section, we illustrate the dependence of the final collisionally evolved pop-
ulation on the various input parameters by varying one parameter at a time while
holding the others constant. The following default values are used, unless other-
wise noted: p = 2700 kg/m®, o = 107 8*/m?, 1y = 1y = 1, Vipao = 3000 m/s,
and k = 2.25. The mean collision velocity and intrinsic collision probability are
the main-belt values from Table 6.1, and non-collisional removal is not included
(i.e. frem = 0 at all sizes). We collisionally evolve all bodies in the size range
from 1 m to 1000 km, and as explained in the previous section, we extrapolate the

population below 1 m in order to determine the number of projectiles there.

Q7 is held constant in all cases. (Q} is not an input parameter to our
model, but is calculated in our numerical code from the other input parameters,
primarily Qg and fixp. Thus, we adjust Qg and frp to get a given 7}, which in
the following cases is the Benz and Asphaug (1999) hydrocode @7, law for basalt

shown in Fig. 2.8. We parameterize fir as a power law of the form

. . D 7
fxr = fkE, <m) , (6.44)

where 7 is on the order of 0.5 (always between 0 and 1) and fxp,, the value at
1000 km, is generally ~ 0.05-0.3, reasonably consistent with estimates of frxp in
large impacts (e.g. Davis et al. (1989)). Note that this function gives an fxp
for centimeter-scale targets that is smaller than that found in many laboratory
experiments (e.g. Nakamura and Fujiwara (1991)). However, even with a very
low value of fxp. the fragments from collisions between bodies smaller than a few
hundred meters all still have enough energy to escape, so our approximation, while

not necessarily valid at small sizes, does not cause any non-physical results.

Figure 6.1 shows a set of five (g curves that, for appropriate frp values,
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Figure 6.1: Plot of different Q¢ curves that yield the same (7,. For each Qg curve,
fxE is defined as a power law with coefficients such that, in our simulations, the
combination of Qg and fxp yields a @}, curve equivalent to the Benz and Asphaug
(1999) curve for basalt (see Fig. 2.8). The slight ‘jump’ in @}, at the largest sizes
is not real-—it is an artifact of how our code calculates @}, when the size of the
projectile necessary to disrupt a given target is larger than the target itself.
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yield the Benz and Asphaug (1999) @3, law for basalt. Figure 6.2 shows the results
of 4.5 Giyr numerical simulations using those strength parameters. Even though @)%,
is the same for all cases, the wave amplitude differs significantly between them. In
general, simulations with the largest gaps between Qg and @7, (such as case Q4)
have the largest wave amplitude. The positions of the peaks and valleys of the
wave, however, remain essentially he same. This indicates that (7}, is the primary

determining factor for the general shape of the population.

(Rg is important with regards to the Vesta constraint. The smaller Qg is
for 500 km bodies (the diameter of Vesta), the more likely it is that Vesta would
be shattered. In case Q2 there is about a 50% chance that Vesta will experience an
impact that catastrophically fragments it and in case Q4 the likelihood is almost
100%. Thus, to best satisfy the Vesta constraint, it is necessary to have a high Qg

for 500 kim-scale bodies.

Since our simulations treat cratering debris as well as the fragments from
catastrophic disruption of bodies, it is necessary to determine the sensitivity of the
final population to the cratering efficiency « from Eq. 6.13. Larger o means that the
mass of cratering debris will be larger for a given impact. Figure 6.3 shows a plot of
the final evolved population after 4.5 Gyr for a = 1072 s?/m?, which corresponds
to essentially no cratering debris, a = 107> s?/m? (the value for ‘hard’ materials
like rock (Dobrovolskis and Burns, 1984)), and a = 107 (larger than estimates for
‘soft’ materials such as sand (StoefHer et al., 1975)). The Qg used is the curve Q1
in Fig. 6.1, and fxg is adjusted to get the Benz and Asphaug Q},. There is minimal
difference in the evolved population at large sizes, indicating that cratering debris
has a negligible effect in this size range. There is a factor of a few difference at the

smallest sizes.

We also performed several simulations to determine the effect of the maxi-

mum fragment ejection velocity V.. and the exponent & of the fragment velocity
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Figure 6.2: Plot of the final evolved asteroid population (after 4.5 Gyr) using the
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‘wavy’ region of the population. Even though )}, is the same for all cases, the wave
amplitude differs significantly between them. The position of the peaks and valleys
of the wave, however, is essentially the same.
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Effect of Cratering Efficiency on Final Population
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Figure 6.3: Plot of the dependence of the final evolved asteroid population on the
cratering efficiency « from Eq. 6.13. The population is evolved for 4.5 Gyr using the
Benz and Asphaug (1999) Q% scaling law for basalt at 5 km/s. a = 107'% §?/m?
corresponds to essentially no cratering, while o = 107* §*/m? is larger than the
highest estimates in the literature. « has little effect at the large end of the popu-
lation, but large values of « can increase the numbers of the smallest bodies by a
factor of a few.
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distribution from Eq. 6.15. Varying Vin., between 500 and 5000 m/s while keeping
Qp fixed causes very little change in the final population after 4.5 Gyr. With curve
Q1 in Fig. 6.1 used for Qg, very little adjustment of fxp is necessary to keep Q7
constant. Similarly, varying £ from 2.001 to 2.5 while keeping Q3% fixed has little
effect on the final population. The magnitude fig,, but not the slope v of fxp
from Eq. 6.44, was varied by about a factor of 2 to keep @7}, constant while varying

s
e

The initial population is an important input parameter. The largest bodies
in the asteroid population (hundreds of km in diameter) have probably not fully
reached a collisional steady state due to the difficulty of fragmenting them and the
small number of projectiles capable of doing so. Therefore, the slope of the initial
population for bodies larger than a few hundred ki is likely to be preserved in
the current population. Using an initial population with significantly more magss
than the current mass of few-hundred-km asteroids increases the likelihood of catas-
trophically disrupting them, and thus forming too many large asteroid families or
destroying Vesta’s basaltic crust. In addition, using a steep initial population vs. a
shallow initial population can lead to significantly different evolved populations. In
the steep case, there are initially a large number of small bodies that are ground
down to give the final population. In the shallow case, there are few small bodies
until collisions between large bodies occur and create a population of small hodies.
After an infinite time, the evolved population in both cases should be essentially
identical, but over a finite time, the evolved populations will not necessarily con-

verge. Thig situation is accentuated when non-collisional removal is included.

6.3 Results

The following default values are used, unless otherwise noted: « = 10" §*/m?,

rp = Ty o5 1, Vipae = 3000 m/s, and k = 2.25. The mean collision velocity and
) Y
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intrinsic collision probability are those given in Table 6.1. We assume that all bodies
have p = 2700 kg/m?, consistent with the densities of several S-type asteroids that
have good density estimates (Belton et al., 1995; Belton et al., 1996; Veverka et al.,
2000)1. We collisionally evolve all bodies in the size range from 0.1 meter to 1000
km, and as explained previously, we extrapolate the population below 0.1 meter in

order to determine the number of projectiles there.

Given the positions of the first peak and valley in the observed main-belt
size distribution (Fig . 2.1), we can use the analytical theory in Chapter 3 to find
a family of ()}, curves that should give those peaks and valleys. For a given Dy,
the transition diameter for the 7, law, we mumerically solve Equns. 3.39 and 3.40
to give the gravity regime slope s, and @}, value at D, needed to reproduce the
peaks and valleys in the size distribution. The slope s, of @}, in the strength
regime is chosen so as to match the strength of targets in laboratory experiments
(~ 3 x 10° — 4 x 10* J/kg for 10 cm-scale targets when averaged over all possible
impact angles). As noted in Section 3.4, the positions of the peaks and valleys
predicted by the analytical model are offset somewhat from the results of numerical
models by ~ 30%. We therefore had to iterate somewhat between our numerical
simulation and the analytical theory in order assure that the family of curves we
found accurately reproduces the observed peak and valley positions. Figure 6.4

shows the family of @}, curves that we calculate.

