
INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter &ce, while others may be 

from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order. 

UMI 
A Bell & Howell Information Company 

300 North Zed) Road, Ann Aibor MI 48106-1346 USA 
313/761-4700 800/521-0600 





VENUS EJECTA PARABOLAS: 

COMPARING THEORY WITH OBSERVATION 

by 

Christian James Schaller 

A Thesis Submitted to the Faculty of the 

DEPARTMENT OF PLANETARY SCIENCES 

In Partial Fulfillment of the Requirements 

For the Degree of 

MASTER OF SCIENCES 

In the Graduate College 

THE UNIVERSITY OF ARIZONA 

1 9 9  8  



UMI N\iinber: 1389291 

UMI Microform 1389291 
Copyright 1998, by UMI Company. All rights reserved. 

This microform edition is protected against unauthorized 
copying under Title 17, United States Code. 

UMI 
300 North Zeeb Road 
Ann Arbor, MI 48103 



STATEMENT BY AUTHOR 

This thesis has been submitted in partial fulfillment of requirements for an 
advanced degree at The University of Arizona and is deposited in the University 
Library to be made available to borrowers under rules of the Library 

Brief quotations from this thesis are allowable without special permission, 
provided that accurate acknowledgement of source is made. Requests for 
permission for extended quotation from or reproduction of this manuscript in 
whole or in part may be granted by the head of the major department or the Dean 
of the Graduate College when in his or her judgement the proposed use of the 
material is in the interests of scholorship. In all other instances, however, 
permission must be obtained from the author. 

SIGNED: 

APPROVAL BY THESIS DIRECTOR 

This thesis has been approved on the date shown below: 

Richard Greenberg 
Professor of Planetary Sciences 

Date 



3 

ACKNOWLEDGEMENTS 

I'd like to thank Jay Melosh and Rick Greenberg for their generous help and 
encouragement with this project. I also thank Ron Vervack. who developed the model of 
parabola formation with Jay Melosh. 

Thanks also to my officemates over the years, including Bob Reid. Jon Pedicino. 
David Trilling, and Rachel Mastrapa, for putting up with me. I also thank the people of 
the Image Processing for Teaching project for the same reason. Kim Cyr and Jennifer 
Grier also dealt well with my antics. Thanks! 

Finally, I must thank the members of Fugitive Group C—'Lon Chaney" Gibbard. 
"Fujiwara' Rivkin, 'Isa'Turtle. 'LeMorte' Reid. 'Yewshoot' Coker. 'Lady Kathryn" 
Mastrapa. 'Sparks' Vervack, and, of course, the Insidious Robotic VVu Han—for 
numerous nights spent battling the forces of evil, and Doug Dawson for providing us with 
plenty of surprises along the way. 