We tested 5 of the @}, curves from Fig. 6.4, varying Qg and fxp as necessary
to obtain the desired @},, and the main-belt simulations run with them all fit the
observed positions of the peaks and valleys remarkably well, despite varying in
slope and wave amplitude. We then incorporated the non-collisional removal rates
Jrem from Figure 5.7 into our model to treat the full collisional and dynamical

evolution of both the MB and NEA populations. For the NEA mean lifetime, we

HIn reality, asteroids span a range of compositions and densities, from porous, low-density C-
types like Mathilde (Voverka et al., 1999} to the M-types, many of which may be metallic (Bell
ot al., 1989).
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Figure 6.4: Representative members of a family of @7, curves that can potentially
reproduce the positions of peaks and valleys in the main-belt size distribution,
calculated based on the analytical theory in Chapter 3 as described in the text.
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use (Tnea) == 1.14 Myr, the average from all main-belt sources from Bottke et al.
(2002) as discussed in Chapter 4. We varied f..n, somewhat from the values in
Fig. 5.7, as those values are only an estimate, albeit a reasonable one. In addition,
we varied the parameters Qg and Fgp to explore the range around a given (2,

curve.

We compared the output of all of our simulations to constraints 1-5 from
Section 2.1: (1) the main-belt and (2) the NEA size-distributions; (3) the lifetimes
of meter-sized bodies from meteorite CRE ages; (4) the number of large asteroid
families; And (5) the existence of Vesta’s basaltic crust. The simulation that we find
best fits these constraints is shown in Figs. 6.5-6.9. The main-belt population in our
simulation is a good fit to the observed main-belt population, as shown in Fig. 6.5.
The @3, and Qg curves (Fig. 6.6) are reasonable compared to independent estimates
of asteroid strength shown in Figs. 2.7 and 2.8, The lifetimes of meter-scale bodies
in our simulation, about 8 Myr, are reasonably consistent with CRE ages for stony
meteorites (Fig. 6.7). 7 families are formed by the breakup of 200 km or larger bod-
ies, recasonably consistent with the 8 observed large families, and a Vesta-sized body
has ~ 70% chance of surviving 4.5 Gyr without being catastrophically fragmented,

which is consistent with the observation of an intact basaltic crust on Vesta.

The non-collisional removal rates we use (Fig. 6.8) are consistent with our
own estimate from Fig. 5.7. In addition, they result in 810 bodies larger than 1 km
being removed from the main-belt per million years, consistent with the estimate of
Bottke et al. (2002), and give an NEA population (Fig. 6.9) that is fairly consistent
with observational estimates, assuming an albedo py of 0.11. Assuming a larger
albedo for small NEAs, as discussed in Sec. 2.1.2, decreases the goodness-of-fit. In
Fig. 6.9, there is a deficit of large NEAs relative to observational estimates. This
is potentially due to our use of a single NEA mean lifetime (7,e,) == 1.14 Myr that
is the average value for all NEA source regions. As discussed in Chapter 4, the

largest NEAs may come preferentially through the IMC source region, which has
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Simulated MB Population Compared w/ Observational Estimates
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Figure 6.5: Best-fit main-belt population from our simulations. Data points show
observational estimates of the actual main-belt population.
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Asteroid Strength Law
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Figure 6.6: Strength law used for the best-fit main-belt population shown in Fig. 6.5
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Collisional Lifetimes
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Figure 6.7: Calculated mean collisional lifetimes of bodies in the best fit-population
shown in Fig. 6.5. Meter-scale bodies have mean collisional lifetimes around 8 Myr,
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Non-Collisional Removal Rate
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Figure 6.8: Non-collisional removal rates used for best-fit population in Fig. 6.5,
compared to our estimate from Fig. 5.7. 810 asteroids larger than 1 km are removed
per Myr, consistent with the estimate of Bottke et al. (2002).
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the main-belt population in Fig. 6.5 at the rates given in Fig. 6.8. Our results are
converted from diameter to H magnitude assuming an albedo py of 0.11. Data
points show observational estimates of the actual NEA population. Assuming a
constant albedo, as the H-magnitude of a body increases, its diameter decreases.
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our use of a single NEA mean lifetime {7,,.,) rather than a size-dependent (7,eq), a8
discussed in the text.
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8 (Tnea) Of 3.75 Myr. Using that value of {1,..) for the largest NEAs would boost
their numbers by a factor of ~ 3.5 in our model, making our results more consistent

with the observations.

Our best-fit results were obtained by including a brief period of primordial
evolution at the beginning the simulation, as described in Section 6.1.2. The initial
population was multiplied by a factor of 250 and collisionally evolved for 5 Myr,
then reduced by a factor of 250 and collisionally evolved for the remainder of the
4.5 Gyr. A brief period of intense collisional evolution such as this is predicted
by several models (Petit et al.,, 1999; Petit et al., 2001). The effect in this case
is roughly similar to an additional 1.25 Gyr of collisional evolution or a F; that is

about 25% larger.

We used a steep initial population (differential slope of -3.5 below 200 kin
and -4.5 above), as shown in Fig. 6.5, rather than a very shallow one (-1 slope),
as the steep initial population led to the better fit for nearly all of the simulations
we ran. Using an initial population significantly more massive than this results in
a higher chance of shattering Vesta and the formation of too many large asteroid
families. We also found that in nearly all of our simulations, using a broken power-
law fragment distribution (r, < 1) resulted in wave amplitudes in the main belt
that were far too high to match observations, despite the fact that a broken power-
law size distribution is more physically realistic. We will address this again in the

conclusion.

The inclusion of non-collisional removal processes based on reasonable es-
timates of their magnitudes is capable of perturbing the size distribution of the
main-belt, and indeed some ‘tweaking’ of the removal rates is necessary to give the
best fit. The effects of including non-collisional removal in our simulations can be
seen in a comparison of the best-fit population shown in Fig. 6.5 with Fig. 6.10,

which shows the results of a simulation with parameters identical to those used for
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Simulated MB Population Compared w/ Observational Estimates
18’!“14 LI R 1 L A L ) P

1 AL | PR A
Initial MB Population =~=«=--
Final MB Population ]
1e+12 - Cataloged Asteroids ©
Spacewatch +—o—i
. SDSS bt
5 fe+10 Subary r—s——i
Ko
£
Z 1e+08 - -
IS
[
g 1e+06 - -
@
=
= 10000 -
100 + -
1 APEPETITY R ETPIN BRI T PRI S . S
0.001 0.01 0.1 1 10 100 1000

Diameter (km)

Figure 6.10: Simulation run with the same parameters as the best-fit population
in Fig. 6.5, but with no non-collisional removal. Data points show observational
estimates of the actual main-belt population.
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Fig. 6.5, but with no non-collisional removal. While non-collisional removal can
perturb the population, it is not strong enough to give the orders-of~-magnitude de-
pletion of small asteroids that has been invoked to explain the lack of small craters
on Eros (Chapman et al., 2002) or the steepness of Gaspra’s cratering record (Hart-
mann and Ryan, 1996). Our simulations demonstrate that collisional debris quickly
replaces the bodies lost through resonances and the Yarkovsky effect, thus prevent-

ing a runaway depletion even for unreasonably large removal rates.

Qur simulations also indicate that most meter-scale asteroids, some of which
are eventually delivered to Earth as meteorites, are forined from the breakup of
large, multi-kilometer to 100 km parent bodies rather than smaller ones. Our find-
ing that meteorite-sized bodies are primarily produced from large parent bodies is
consistent with the small number of meteorites that have positively-identified com-
plex CRE histories, as most material in multi-kilometer asteroids would be shielded
from cosmic rays until liberated by a collision. Other models, however, predict that
complex exposure histories should be common and the immediate precursors of me-
teorites should therefore be on the order of 10 meters or less in diameter (Wetherill,
1985; Vokrouhlicky and Farinella, 2000). It is unclear whether those simulations or

our simulation is more correct with regards to the size of meteorite parent bodies.

In the next chapter, we address the final constraint—how well our main-belt

population matches the observed cratering records on asteroids.
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CHAPTER 7

Comparison to Asteroid Cratering Records

In this chapter we use a model based on Greenberg et al. (1994, 1996) to show that
the main-belt asteroid population we have found from our collisional/dynamical
evolution modeling in Chapter 6 is consistent with the crater records on Gaspra,

Ida, Mathilde, and Eros, the four asteroids that have been ohserved by spacecraft.

7.1 Properties of Asteroids Observed by Spacecraft

Four asteroids have been observed at fairly high resolution by spacecraft flybys or
orbital tours-—Gaspra and Ida by the Galileo spacecraft, and Mathilde and Eros by
the NEAR spacecraft. Of these all are S-type asteroids except for Mathilde, which
is a C-type, and all lie in the main belt except for Eros, which is an NEA. The

properties of these asteroids are summarized in Table. 7.1

7.2 Crater Production

Nolan et al. (1996) performed hydrocode simulations to estimate crater size as
a function of impactor size for a Gaspra-sized spherical body. The same results,
scaled to Ida, appear in Greenberg et al. (1996). The Nolan et al. simulations
were performed using half-spaces for impactors smaller than 60 m and spherical
targets for larger impactors, with all impacts occurring at 5.3 km/s and assuming
a projectile and target density of 2700 kg/m®. These simulations do not take into

account viscosity in the excavation flow, which could serve to reduce the final crater



Physical and Orbital Parameters of Observed Asteroids
Asteroid  Type  Size (km) 7 (km) p (kg/m®) q(AU) Q(AU) (V) (m/s) P; (km?yr)

Gaspra S 19x12x11 6.1 n/a 1.83 2.59 5.0 2.80
Ida S 56x24x21 157 2600 2.73 2.99 3.55 3.83
Mathilde C 66x48x44 264 1300 1.95 3.35 5.3 2.86
Eros S 34x11x11 846 2670 1.13 1.79 5.3 2.86

Table 7.1: Properties of asteroids that have been observed by spacecraft. Triaxial ellipsoid dimensions are from Belton
et al. (1992}, Belton et al. (1994), Veverka et al. {1999), and Veverka et al. (2000). Mean radii are from Thomas
et al. (1994), Thomas et al. (1996}, Veverka et al. (1999), and Thomas et al. {2002). Densities are from Belton
et al. {1995) and Belton et al. {1996), Veverka et al. (1999), and Veverka et al. (2000). A density estimate is not
available for Gaspra, but is likely similar to the other S-types. The perihelion ¢ and aphelion Q are calculated from
the orbital elements in the JPL DASTCOM database. (V} and P, are from Bottke and Greenberg (1993} and Bottke
et al. {1994b}, which give values for Gaspra and Ida explicitly and main-belt average values that are used for Mathilde
and Eros.

Le1
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diameter somewhat, so the diameters given are an upper limit.

Nolan et al. find two distinet cratering regimes in their simnulations. Craters
smaller than about 6 meters in diameter form in the ‘strength regime’, where the
crater diameter is linearly proportional to the projectile diameter, indicating that
material strength is what limits the final crater diameter (Melosh, 1989). Craters
larger than this (up to about 10 km in diameter) form in what they refer to as
the ‘fracture regime.” In this regime, the shock wave from the impact precedes
the excavation flow, fracturing the material such that the excavation flow has no
material strength to overcome. The final crater size is determined by the size of the

fractured regiomn.

While Nolan et al. do not include gravity in their simulations, they use
Pi-group scaling (Holsapple and Schmidt, 1982; Melosh, 1989) to show that craters
larger than about 10 km on Gaspra form in the ‘gravity regime’, where crater size
is limited by the amount of material that can be excavated from the crater against
gravity. Scaling theories generally deal with craters that form in cases where the
curvature of the target is negligible, such as most impacts on the terrestrial planets
and large planetary satellites. For large impacts on asteroids, where the impactor
diameter can be a significant fraction of the target diameter, these scaling laws
likely lose some accuracy. However, better accuracy can only be achieved with
computationally intensive numerical simulations or improved scaling theories that

don’t yet exist, and these are beyond the scope of this paper.

Nolan et al. fit their data assuming a slope of 1 for projectiles below 5.6 m

in diameter and a least-squares fit to all points above this, yielding

[)aral; = (731);;" (D P <D l:7")
Deyat = C; DY (D, > Dy) (7.1)
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with Cy = 35 and «, = 1 in the strength regime and ¢y = 26.61 and oy = 1.159
in the fracture regime (The C coefficients assume crater and projectile diameters in
meters). The transition between these two regimes occurs at a transition projectile

diameter of Dy,=5.6 m. For the largest, gravity-scaled craters,

Dpay = ?.‘I'D ;;g (72)

with Cy = 161.4 and oy = 0.78. The value of C; nsed by Nolan et al. (1996) is
for the diameter of the transient crater at the original surface level. The rim-to-rim
diameter of the final crater would be about 50% larger than this (Melosh, 1989).
Figure 7.1 shows the Nolan et al. (1996) hydrocode results, along with the fit to

that data described above,

Using pi-group scaling theory (Holsapple and Schmidt, 1982) as presented
in Melosh (1989), we can scale the Gaspra results of Nolan et al. (1996) to the other

two S-type asteroids, Ida and Eros. With the following dimensionless parameters,

1/3
Tp = Dy (ﬁt*) (7.3)
Mp
1.61gD
Ty = -~——————,U§’ E (7.4)
Y
g = —z (75)

g2
Pp;

where D, is the diameter of the transient crater measured at the level of the original
surface, p, and py are the projectile and target densities, m, is the mass of the
projectile, g is the acceleration of gravity, ¥ is the target strength, v; is the impact
velocity, and D, is the projectile diameter, the gravity-scaled crater diameter can

be found from
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Crater Diameters on Gaspra
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Figure 7.1: Crater diameter vs. projectile diameter for impacts into a Gaspra-sized
spherical body at 5300 m/s, from hydrocode simulations by Nolan et al. (1996).
The solid line is their least-squares fit to the data points for projectile diameters
greater than 5.6 m and follows a slope of 1 for projectiles below 5.6 m, which form
craters in the strength regime. The two dashed lines show the gravity-scaled crater
diameter, which is an upper limit for the sizes of the largest craters.
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wp == C;;)'/rg"ﬁ, (7.(‘3)

where [ and Cp are constants (see Table 7.2), and the strength-scaled crater diam-

eter can be found from

mp = Cpms”, (7.7)

where C, is a constant and
g ,
O = e 7.8

Melosh (1989) contains a misprinted version of Eq. 7.8 that is the negative of the
correct value given here (Melosh, private communication). The fracture regime is
not predicted explicitly by scaling theory, which considers only the effects of material
strength and gravity, not the effect of pre-fracturing due to the passage of the shock

wave through the target (Nolan et al., 1996).

In the strength regime, Eqns. 7.3, 7.5, and 7.7 imply that

D, x p{l/gvfgﬁ/(l“m). (7.9)

Nolan et al. (1996) find that the transition projectile diameter Dy, between strength-
scaled and fracture-scaled craters is independent of the size of the target (for targets
between a few km and a few hundred km in diameter) and always yields the same
sized crater for fixed impact velocity and target/projectile densities. Assuming that
the crater diameter at which the transition occurs is constant regardless of target
density and impact velocity, we can scale the transition projectile diameter 1,

using Eqns. 7.3, 7.5, and 7.7



Dy ox p/Pyl2810-), (7.10)

To preserve continuity at 1., the [racture regime crater diameter scales as

(b} /B (28181 bay o) }
Deocpg 5y o (7.11)
Equations 7.9, 7.10, 7.11, along with with the densities and impact velocities
in Table 7.1 and Pi-scaling coefficients in Table 7.2, can be used to scale the Gaspra
crater relationships for the strength and fracture regimes (Eq. 7.1) to Ida and Eros.
Eqns. 7.3, 7.4, and 7.6 can be used to calculate the gravity-scaled transient crater

diameter for a given asteroid and impact conditions

Pi-Group Scaling Constants

Material Cp I}
Competent Rock 1.6 0.22
Loose Sand 1.54 0.165

Table 7.2: Pi-group scaling constants from Melosh (1989). The values for loose sand
are an average of the values for Ottowa sand and quartz sand.

Mathilde, a C-type asteroid, is substantially different from the other aster-
oids (all S-types) observed by spacecraft. Mathilde is about half the density of the
S-type asteroids (Table 7.1), implying a substantial internal porosity. In addition,
numerous large craters (comparable in size to Mathilde’s radius) are well preserved
on Mathilde’s surface, and their formation seems to have resulted in little damage
beyond the crater rims (Chapman et al., 1999). Large craters on the S-type as-
teroids are not nearly as well preserved. This is taken as an additional indication
of a porous internal structure for Mathilde-—since porous materials are generally
less efficient at transmitting shock waves, the damage from the impact would be

confined to a smaller region, rather than causing global destruction of topography.
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Because of these differences between Mathilde and the S-types, scaling from the
Gaspra simmulations to Mathilde is unjustified. Instead, we follow Davis (1999) and
use the Pi-group gravity scaling relationship for loose sand (Eqns. 7.3, 7.4, and 7.6,
and the values in Tables 7.1 and 7.2). A better estimate than this would require

hydrocode simulations that are beyond the scope of this work.