DEDICATION 

To Barbara and Robin Sc/ialler 



5 

TABLE OF CONTENTS 

ABSTRACT 8 

CHAPTER 1. INTRODUCTION AND BACKGROUND 9 

CHAPTER 2. THE PARABOLA FORMATION MODEL 14 

2.1. Ejecta Transport 14 

2.1.1. Phase 1: Ejection into space 14 

2.1.2. Phase 2: Ballistic trajectory above the atmosphere 15 

2.1.3. Phase 3: Atmospheric re-entry 16 

2.1.4. Phase 4; Wind transport 16 

2.1.5. Phase 5: Ground deposition 17 

2.2. Model Parameters 17 

2.3. Method 19 

CHAPTER 3. RESULTS 27 

CHAPTER 4. DISCUSSION 39 

4.1. Source Crater Transition Radius 39 

4.2. Agreement with Chicxulub and Extension to Non-Venusian Craters 40 

4.3. The Role of Minimum Thickness d 40 

CHAPTER 5. CONCLUSIONS 44 

REFERENCES 45 



6 

LIST OF FIGURES 

FIGURE la. Parabola Bassi 12 

FIGURE lb. Parabola Bassi (iModeled) 13 

FIGURE 2, Wind Transport Distance vs. Ejecta Panicle Diameter 22 

FIGURE 3. Anatomy of a Parabola 23 

FIGURE 4. Unnamed Parabola at -39.10°N, 97.10°E 34 

FIGURE 5a, DuChatelet Parabola 35 

FIGURE 5b. DuChatelet Parabola (Modeled) 36 

FIGURE 6. a vs. r 37 

FIGURE 7. v'5. r 38 



7 

LIST OF TABLES 

TABLE 1, Terminal Speed Altitude vs. Particle Size 21 

TABLE 2, Observed Parabola Parameters 24 

TABLE 3, Modeled Parabola Parameters 31 



8 

ABSTRACT 

The Magellan radar imager detected approximately 60 dark (i.e. low backscatter 

cross section) parabola-shaped features on the surface of Venus; each parabola is oriented 

with the open end toward the west and envelopes an impact crater near its "focus." In 

this thesis, I use a model of parabola formation to tit the 58 Venusian parabolas observed 

to date, as well as 9 circular features that are similar to the parabolas: I achieve good 

results for -65% of the 41 parabolas that meet the conditions for the model to apply. As a 

result of modeling the parabolas. I derive a quantitative description of the distribution of 

small (~1 cm to ~1 }im in diameter) impact ejecta over a planetary surface. My results 

agree well with the distribution of fine impact ejecta derived for the Terrestrial impact 

crater Chicxulub. In addition, these results lead to a method for estimating the quantity 

of fine-grained material available on Venus for surface transport processes such as 

saltation. 
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CHAPTER 1 

Introduction and Background 

During its extended mission to Venus, the Magellan synthetic aperture radar (SAR) 

detected approximately 60 dark (i.e. low backscatter cross section), parabolic features 

("parabolas") in the plains regions of Venus (Campbell et al.. 1992). These features 

share several common characteristics: Each parabola is very large, covering several 

hundreds of thousands of square kilometers. Each parabola is oriented with the blunt tip 

(the "head") pointed due east and the open end (the ""tail") due west. Finally, each 

parabola has a crater located on the axis of symmetry, near the blunt, eastern end; in most 

cases, the crater's floor is bright in radar backscatter cross section. In this thesis. I name 

each parabola according to the interior, on-axis crater; e.g. Adivar parabola lies around 

the crater Adivar. Figure la shows Bassi, a typical parabola. 

In addition to the parabolas, Campbell et al. (1992) report the existence of nine large 

circular features that resemble the parabolas in every respect other than shape. I include 

these features in my work here; for convenience. I refer to these circular features as 

parabolas as well, except where explicitly noted. 

The parabolas are most sharply defined and typically exhibit the lowest levels of 

backscatter cross section (and thus appear darkest) near the head; along the sides and tail, 

the backscatter cross section blends in with the surrounding plains' backscatter cross 

section. In most cases, surrounding geological units are visible within the body of the 

parabola. In a few cases (e.g. Stuart), large geological features actually define the western 

edge of the parabola's tail, presumably due to the location of the crater in relation to the 

interrupting feature; in Stuart's case, the interrupting feature is Alpha Regie. 

Under the Magellan viewing conditions (i.e. incidence angles between -15° and -45° 
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with a 12.6 cm wavelength radar signal), a low backscatter cross section (a visually dark 

pixel) implies a smooth surface on scales comparable to the radar wavelength. The 

location of the craters and the fact that every parabola has a crater suggest that the 

parabolas are products of impact cratering. The orientation of the parabolas, the 

generally low backscatter cross section, and the blending of the parabola material with 

the surrounding plains units suggest that the parabolas formed when the impact crater 

ejecta scattered under the influence of the high-altitude Venusian winds, which blow from 

east to west at high speeds. 

In cases where the parabolas partially overlap multiple geological units, the 

stratigraphy implies that the parabolas are among the youngest features on Venus. Based 

on such stratigraphy. Campbell et al. (1992) suggested that the bright-floored putative 

source craters are among the freshest, most pristine craters on Venus. Therefore, dark-

floored craters are older. Based on crater counts and the observation that -10% of 

Venusian craters have parabolas (or extensive circular features similar to parabolas). 

Arvidson et al. (1992) estimate the mean time to completely erode a parabola to be -60 

million years. 