Figure 7.2 shows the crater diameter vs. projectile diameter relationship for
Gaspra, Ida, Mathilde, and Eros, calculated from the scaling relationships outlined
above. The relationship for Gaspra and Eros are nearly identical, given their similar
size and average impact velocity. The relationship for Ida is shifted downwards from
these due to its larger size and smaller average impact velocity. Mathilde’s curve is

substantially different from the curves for the other asteroids.

7.3  Crater Erasure Mechanisms

Craters can be erased by a number of different methods (Greenberg et al., 1994;

Greenberg ct al., 1996).

7.3.1 Jolt

When a large impact occurs, it can cause global shaking of the asteroid that leads
to the erasure of all craters smaller than a given diameter across its surface. This
effect was termed ‘global jolt’ by Greenberg et al. (1994, 1996). Greenberg et al.
(1996) give the size of a crater erased by craters of a given diameter due to global
jolting on Ida and Gaspra (the Gaspra relationship is a slightly revised version of
the one in Greenberg et al. (1994)). Eros is only about 40% larger than Gaspra,
and therefore should have a roughly similar jolt relationship. We estimate the jolt
relationship for Eros from the Gaspra and Ida jolt relationships by assuming that

the jolt relationship varies linearly (in log-space) with the log of the radius of the
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Figure 7.2: Crater diameter vs. projectile diameter curves for impacts on Gaspra,
Ida, Mathilde, and Eros. Ida and Eros curves are scaled from the Gaspra simulations
shown in Fig. 7.1, as described in the text. The Gaspra and Eros curves nearly
overlap. For Mathilde, gravity scaling is assumed for all impacts.
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target body. Figure 7.3 shows the size of a crater erased by craters of a given
diameter due to global jolting on Gaspra and Ida (from Greenberg et al. (1996))
and our estimate of the Eros jolt relationship. Given the fact that even its largest
craters do not significantly destroy topography beyond their rims, we assume that

jolt is ineffective on Mathilde.

7.3.2 Overlap of Craters

As more and more craters accumulate on a given surface, a steady state is eventually
reached between crater production and erasure due to craters forming on top of one
another, such that the size distribution of craters no longer changes (Melosh, 1989).
Greenberg et al. (1994, 1996) coined the terms ‘sandblasting’ for the erasure of
large craters by smaller ones and ‘cookie-cutter’ for the erasure of small craters by
larger ones. In either case, we can calculate the nuraber of craters of a given size.
If R(D) is the number of craters of a given diameter D produced per unit area per
unit time and A is the area taken up by all craters in a given size range per unit
area per unit time, we can calculate the number of craters visible after time ¢ by
using an analogy to optical depth. Counting back in time from the present (f = 0),

the incremental number of visible craters is

ANyio(D) = R(D)e~*dt (7.12)

where the optical depth 7 = At is zero at ¢ = 0 and increases as more and more
craters are formed. Consequently, the freshest craters are all visible, but going back
in time, fewer and fewer old craters are visible because they are covered by newer
ones. The total number of visible craters can be found by integrating from the

present £ == 0 to the time ¢ when craters of diameter D first began accumulating:
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Figare 7.3: Plot showing the diameter of a crater erased by craters of a given
diameter due to global jolting.
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In the case of sandblasting we calculate Ay, the total area taken up by

craters smaller than D but larger than some fraction ~ 1/10 of D per unit area per

unit time. This area is then divided by a factor of ~ 3 to account for the fact that

smaller craters are less efficient at erasing larger ones. In the case of cookie-cutter

erasure we calculate A.., the total area taken up by craters larger than D per unit

area per unit time. We then combine these two values to give A = Ay, -+ A, which

we use in Eq. 7.13 to give the number of craters of a given diameter remaining after

sandblasting and cookie-cutter erasure.

7.3.3 Local Jolt

When a large crater is formed, it may cause seismic effects that extend beyond its
rim and can erase craters within a given fraction of its radius. Another way to look
at this is that a crater’s effective radius when used to calculate A, the accumulated
crater area per unit area per unit time for cookie-cutter erasure, is larger than its
physical radius. Based on the hydrocode modeling of Nolan et al. (1996) and models
of the evolution of cratering records on Gaspra and Ida, Greenberg et al. (1994,
1996) find that local jolt probably starts to be effective for craters larger than about
5 km in diameter such that craters ~ 30 km in diameter could have an effective

diameter, due to local jolt, of several times their actual diameter.
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7.4 Results

We have developed a numerical simulation based on the simulation used by Green-
berg et al. (1994, 1996) that we have modified to handle arbitrary (i.e. non-power-
law) irpacting populations. Crater production is calculated from the impacting
population and the crater production curves in Fig. 7.2, and the erasure mecha-

nisms from Sec. 7.3 are all taken into account.

Figure 7.4 shows the results of our simulation using our best-fit main-belt
population from Fig. 6.5 as the impacting population. Gaspra’s cratering record
is reproduced after 140 Myr of exposure following a resetting event that erased all
craters larger than ~ 3 km, similar the model proposed by Greenberg et al. (1994).
Ida requires either 4.5 Gyr of exposure to the impacting population and a strong
local jolt effect (30 km craters are capable of erasing nearly the entire surface),
or 500 Myr of exposure with a smaller local jolt effect. The former case is shown
in Figure 7.4, but both cases give nearly the same final crater population. Eros
requires 300 Myt of exposure and a mild local jolt effect (a 20 km crater can erase
out to ~ 2 times its diameter). Finally, Mathilde requires 4.5 Gyr of exposure. The
main discrepancies between our model and the observations are that the depletion
of Eros’s small craters is not explained, and the largest craters on Mathilde are not

fully reproduced. We will address these issues in the conclusion.



149

Gaspra lda
100 oy 100 e e et
10 g . 10 b v, N
1 Q%%b . 14 M .
01k uy . o1tk -
% 0.01 e . 0.01 - v 4
g 0.001 | ) . 0.001 |- .
jon g H
L"" 0.0001 FPNTTI N T | T TP 0.0001 PR VIR ISP | Lo 2l
g 0.01 0.1 1 10 100 0.01 0.1 1 10 100
2
E Mathilde Eros
z 100 B (LA R A 100 %’(:;‘I T T
g 0F . 10 | %g% .
‘\\ 3
§ 11 - 1 m%w o
01 b “2@1}% . 01 b % 4
0.01 b 5 . 0.01 |- 2, .
0.001 ‘*i?& . 0.001 | ? .
0.0001 FITIY PP ROV NI SR TOre! N NPy 0.0001 NETEPTTN ST TP LT ISV A R IPTTIN
0.01 0.1 1 10 100 0.01 0.1 1 10 100

Diameter (km)

Figure 7.4: Plots showing the cratering records on the four observed asteroids along
with the results of our cratering simulation with the main-belt population from
Fig. 6.5 as the impacting population. The specific histories of these asteroids are
described in the text.



CHAPTER 8

Collisional Evolution of Trans-Neptunian Objects

In this chapter, we apply the analytical and numerical tools that we have developed

in Chapters 3 and 6 to the collisional evolution of trans-Neptunian objects.

8.1 Introduction

Edgeworth (1949) and Kuiper (1951) proposed that there may be a disk of icy
material beyond the orbit of Neptune, somewhat analogous to the asteroid belt,
consisting of material left over from the formation of the solar system that was
unable to accrete into a larger planet. Pluto was discovered beyond the orbit of
Neptune in 1930 by Clyde Tombaugh at Lowell Observatory, but at the time it
was believed to be the ‘Planet X’ that Percival Lowell proposed as the cause of
irregularities in Neptune’s orbit. Despite later findings that Pluto was too small
to have caused these perturbations, it was generally considered to be a full-fledged

planet.

Over 60 years elapsed between Pluto’s discovery and the discovery of the
next trans-Neptunian object (TNO), 1992 QB; (Jewitt and Luu, 1993). In the 10 or
s0 years since the discovery of 1992 QI3;, hundreds of other trans-Neptunian objects
have been discovered and cataloged, and recent deep-field surveys have pushed
our understanding of the orbital- and size-distribution of trans-Neptunian objects
to smaller and smaller sizes. Through analytical theory and extensive numerical
simulations, researchers are now beginning to understand the complex dynamical

history that the trans-Neptunian region has experienced. In addition to dynamical
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evolution, it has been shown that, ag in the asteroid belt, collisions are an important

process governing the evolution of the TNO population.

Much as the main asteroid belt is the ultimate source of most NEAs, the
trans-Neptunian region is the the source of most, if not all, short-period comets.
Even before the discovery of 1992 QB,, numerous researchers (e.g. Fernandez (1980),
Duncan et al. (1988), Quinn et al. (1990)) demonstrated that the orbital distribu-
tion of short-period comets was consistent with a low-inclination disk of material
beyond the orbit of Neptune. Subsequently, several authors (Holman and Wisdom,
1993; Levison and Duncan, 1997; Duncan and Levison, 1997; Morbidelli, 1997)
performed more detailed simulations that give estimates of the number of precur-
sor bodies that must exist in the trans-Neptunian region in order to explain the
observed number of Jupiter-family comets (JFCs), which are a large subclass of

short-period comets.

Bernstein et al. (2003)* used the Hubble Space Telescope to perform a deep-
field search for TNOs down to nearly 29th magnitude (R-band), corresponding to a
diameter of about 10 km at a heliocentric distance of 40 AU. They find that the 2
subsets of TNOs in their classification scheme, the ‘classical’ and ‘excited’” popula-
tions, have different size distributions. Assuming that JFCs have diameters of ~10
km, citing earlier estimates such as Cochran et al. (1995), they find that there are
far fewer JFC precursors than seem to be required by dynamical models. Bernstein
et al. propose several possible explanations for this discrepancy: The survey results
are an extremely unlikely statistical fluctuation or the survey completeness limit
has been incorrectly estimated; The dynamical models are incomplete and/or un-
derestimate the escape rate from the TNO region; Large TNOs break up into many
smaller ones en-route to becoming JFCs; JFCs are fainter/smaller than generally

believed; And/or there is an upturn in the population index below the completeness
H |

Yhe reference used hore is a preprint posted to Astro-PH. The {inal published version was not
in press at the time this dissertation was written, but has been accepted for publication in AJ



limit of the survey.

In this chapter, we apply our analytical and numerical collisional evolution
models from Chapters 3 and 6 to constrain the evolutionary history of the TNOs.
We explore in detail the suggestion by Bernstein et al. that there is an upturn in the
population below the completeness limit of their survey. Using the mumerical model
described in Chapter 6, we show that such an upturn is a natural consequence of any
physically plausible strength law, and can help to rectify the discrepancy between

the Bernstein et al. survey results and dynamical models of the supply of JFCs.

8.2 The Structure and Dynamical History of the TNO Region

Observations and numerical simulations have identified a number of different sub-
populations in the trans-Neptunian region. The Kuiper belt is a population of
low-eccentricity bodies ranging in semimajor axis a from ~ 40 to ~ 48 AU, bound
by the 3:2 and 2:1 mean-motion resonances with Neptune. Brown (2001) shows
that the Kuiper Belt can be subdivided into a ‘cold’ population with inclinations
i < 4° and a ‘hot’ population with inclinations as large as 30°. The cold Kuiper
belt is most simnilar to what was envisioned by Edgeworth (1949) and Kuiper (1951),
and is often termed the ‘classical’ Kuiper Belt. A number of TNO’s are trapped
in resonances with Neptune, such as the 3:2 mean-motion resonance at @ = 39.5
AU (‘Plutinos’) and the 2:1 resonance at a = 47.8 AU (‘twotinos’). These resonant
populations generally have higher eccentricities and inclinations than the ‘classical’
Kuiper Belt. Finally, the ‘scattered disk’ population consists of objects on highly
eccentric orbits beyond the orbit of Neptune, but no firm definition exists (Duncan
and Levison, 1997). Observational evidence seems to point to an ‘edge’ to the
classical Kuiper Belt around o = 50 AU, just outside of the 2:1 resonance with
Neptune (Trujillo and Brown, 2001; Allen et al., 2001). Gladman et al. (2001),

however, argues that this conclusion may be due to observational biases and a lack
3 " v
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of sufficient orbital data.

The different sub-populations of 'TNOs were likely emplaced in different
ways. Malhotra (1995) showed that gravitational interactions with planetesimal
early in the history of the solar System could have caused Neptune to migrate out-
wards, trapping bodies in mean-motion resonances such as the 3:2 and 2:1. As
those resonances would be moving outwards as Neptune migrates, bodies trapped
in the resonances would be swept outwards as well, forming the ‘resonant’ popu-
lations. Duncan and Levison (1997) showed that during its migration, Neptune
would gravitationally scatter some bodies onto highly eccentric and inclined orbits,
thus forming the scattered disk population. Gomes (2003) showed that a subset
of Neptune-scattered planetesimals could experience resonant effects that reduce
their eccentricity and leave them in the Kuiper belt region, albeit with fairly large

inclinations, as the hot Kuiper belt population.

Levison and Morbidelli (2003), noting that the cold Kuiper belt is sig-
nificantly depleted in mass relative to the mass necessary to form 1000 km-scale
objects (Stern and Colwell, 1997; Kenyon and Luu, 1998), showed that resonant ef-
fects combined with the migration of Neptune could cause planetesimals to migrate
outwards under the action of the 2:1 resonance without increasing their inclinations.
In addition, the eccentricities of these bodies would not monotonically increase, but
would oscillate, giving a range of eccentricities comparable to that seen in the cold
Kuiper belt. Since the migration of Neptune is not assumed to be perfectly uni-
form, there will be jumps in the position of the 2:1 resonance that cause some of
the bodies trapped in resonance to be freed, and those bodies that escape form the
cold Kuiper belt. A large number of bodies would be lost in this process due to
inefficient resonance capture, the probability of being released from resonance, and
scattering by Neptune, explaining the observed mass depletion of the cold Kuiper
Belt relative to the primordial population. In addition, the Levison and Morbidelli

(2003) model provides an explanation for why the classical Kuiper belt may end at
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the 2:1 resonance with Neptune.

An interesting and important implication of all of these models is that all
TNOQOs-resonant TNOs, the scattered disk, and the hot and cold Kuiper belt-—
formed well inside their current positions and were pushed outwards by interactions
with Neptune. In addition, there was potentially much more mass in the initial
TNO population than there is in the current population. This has important im-
plications for modeling the collisional history of TNOs. It is possible that a sub-
stantial amount, or even the majority, of the collisional evolution of some of the
TNO sub-populations occurred very early on in the history of the solar system and
in a different region than those populations currently reside. The timescale for the
migration of Neptune, and hence the processes descried above, is on the order of

50-100 Myr (Levison and Morbidelli, 2003; Gomes, 2003).

8.3 The Link Between TNOs and the Jupiter-Family Comets

Jupiter-family comets (JFCs) are defined as those having a Tisserand parameter

(8.1)

between 2 and 3 (Levison and Duncan, 1997). These comets can experience low-
velocity encounters with Jupiter, and hence their orbital evolution is generally dom-
inated by Jupiter. Numerous authors (e.g. Fernandez (1980), Duncan et al. (1988),
Quinn et al. (1990)) demonstrated that a disk of material beyond Neptune is the
likely source of JFCs. In more detailed simulations, a number of authors caleulated
the number of JF'C precursors necessary to sustain the observed population of JFCs,

assuming different source regions.

Holman and Wisdom (1993), assuming a cold Kuiper belt as the source of

JFCs, caleulated 4.5 x 107 JEC precursors. Levison and Duncan (1997) refined this



155

value to 7 % 107 JFC precursors in the cold Kuiper belt, Modeling the scattered
disk population as the source of JFCs, Duncan and Levison (1997) calculated that
there are 6 x 108 JFC precursors in the scattered disk, with 1.4 x 10% of them found
at any given time between heliocentric distances of 30-50 AU. Finally, Morbidelli
(1997) calculated that if the Plutino population is the source of JFCs, it should

contain 4.5 x 10% JFC precursors.

8.4 The Size-Distribution of the TNO Population

Bernstein et al. (2003), using the Hubble Space Telescope Advanced Camera for
Surveys (ACS), performed a survey for TNOs over a 0.02 deg? region of the sky
with a liniting R-band magnitude of 28.8, which is 2 magnitudes deeper than the
next closest survey and 3 or more magnitudes better than any others. It represents

the current best estimate of the TNO population at small sizes.