Models of crater ejecta distribution (e.g. .McGetchin et al.. 1973) have generally 

focused on the impact ejecta near the crater rim (the proximal ejecta). Particles in this 

ejecta are typically several centimeters to meters in scale. The parabola particles are 

probably smaller than that: based on a surface roughness model. Campbell et al. (1992) 

show that the particles are < 2 cm in diameter. 

Vervack and Melosh (1992) investigated the emplacement of this fine, far-flung 

("distal") component. Here, I use their model to fit the parameters of the observed 

Venusian parabolas and derive a quantitative description of fine, distal ejecta distributed 

over a planetary surface. I thus test the Vervack and Melosh model by investigating how 
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well, with plausible parameter values, it fits the actual distribution of wind-scattered 

ejecta fines. 
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FIGURE la. Parabola Bassi 

FIGURE 1: (a) The ejecta parabola around the crater Bassi. located at 19.0°S. 64.7°N. r 

= 16.5 km. The entire image is approximately 1800 km across. (Image from C2-

MIDR.30S078;1. 201. and 301.) 
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FIGURE lb. Parabola Bassi (Modeled) 
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FIGURE 1: (b) Thickness contours for the best fit model of Bassi, using a - 2.65. d = 

12 m, and 5 = 1 cm. Contours are shown for 1 cm (solid line). 3 cm (short dash), and 10 

cm (long dash). Higher contours were omitted for clarity. Distances are in km. The plot 

is at the same scale as (a), and the crater Bassi is located at the origin of the plot. The 

origin of the plot matches the center of Bassi in Fig. la. 
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CHAPTER 2 

The Parabola Formation Model 

2.1. Ejecta Transport 

The Vervack and Melosh model describes a process for transport of ejecta from a 

crater site to the ejecta's landing point. It consists of five distinct phases: (I) During the 

formation of the impact crater, the expanding vapor plume carries particles (melt droplets 

and/or lithic fragments) out of the atmosphere. (2) The particles travel on ballistic 

trajectories in the vacuum of space. (3) At considerable distances from the source crater, 

the particles re-enter the atmosphere and rapidly decelerate, after which (4) wind 

transport is the dominant mechanism. (5) Finally, the particles reach the ground, building 

up the parabolic shapes observed with the Magellan radar. I briefly review these phases 

below in order to examine their restrictions and implications in the formation of the 

parabolas. 

2.1.1. Phase I: Ejection into space 

During the formation of the crater, the expanding vapor plume carries particles 

vertically through the atmosphere. If the crater-forming impact is sufficiently energetic, 

the plume will expand beyond the atmosphere of the planet. As it rapidly expands into 

space, the ejecta particles decouple from the vapor, acquiring the ballistic trajectories that 

carry them the requisite distances. If. however, the energy is insufficient, the plume will 

not escape the atmosphere, preventing the particles from being widely dispersed. 

Vervack and Melosh (1992) showed that the minimum energy required for an 

atmosphere-breaching plume corresponds to an 8 kilometer radius crater. Thus, the 

nominal Vervack and Melosh model does not apply for the -20% of parabolas with 
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source craters smaller than 8 km in radius. However, that model explicitly neglected 

aero-braking of projectiles, so the true transition crater radius, r, may be larger than 8 

km, in which case >20% of parabola-associated craters would not launch ejecta into the 

second phase. I show in Chapter 3 that the model actually seems to fail for craters of 

radius r < 9.5 km, so that -30% of parabolas do not meet the conditions for the model to 

2.1.2. Phase 2: Ballistic trajectory above the atmosphere 

The exact relationship between a particle's ejection speed (and hence range r) and the 

particle's diameter J is not precisely known. However, ob.servations of terrestrial tektite 

and microtektite strewn fields (e.g. Glass and Pizzuto. 1994). as well as analysis of ejecta 

from the terrestrial impact crater near Chicxulub (Vervack and Melosh, 1992), suggest 

that smaller particles generally travel greater distances. A general function of the form 

r oc describes a wide range of possible relationships. Vervack and Melosh (1992) 

use the following equation to describe a particle's range as a function of its diameter: 

In Eq. 1, r is the crater radius and J (called the "reference particle size") and a are 

parameters to be determined observationally. Note that the reference size might not 

represent any real particle, since it is determined by extrapolation to the crater rim; tl is 

never measured directly, and the actual particle size on the rim may be different if the 

extrapolation breaks down at small r. Since smaller particles travel greater distances. I 

assume a is positive. 

apply. 

( 1 )  
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2.1.3. Phase 3: Atmospheric re-entry 

Particles re-enter the atmosphere with initial speeds and angles determined by their 

ballistic trajectories. The dense atmosphere decelerates these particles to a terminal speed 

at an altitude of - and z,^ are theoretically-derived functions of the particle size that 

Vervack and Melosh (1992) have summarized in their Table I; I repeat it here (Table 1) 

for convenience. In general, smaller particles (with their higher ratio of cross-sectional 

area to mass) reach terminal speed at higher altitudes than larger particles. I assume that 

the particles' initial horizontal positions are only negligibly changed during this phase, 

because the horizontal component of velocity is rapidly reduced to zero for a broad range 

of particle sizes and entry velocities. 

2.1.4. Phase 4: Wind transport 

As a panicle reaches its terminal speed, wind transport becomes the dominant 

mechanism for subsequent motion. In this model. I treat an individual particle as a 

spherical object falling within a dense, moving, fluid atmosphere. Density, viscosity, and 

wind speed functions of altitude describe this atmosphere: these functions come from the 

"standard" Venus model atmosphere of Seiff et al. (1985). As described in Chapter 1. it is 

generally thought that the parabolas are among the youngest Venusian surface features. I 

assume that changes in the atmosphere since their formation have been negligible, as 

Seiff et al. have suggested, and that the standard model atmosphere for the present 

adequately represents the atmosphere at the time the parabolas were formed. 

The atmosphere drags a falling particle along with it in the direction of the wind. 

which is from east to west on Venus. I assume that inter-particle forces produce 

negligible effects, although Vervack and Melosh (1992) point out that this assumption 

may be incorrect for large craters. For a given atmospheric profile (wind velocity, etc.). 
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the resulting horizontal travel distance due to wind transport is a function of particle size 

and initial altitude, which itself is a function of particle size; I illustrate this function in 

Figure 2. 

2.1.5. Phase 5: Ground deposition 

Given that the horizontal offset of a falling particle is a function only of its size and 

the atmospheric wind profile, and given the assumption that particles of a particular size 

re-enter the atmosphere at a uniform radial distance from the center of the source crater, 

one can view the fallen ejecta as a .series of offset annuli. Each annulus has a mean radius 

of r for a given mean particle size, d (Eq. 1). If the particle diameters are sufficiently 

small (< 1 cm. Campbell et al. [1992]), the resulting deposit of material will present a 

smooth surface to the Magellan radar. Such a surface returns veiy little backscatter to the 

radar at Magellan cycle 1 incidence angles, resulting in a "dark" area in the SAR image. If 

the deposit is sufficiently thick, it will obscure underlying surface features. 

2.2. Model Parameters 

In this thesis, I consider each of the 57 parabolas and 9 circular features described by 

Campbell et al. (1992) plus an additional parabola (Winema) not included in that data set. 

A set of five parameters defines the size and shape of each parabola (Figure 3): the radius 

of the source crater (r ), the maximum width of the parabola, the parabola's total 

length the width W of the parabola at the source crater's central longitude, and the 

distance L from the center of the crater to the eastern, blunt tip of the parabola. I list 

these parameters in Table 2 for the 67 features under consideration. In addition. I list the 

coordinates of the putative source crater for each parabola. The crater radii and 

coordinates are from Schaber et al. (1992); Lj, and L are from Campbell et al. 
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(1992). Values for VV come from my measurements. 

A final observational parameter is the thickness of the deposit represented. The 

existence of an observable parabola requires some minimum thickness S. Campbell et al. 

(1992) note that a deposit's thickness must be a significant fraction of a radar wavelength 

in the medium in order to produce a dielectric interface; they suggest a value of 

~ oi" about 2 cm for a Magellan sar A = 12.6 and a deposit with dielectric 

constant £=3. They further note that, in order to completely obscure the underlying 

terrain, 5 must be at least comparable to that terrain's surface roughness. 