The Bernstein et al. (2003) survey did not yield orbital elements, only he-
liocentric distance. They define TNOs as all bodies found at a heliocentric distance
d larger than 25 AU. ‘Classical’ Kuiper Belt objects are TNOs found at heliocentric
distances between 38 and 55 AU and ¢ < 5%, and ‘excited’ TNOs are all other TNOs.
While there is a chance that resonant or scattered disk objects could be detected
at a heliocentric distance that would classify it as ‘classical’ under the Bernstein
et al. (2003) criteria, this is relatively unlikely. Hence, the ‘classical’ population
from their survey is a good estimate of the cold Kuiper Belt, while the ‘excited’
sample is a good estimate of the hot Kuiper belt, resonant and scattered disk pop-
ulations. As no TNOs were found beyond 50 AU in the Bernstein et al. (2003)
survey, primarily due to difficulty of detecting small objects at large heliocentric
distances, their results are primarily an estimate of the population in the 30-50 AU
region. While many scattered disk objects do reside in this region at any given time

and all have their perihelia within this region, the heliocentric radii of scattered disk



objects can extend hundreds of AU from the sun, and the Bernstein et al. survey is
not, a good estimate of the population of scattered disk objects that are currently

far from their perihelia.

Figure 8.1 shows the Bernstein et al. estimate of the total TNO population
between 30 and 50 AU, along with their best-fit 2-segment power law. Figure 8.2
shows the classical and excited subsets of the TNO population from Bernstein et al.,
along with their best-fit 2-segment power laws. Note that the slope of the best-fit
line for small excited objects is negative, indicating a deficit of small excited TNOs,

or at the very least a local minimum.

The size distribution of TNQOs can be estimated from the K magunitude data
assuming that an R-magnitude of 28.5 corresponds to D ~ 10 km for an albedo of
4% and a heliocentric distance of 40 AU (Bernstein et al., 2003). As their values
are given in number per square degree of sky, the absolute number can be estimated
by multiplying the classical population (with inclinations between —5° and +5°) by
360 x 10 = 3600 square degrees and the excited population by 360 x 30 = 10800

square degrees (Bernstein et al., 2003).

Bernstein et al. (2003) assume that JFC precursors are on the order of 10
km in diameter, citing earlier estimates such as Cochran et al. (1995). Compared
to the estimates of the number of JFC precursors in the TNO population discussed
in Sec. 8.3, the Bernstein et al. survey estimates 2-4 orders of magnitude too few

JFC precursors.

8.5 Application of Analytical Model

The analytical model developed in Chapter 3 can be used to relate the log-log slope s
of the strength law @, (the energy per unit mass required to fragment and disperse

a hody) to the steady-state power-law index p of the size distribution of a population



KBQO Magnitude Distributions (All KBOs)

L e B A
E Al KBOs +—e— E
‘ £ AllKBOs ;
> 100 E
0 3 3
3 10 E
5 : E
«. ;]
9 1 4
2 3
= : :
= CE
g - ]
5 0.01 E
L3 - N
£ i ]
= 0.001 ¢ 3
0.0001 Etmimmd e L
18 20 22 24 26 28 30

R Magnitude
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determined by Bernstein et al. (2003). This population includes all bodies found at
heliocentric radii greater than 25 AU. Size decreases with increasing R-magnitude.
Symbols with arrows indicate upper limits.
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Classican and Excited KBO Magnitude Distributions
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Figure 8.2: Plot of the R-magunitude distribution of the ‘clagsical’ and ‘excited” TN
populations as determined by Berustein et al. (2003). The ‘classical’ population is
the subset of TNOs found at heliocentric radii between 38 and 55 AU and ¢ < 5°.
The ‘excited’ population consists of all TNOs that are not in the ‘classical’ popu-
lation. Size decreases with increasing R-magnitude. Symbols with arrows indicate
upper limits.



of colliding bodies. The population of TNOs larger than ~ 100 km in diameter is
likely primordial and not collisionally relaxed (Davis and Farinella, 1997), and thus
our analytical model cannot be applied to that portion of the population. The
best-fit power laws to the magnitude distributions in Bernstein et al. (2003) have
slopes « of 0.26 (p == 2.3) for all TNOs between ~ 10 and 100 km in diameter and
0.36 (p = 2.8) for the classical population between ~ 10 and 100 km in diameter
(see Appendix A for the relation between the magnitude distribution and the size
distribution). The excited population was found by Bernstein et al. (2003) to

< 50 km in

™~

have a negative « (l.e. fewer small bodies than large ones) for bodies
diameter, indicating that it is most likely not in a collisional steady state and thus

our analytical model can not be applied to it.

Using Eq. 3.24 to convert the values of p given in the previous paragraph
to the slope s of the strength law @} gives s = 2.3 for the classical population
and s = 5.5 for all TNOs. Both values are significantly larger than estimates of
the gravity-regime @}, for icy bodies (Benz and Asphaug, 1999), which indicate
s~ 1.2 — 1.3, We can use Eq. 3.24 to calculate the expected steady-state p given
s ~ 1.2 — 1.3, and that calculation yields p = 3.05 — 3.08 between ~ 10 and 100 km

in diameter in the full TNO population as well as the classical subset.

The fact that the analytical theory does not give reasonable strength esti-
mates from the observed values of p, and likewise does not give values of p consistent
with observation when used with a reasonable strength law (Benz and Asphaug,
1999), likely indicates that the population of TNOs between ~ 10 and 100 km in
diameter is not in a collisional steady state. Furthermore, the fact that p predicted
from the analytical theory using reasonable strength estirnates is larger than the
observed values of p may indicate that the initial population of TNOs was ini-
tially very shallow below ~ 100 kmn in diameter and is currently evolving upwards

(i.e. increasing in steepness) towards a steady state.
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8.6 Numerical Simulations

In this section, we apply the numerical collisional evolution model developed in
Chapter 6 to the evolution of the TNO population, in order to estimate the size-
distribution below the limit of the Bernstein et al. (2003) survey. From this, we
can determine whether or not the required number of JFC precursors can be found
in the TNO population, and at what size they occur. In addition, we can use our
simulations to constrain the initial conditions for the TNO population, such as the
initial size distribution, as well as the degree of collisional evolution that that has

occured in the TNO population over the age of the solar system.

Davis and Farinella (1997) (their Table I) calculated mean collision veloci-
ties (V) and intrinsic collision probabilities F; for bodies in the TNO region with a
range of different a, e, and i. From their values for low inclination, low eccentricity
bodies around 42-45 AU, we estimate F; and (V) for the classical population. Ex-
trapolating beyond their range of ¢ and ¢ by about a factor of two, we estimate the
values of P; and (V) for the excited population. Our estimated values are given in
Table 8.1. The collision velocities for the excited population are higher, due to its
larger average e and i, but because of these larger ¢ and ¢ values, it occupies a larger
volume of space and therefore has a smaller intrinsic collision probability. For the
strength law, we choose Qg and fip that yield the Benz and Asphaug (1999) QF

for impacts between icy bodies at 500 m/s, as shown in Fig. 8.3.

TNO Collision Velocities and Probabilities
Population P, (km™% yr=t) (V) (m/s)

Classical 2 x 1072 400
Excited 4 x 1072 1200

Table 8.1: Mean collision velocity and intrinsic collision probability for classical
and excited TNOs between 30 and 50 AU, based on values from Davis and Farinella
(1997)
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Strength Law for lcy Bodies at 500 m/s
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Figure 8.3: Strength of icy bodies. The Qg law and frp are chosen to yield @} for
icy bodies at 500 m/s from Benz and Asphaug (1999). The ‘jump’ in Q} at the
largest sizes is not real--it is an artifact of how our code calculates ()}, when the
size of the projectile necessary to disrupt a given target is larger than the target
itself.
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We use two different sets of initial populations: (1) shallow initial popula-
tions based on the Bernstein et al. (2003) double-power-law fits to the classical and
excited populations; or (2) steep initial populations based on the Bernstein et al.
(2003) fits for large bodies and a p == 3.5 differential power law for smaller bodies.
While the classical and excited populations are likely to interact to some degree, we
treat them separately here for simplicity. The classical and excited populations are
evolved with both steep and shallow initial populations for 3 cases: (1) 4.5 Gyr, (2)
4.5 Gyr with primordial evolution phase at 1000 times the current mass for 100 Myr,
and (3) same as case 2 but assuming a broken power-law fragment distribution with
7y = 0.5 and 7, = 0.01 (see Section 6.1 for a discussion of these parameters). The
primordial evolution phase is roughly consistent with estimates of the timescale for
the dynamical evolution of the TNO region in the early solar system and the mass
depletion during that phase (Levison and Morbidelli, 2003; Gomes, 2003). Figures

8.4-8.7 show the results of our simulations.

It is immediately evident that for the cases with a steep initial population
(Figs. 8.4 and 8.5) very little collisional erosion of the population occurs in any of
the cases. As Bernstein et al. (2003) detect a roll-over in the population towards
small sizes, it seems that either the strength law we are using is very far off, or that
it is unlikely that the initial population of either the classical or excited population

was steep.

For the cases where the initial population is shallow (Figs. 8.4 and 8.5), an
upturn in the population at small sizes (below the Bernstein et al. (2003) detection
limit) forms during the 4.5 Gyr of evolution. The upturn occurs at larger sizes
when primordial evolution is taken into account (Case 2) and somewhat larger still
when a broken power-law fragment distribution is used. Such an upturn could help
explain the discrepancy between the Bernstein et al. {2003) estimates of the number

of JFC precursors and the number required by dynamical models,
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Figure 8.4: Collisional evolution of the classical kuiper belt starting from a steep
initial population. (1) 4.5 Gyr, (2) 4.5 Gyr with primordial evolution phase at 1000

times the current mass for 100 Myr, and (3) same as case 2 but assuming a broken
power-law fragment distribution with r, == 0.5 and r,, = 0.01.
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Figure 8.5: Same as Fig. 8.4 but for the excited population.
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From excited population sources, Morbidelli (1997) estimates 4.5 x 10% JFC
precursors in the Plutino population and Duncan and Levison (1997) estimates 1.4 x
108 in scattered disk between 30-50 AU. For classical sources, Levison and Duncan
(1997) estimates 7 x 109 JFC precursors in the cold Kuiper belt. From Fig. 8.6,
in the cases where primordial collisional evolution has been taken into account,
this would imply that JFCs have diameters of ~ 200 m or so if they come from
the classical population. From Fig. 8.7, for the cases where primordial collisional
evolution has been taken into account, this implies that JFCs have diameters of

~ 500 m or so in diameter if they come from the excited population.

8.7 Conclusion

We have shown, through numerical collisional evolution simulations, that for rea-
sonable parameter choices, a shallow initial population for the classical and excited
TNO populations will experience an upturn at small sizes, increasing the number
of possible JFC precursor bodies. Constraining our simulations with observational
data from Bernstein et al. (2003) and comparing our results to dynamical models
of JFCs, we find that JFCs are on the order of 500 m in diameter if they come from
excited sources and about 200 m in diameter if they come from a classical source.
Our results are only based on a single strength law, the Benz and Asphaug (1999)
for ice, so it is quite possible that other strength laws would yield JFC sizes some-
what larger than our estimates, especially if TNOs are more like ‘dirty snowballs’

than solid icy bodies.

Bernstein et al. (2003), citing previous work (Cochran et al., 1995), esti-
mate that JFCs are ~ 10 km in diameter, but is this reasonable? Lamy et al., in
a preprint version of their Comets Il chapter, give sizes for the nuclei of dozens

of JECs, with many of them heing a few ki or less. With this estimate, and our
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simulations, it seems that there is much less of an inconsistency between the obser-
vationally determined TNO population and the population of JFCs than origivally

proposed by Bernstein et al. (2003).

Furthermore, our simulations indicate that starting with a steep initial
population, there would be insufficient collisional erosion of the population over
4.5 Gyr to match obgervational estimates of the current TNQO population. Both
our analytical and numerical models indicate that the TNO population most likely
began with a shallow initial population. This places a strong constraint on models

of the formation and evolution of the TNO population.
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CHAPTER 9

Summary and Discussion

The work presented in this dissertation encompasses both analytical and numerical
modeling of the evolution of the major small-body populations in the solar system-—
the main-belt asteroids, the near-Earth asteroids (NEAs) and the trans-Neptunian
objects (TNQOs). We have made substantial contributions to the understanding of

all of these populations of objects.

In Chapter 3 we develop an analytical model for the steady-state size dis-
tribution of a collisional population whose strength varies with size. Our analytical
model is a significant improvement over previous models that all treated strength as
a size-independent property, contrary to large amounts of experimental and theoret-
ical evidence. Our model is able to reproduce the general features of the main-belt
size distribution, such as the difference in average slope between the small and large
bodies and the waves formed in the size distribution of the larger asteroids because
of that transition in slope. Comparisons between our analytical model and a simple
numerical model show that it is quite accurate, and allows for reasonable predictions

in many cases that would otherwise require a numerical simulation.

In addition to collisions, dynamical processes, such as the sweeping of bodies
into resonances by the Yarkovsky effect, are able to perturb the size distribution
of main-belt asteroids and create the NEA population. In Chapter 4, we identify
the results of mumerical simulations by other authors, primarily those of Bottke
et al. (2000, 2002), that help constrain the dynamical removal rate of bodies from
the main belt and their lifetime as NEAs. In Chapter 5, we present a simplified

mathematical description of the Yarkovsky effect and derive an approximate relation
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for the removal rate from the main belt, and hence the supply rate of NEAs, as a

function of size.

In Chapter 6, we develop a self-consistent numerical simulation for modeling
the simultaneous collisional and dynamical evolution of the main-belt and NEA size
distributions due to collisional and dynamical effects. Our model is able to fit a
wide range of observational and theoretical constraints. Our model can match the
observed main-belt and NEA size-distributions, and as shown in Chapter 7 the
main-belt population is able to mostly reproduce the observed cratering records
on Gaspra, Ida, Mathilde, and Fros. The lifetimes of meter-sized bodies in the
main belt are within a factor of 2 of the average CRE ages of stony meteorites. In
addition, the number of large asteroid families we form (7) is consistent with the
number observed (8), and the basaltic crust of Vesta is preserved. Subsequent to
this work, no single model has been able to reconcile all six of these constraints.
The strength and non-collisional removal rates we use are consistent with estimates

by other authors, as well as our own estimate of the removal rate from Chapter 5.

An important result of our numerical simulations is that non-collisional re-
moval is not strong enough to remove enough bodies to give the orders-of-magnitude
depletion that has been invoked to explain the lack of small craters on Eros (Chap-
man et al., 2002) or the steepness of Gaspra’s cratering record (Hartmann and
Ryan, 1996). Collisional debris quickly replaces the bodies that are lost through
resonances and the Yarkovsky effect, thus preventing a runaway depletion even for

unreasonably large Yarkovsky-driven removal rates.

Several outstanding issues remain. We are not able to reproduce the de-
pletion of small craters on Eros. A number of explanations for this depletion have
been given, including Yarkovsky depletion of small impactors (Hartmann and Ryan,

1996; Chapman et al., 2002), which we can rule out, seismic eflects (Chapman et al.,
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2002; Richardson et al., 2004), which are currently beyond the scope of our mod-
eling, and the obscuration of small craters by boulders (Greenberg and O'Brien,
2003). We will address the latter two effects in more detail in future work. Our
model also predicts about a factor of 2 fewer large craters on Mathilde than are
actually seen. As a set of hydrocode runs for crater formation on a Mathilde-like
body is unavailable, and there is no consensus on exactly how Mathilde reacts to
impacts, we were forced to make siroplifying assumptions based on scaling laws that
may not be fully accurate in describing crater formation on Mathilde. Should a set
of hydrocode results for Mathilde that is comparable to the Nolan et al. (1996) re-
sults for Gaspra become available, we will incorporate those results into our model
of the evolution of Mathilde's crater population. Finally, the fact that using a 2-
slope power law (1, < 1) rather than a less realistic single-slope power law gives
a worse fit in our simulations probably points to a limitation of our model, rather

than indicating that asteroids break up following a single power-law.

With the increasing power of computers and the availability of fast N-body
codes, it will soon be possible to construct a collisional outcome matrix based on
numerical impact simulations rather than the semi-analytical algorithm we describe
in Chapter 6. Such a model would likely be more realistic than our algorithm, as
it can account for effects that our algorithm can not. For example, Michel et al.
(2002, 2003) have shown that one of our primary assumptions—that fragments reac-
cumulate on a common center-—isg generally not the case. Instead, several smaller
reaccumulated bodies often form, leading to a significantly different fragment size-
distribution than what we assume in our simulations. Despite its limitations, how-
ever, the model we have developed is powerful and has allowed us to reconcile a wide
range of observational and theoretical evidence that has thus far not been treated

as a whole.