Since the exact value for 5 is unknown, I treat it as a free parameter. Those parts of a 

parabola that are < 5 thick are effectively transparent to the Magellan SAR and reveal 

instead the rocky surface underneath. My measurements and those of Campbell et al. 

(1992) of the observed parabolas' dimensions represent only that part of the deposit with 

thickness > S. The theoretical model of Vervack and Melosh (1992) gives deposit 

thickness as a function of position relative to the crater's center, with the minimum 

deposit thickness a function of the smallest particle size that re-enters the atmosphere, 

generally less than <5. In measuring the model parabolas, I cut off the extent of the 

deposit at the contour level corresponding to thickness S. This process mainly affects 

and W . since the thickness contours are close together at the blunt head of the parabola 
nun *- ^ 

and are widely dispersed only in the downwind tail. 

For a particular crater of radius r , the only unknown parameters controlling the 

model of parabola emplacement are a and d in Eq. 1. In what follows. I adjust the 

parameters a and cl to fit the observed character and dimensions of Venusian parabolas. 

The value of S determines the thickness of the deposit at which I measure L . W. and 

W for a particular model of r , a, and d . 
miLX ^ i I. 
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2.3. Method 

In modeling the 67 parabolas under consideration. I followed only those ejecta 

particles that re-entered the Venusian atmosphere within the ranse r < r< (0.55 W ). 
*• 1 w nun niiLX 

where r is the initial horizontal distance from the center of the crater, from Eq. 1. The 

parameter represents the minimum distance beyond which ballistic ejecta fall, since 

the dense Venusian atmosphere halts ejecta panicles that do not initially rise above some 

minimum height to escape atmospheric drag. Vervack and Melosh (1992) suggest 100 

km as a reasonable value for r for parabolas with source craters with r < 10 km. I set 

r to 50 km in order to account for their smaller sizes. The maximum horizontal 
nun 

distance that the detectible crater eiecta are thrown is W /2. but to account for 
nuu 

uncertainty in this measurement, I chose 0.55 as the upper limit for my calculations. 

To determine the best-fit model parameters a .  c l ,  and d  for a given parabola. I applied 

an iterative bisection algorithm to the results of a series of initial models. For each 

parabola, the initial values of the parameters in Eq. 1 were 2.5. 2.6, and 2.7 for a. and 10 

m, 30 m. and 100 m for d, based on the work of Vervack and Melosh (1992). I computed 

the deposit pattern for each of the nine combinations of parameters, and then I measured 

the deposits' dimensions at 5= 1 cm, <5=3 cm. and (5= 10 cm. For the next iteration. I 

set the extreme values of the new range equal to the two values of a and of d that yielded 

a modeled deposit with dimensions L .W ,L^ and W that best matched the observed 
^ t / ftULX 

dimensions: the middle value of a and d was the average of the two extremes. In 

general, for a given iteration, I found the best match to each observed dimension in the 

same region of (a, d) parameter space, so that if a = 2.6 and J. = 1 m resulted in the best 

fit to W and L , the best fit for W and would have the same (or nearly the same) 
t t' miLx T J ' 

values for a and d . To distinguish between close results. I weighted W and L more 

heavily than and because the latter dimensions contain more observational 
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uncertainty. 

I iterated this process until I found an (a, d ) pair that yielded the best match in all 

four observed dimensions; I define this pair as the best-fit model. A typical parabola 

required five to seven iterations to yield the best fit. For most of the observed parabolas. 

I found the best-fit model at a single value of 5, which was usually either 1 cm or 3 cm. 

(Cotton and Edinger stand out with <5 = 50 cm and 23 cm. respectively.) For Austen, 

however, I found a good fit at 5 = 2 cm as vvell as at I cm. and for Adivar. I found an 

entire range of S (from 3 cm to 7 cm) that yielded reasonable modeled deposits. 
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TABLE L Terminal Speed Altitude vs. Panicle Size 

Particle Diameter (cm) 

10 
I 

0.1 

0.01 

O.QOL 

Altitude (km) 

53 

67 

7S 

87 

1)6 

TABLE I; Altitude below which ballistic ejecta particles fall at terminal speed on Venus. 