A natural application of the analytical and numerical tools that we have
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developed for studying asteroids is to model collisional evolution in the trans-
Neptunian region. The TNOs, like the asteroid belt, are a population that evolves
under the influence of mutual collisions. In Chapter 8, we apply the analytical
model developed in Chapter 3 and the numerical model developed in Chapter 6 to
the collisional evolution of trans-Neptunian objects. We show that the TNO popu-
lation likely started with a shallow initial size distribution, and that the population
2 10 km is probably not in a collisional steady state. In addition, we show that the
population in the TNO region below the size range of recent observational surveys
(£ 10 km in diameter) is likely large enough to explain the observed numbers of

Jupiter-family comets.
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APPENDIX A

Power-Law Representations of Size and Mass Distributions

A number of different power-law representations of asteroid size and mass distribu-
tions are used in this dissertation and in the general scientific literature. Here we
derive the relationships between these different representations. Those relationships

are sumrmarized in Table A.1 at the end of this appendix.

The starting point is the ‘differential’ or ‘incremental’ size distribution

dN = BD"PdD, (A1)

where D is the diameter, dN is the incremental number of bodies in the size range
[D,D + dD}, B is a constant, and p is the power-law index. On a log-log plot,
Eq. A.1 would plot as a line with a slope of —p. If there are N(> D,) bodies larger

than D, in the population, B is found from

/ BD"dD = N(>D.) (A.2)
Df,
B]Jl'"p}oo «
e = N(> D, A3
[]_,_p = NGD) (A.3)
B = (p— 1)DVIN(> D). (A.4)

Note that p must be greater than 1 for the previous integration to yield a finite
value. With the value of B from Eq. A.4, the normalized incremental distribution

18



AN = (p — H)DP-'N(z D,)DPdD. (A5)

If instead of constant intervals dJ the intervals are of a constant logarithmic

size dlog D, the relation

d v d /[InD 1 .
Ei'"ﬁ(log D)= dD (In 10) ~ DIn10 (A.6)

yields
dD = DIn 10 dlog D, (A7)

which can then be used to convert Eq. A.5 to the log-incremental form

AN =1In10(p ~ 1)DP'N(> D,)D' P dlog D. (A.8)
Note that the exponent 1 — p is 1 larger than the exponent p in the incremental
distribution.

Eq. A.5 can be integrated to give the cumulative number distribution N(>

D)

N(> D) = /D (p— 1) DFIN(> D,)D~PdD (A.9)
(p~ DDP-IN(> D,)D-P]* |
L—p D

. Joep
= N(> D,) (T?) , (A.11)

Note that the exponent 1 ~ p is the same as for the log-incremental distribution,

and is 1 larger than the exponent p in the incremental distribution.



Using the relation

o T3
dM = @é«)wdj\/’, (A.12)

the incremental nunber distribution Eq. A.5 can be converted to an incremental

mass distribution

AM = i‘é)ﬁ (p - 1)DFIN(> D,)D*PdD. (A.13)

In the case of logarithmic intervals d log D, Eq. A.7 can be used to convert Eq. A.13

t0

AM = In 10 72)3 (p~ 1)DPIN(> D,)D*?dlog D. (A.14)

The mass contained in bodies of diameter less than D is given by integrating

Eq. A.13 to give

D

M(< D) = : -%e(p——- 1) DPIN(> D,)D*PdD (A.15)
. e i
= | (p — 1)DPIN(> D,)DP A.16
s 0= DDE NG D) (a0
P -1 4—p
= P (p—1)DP'N(> Do)D" A1T

A p greater than 4 will give infinite mass in the previous integration, which places

an upper limit of p = 4 for the case of a single power law extending to zero size.

The incremental distribution in Eq. A.5 can be converted to a function of

mass m rather than diameter using
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dm
dnD

where p is the density. The previous two

terms of m and dm and inserted into Eq.
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prl?
6

e T2

ﬁ%f (A.19)

(A.18)

equations can be solved for D and dD in

A5 to yield

AN = 57;(]) — ) DEIN(> Do)D" 2dm (A.20)
= };; (;;7;) (p—1)DP'N(> Dyym™5 din. (A.21)

The incremental number distribution as

a function of mass (Fq. A.21) was used,

with a different normalization factor, by Dohnanyi (1969) in his derivation of the

collisional steady-state. Dohnanyi found a value of 11/6 for the exponent of the

mass in Eq. A.21, which is equivalent to the more commonly quoted result that

p = 3.5. In the case of logarithmic intervals dlogm, the relation

dm = mlIn10dlogm,

(A.22)

which is analogous to Eq. A.7, can be used to convert Eq. A.21 to

dN == In 10 2
pr

. mAep
6 ki o ) Loop
(/%) (p—1)DF'N (> l)o)m"&'ﬁj“ dlogm.

(A.23)

The other distributions can be written as functions of mass as well. Equa-

tion A.11, the cumulative number of bodies larger than [, can be converted to the

number of bodies with a mass larger than m using Eq. A.18



o 7 - 1‘;1’
N(>m) = NS:,J&Q (ﬁn) m L?l' (A.24)

DI \pm

Equation A.21, the differential number distribution as a function of m, can be
converted to the differential mass distribution by simply multiplying it by m to

yield

m2ep

dM = % (6) (p-~ 1)DPIN(> Da)m“&“ﬂ‘e dm. (A.25)
£

In the case of logarithmic intervals d log m, Eq. A.22 can be used to convert Tq. A.25

to

, :3’«1:;1& -
dM =1n10 2 (i) (p—1)DP"IN(> 130)777,”1"?'%"1' dlogm. (A.26)
pr \ pm

Finally, Eqn. A.17, the cumulative mass in bodies smaller than D, can be

converted to the cumulative mass of bodies with mass smaller than m using Eq. A.18

-
6\ ° T - i-p
M(<m) = (-~— ——--——ﬁ-—»«(p ~ 1D IN(> D,)m’s . (A.27)
pr)  6(4—p)
The cumulative number and mass distributions as a function of mass (Eqns. A.24
and A.27) are used, with different normalization factors and modifications to allow
for different large- and small-mass slopes, in the collisional algorithm outlined in

Sec. 6.1.1.

If the absolute magnitude H is used instead of diameter D, the exponent
of the magnitude distribution can be related to the differential power-law index p.

The maguitude scale is logarithmic and a decrease of 5 magnitudes corresponds to
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an increase in brightness by a factor of 100, which, assuming a constant albedo,
corresponds to an increase in projected area by a factor of 100 or an increase in

diameter by a factor of 10:

D o 107875, (A.28)

Taking the logarithm of Eq. A.28 and then differentiating it gives

dlog D == mgﬁ. (A.29)
o]
If the H magnitude distribution is
dN o 107 dH, (A.30)

Eq. A.29 indicates that the factor «v in the exponent of Eq. A.30 is related to the
exponent 1 — p of the log-incremental distribution (Eq. A.8) by
~ba=1-—p, (A.31)

which, with Eq. A.30, gives the relation

dN o« 1075 4. (A.32)

In the case of maguitudes that are not absolute, such as the R magnitude used for
trans-Neptunian objects (TNOs) in Chapter 8, the magnitude cannot be directly
related to size without knowing the heliocentric distance, Earth-object distance, and

Earth-object-Sun angle. However, in the case of TNOs, if all bodies are assumed
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to be at the same average heliocentric distance, Earth-object distance, and Earth-

object-Sun angle, the above relations can still be used to relate the magnitude

distribution to the power-law index of the size distribution.

The different size and mass distributions are summarized in Table A.1,

along with the values of their exponents assuming p

result, for self-similar collisional systems.

= 3.5, the classical Dohnanyi

Power-Law Representations of Size and Mass Distributions

Distribution

Power-Law Expression

Exponent for p = 3.5

AN/dD
dN/dlog D
N(> D)
dM/dD
dM/dlog D
M(< D)
dN/dm
dN/dlogm
N(>m)
dM/dm
dM/dlogm
M(< m)
dN/dH

dN o< D™PdD
dN x D*Pdlog D
N(> D) o D'?
dM o D*¥PdD
dM oc D¥Pdlog D
M(< D) o D
dN oc mi=P—2/3 dm,
dN o m-P3 dlogm
N(>m) m's"
dM o m=P)/3 dm,
dM o« mW=P/3 dlogm
M(< m) o m*3"

AN x 1075 dH

-5/6
-5/6
1/6
1/6
0.5

Table A.1: Different power-law representations of size and mass distributions. The
value of the exponent of each of the power-law functions is given for p == 3.5, the
classical Dohnanyi equilibrinm value, For the H magnitude distribution, the value
of the coeflicient of H in the exponent is given.
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