From Vervack and Melosh (1992). 
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FIGURE 2, Wind Transport Distance vi-. Ejecta Particle Diameter 
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FIGURE 2: Wind transport distance versus ejecta particle diameter for particles re

entering the Venusian atmosphere. The kink in the plot is due to the "drag crisis" that 

Vervack and Melosh (1992) noted, as the flow of atmosphere around the particle changes 

from laminar to turbulent. 
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FIGURE 3. Anatomy of a Parabola 

W,. 

rmx 

FIGURE 3; Schematic representation of a parabola and its putative source crater, 

s h o w i n g  r  , L  , W ,  a n d  W  .  
t f f r max 
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TABLE 2. Observed Parabola Parameters (Caption) 

TABLE 2: Observed parameters of Venusian ejecta parabolas. I follow the convention of 

Campbell et al. (1992) in classifying the deposits: "pd" indicates a dark ( low backscatter 

cross section) parabola, "pa" indicates a parabola of the same general form as Adivar 

(i.e.. a dark parabola with a smaller interior parabola with higher backscatter cross 

section), "po" indicates a so-called "open parabola." "pb" is a bright (high backscatter 

cross section) parabola, "pe" indicates a parabola that appears in the emissivity data, and 

"c" indicates a more circular deposit. Crater names, locations, and radii come from 

Schaber et al. (1992). Values for L (the distance from the center of the putative source 

crater to the parabola head). (the total length of the parabola), and (the width of 

the parabola) come from Campbell et al. (1992). Values for \V (the width of the parabola 

at the source crater's central longitude) come from my measurements. 
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TABLE 2, Observed Parabola Parameters 

Source Crater Observed Parabola Dimensions (km) 

Name Lat. (=N) Long. (°E) Type \V 

Annia Faustina 22.10 4.70 11.25 pd 85 453 630 720 

Holiday -46.75 12.85 13 pd 126 800 1180 750 

Ruth 43.29 19.90 9.0 pd 77 220 900 llOO 

Stuart -30.75 20.20 34.5 pd 198 795 1220 1660 

unnamed 33.45 22.70 9.75 pd 86 580 960 930 

Baihsheba -15.10 49.35 18.0 pd 230 800 1530 1640 

Francesca -28.0 57.70 9.0 pd 63 2S0 410 410 

Bassi -18.95 64.70 16.5 pd 88 440 880 1070 

Jadwiga 68.40 91.00 6.25 pd 40 I 10 4(X) 590 

Li Quingzhao 23.75 94.55 10.75 pd 70 400 710 756 

Boulanger -26,55 99.30 360 pd 270 960 1330 1680 

Caldwell 23.55 112.10 22.0 pd 130 590 1290 1250 

Yonge -14.00 115.10 12.75 pd 108 440 880 970 

Merit Rah 11.30 115.65 9.25 pd 30 220 740 560 

Pimiko 19.00 124.17 18.25 pd 150 510 930 1160 

Phyllis 12.30 132.40 6.25 pd 77 210 390 290 

Greenaway 22.95 145.00 46.0 pd 468 20(X) 1750 1990 

Ban Zhau 17.20 146.90 21.0 pd 170 500 1120 990 

Austen -25.00 168.35 23.0 pd 240 830 990 1380 

Winema 3.00 168.60 11.0 pd 72 260 240 390 

Martinez -11.65 174,70 12.5 pd 240 790 860 7(K) 

Akiko 30.65 187.10 11.75 pd 70 160 590 440 

Yabloehkina 48.27 195.15 31.5 pd 366 940 1260 1520 

unnamed 2.32 198.25 20.0 pd 135 400 7a) 760 

Edinger -68.80 208 35 17.0 pd 90 250 460 410 

Boleyn 24.40 219.90 34.5 pd 230 1060 940 I5(X) 

Akeley 8.00 244.40 12.25 pd 90 360 750 850 

Glaspell -58.45 269.60 13 0 pd 147 440 130<) 772 

Lyon -66.55 270.50 6.75 pd 94 230 685 520 

Montesori 59.45 280.25 21.75 pd 140 840 1150 13(M) 

Cotton 70.75 300.30 23.5 pd 142 450 1300 950 

Dashkova 78.30 306.20 23.75 pd 270 770 965 1220 

Aurelia 20.25 331.85 15.5 pd 130 414 640 750 

Magnani 58.60 337.00 13.3 pd 8S 257 690 527 

Comnena 1.20 343.65 9.75 pd 72 230 470 560 

Carson -24.20 344.10 20.5 pd 148 504 980 950 

Audrey 23.75 348.67 7.6 pd 36 113 165 160 

Adivar 8.95 76.10 15.5 pa 175 460 1020 860 
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TABLE 2—continued 

unnamed -39.10 97.10 4.0 po 50 200 400 550 

Monika 72.30 122.30 13.0 po 262 560 770 455 

(Ju Chatelel 21.50 164.95 9.25 pa 135 560 720 760 

Guan-Daoshcng -61.05 181.80 23.0 pa 244 515 1560 1600 

Silwell 16.68 190.35 17.25 po 110 560 760 S40 

Von Schuurnian -5.00 190.95 14.5 pa 115 430 720 710 

Euilocia -59.05 201.80 13.75 pa 370 820 1080 1250 

Stowo I o
 

233.00 41.0 po 460 1280 1520 1320 

Adaiah -47.30 253.35 9.5 pa 225 215 830 822 

Sabin -3S.5 274.65 18.0 pa 300 1250 1200 1630 

Abingion -47.75 277.80 11.25 pa 63 300 795 515 

Cohn -33.20 208.10 10.25 pb 110 400 770 830 

unnamed 2.90 4.95 3.0 pe 52 220 655 767 

Frank -13.10 12.90 11.5 pe 126 493 574 890 

unnamed -40.80 151.60 6.5 pe 50 300 460 560 

unnamed 66.20 177.60 2.5 pe 23 230 480 560 

Rose -35.15 248.20 7.5 pe 220 765 810 1110 

unnamed 0.90 338.75 54 pe 38 238 705 835 

unnamed 10.60 346.30 6.4 pe 90 389 691) 709 

N'adine 7.80 359,10 9 5 pe 102 455 1033 923 

Flagslad -54.30 18.90 20.0 V." 245 2S0 315 2X0 

Zenobia -29.35 28.55 19.5 C 4SU S90 900 890 

Ermolova 60.25 154.20 32.0 c 500 900 945 900 

unnamed 17.40 170.40 19.0 0 250 650 653 670 

Stanton -23.40 199.90 55.0 c 1030 2150 1900 2100 

Mumtaz Mahal 30.25 228.35 19.5 0 330 860 690 860 

Hayasi 53.85 243.65 23.5 c 500 770 1000 730 

Galina 47.55 307.10 9.0 c 270 300 470 345 

Lind 50.25 355.00 14.0 c 195 215 325 240 

TABLE 2: (Caption on page 22) 
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CHAPTER 3 

Results 

Table 3 shows the best values of a. d. and 5 for each of the parabolas; [ also report 

the mean thickness T (i.e. the total volume divided by the total area) of the 

theoretically-modeled parabolas. I fit most values of L to within -109^. I fit W to 

within -20% for the majority of craters with r > 9.5 km. and were generally fit to 

within -50%. W and describe the more diffuse regions of the parabola and thus 
nuLX J r 

contain more observational uncertainty than W or Z,. so the 50% uncertainty may be 

partially due to observational measurement error. The systematically poor fits in these 

dimensions, however, suggest that the model may not account for every aspect of the 

emplacement of an ejecta parabola. Observational parameters \V and L describe the 

portion of the parabola that is most sharply defined and therefore most accurately known, 

which helps explain the good fit of the theoretical model. In addition, this region of the 

parabola (the head) contains the most material as well as the largest particles, which fall 

closer to the source crater than smaller particles (Eq. 1). Post-emplacement modification 

processes that affect the parabolas are therefore likely to require longer timescales to 

modify the shape of the head than the tail. 

I successfully matched 32 of the 58 strictly parabolic features and 1 of the 9 circular 

features. I define a "successful" fit as one in which the L_ and W dimensions are each tit 

to within 20%. In addition, the shape of the modeled deposit must agree well with the 

observed parabola. For example, the unnamed feature located at -39. lO^N. 97. IO°E. 

seems to be a successful fit according to Table 3 (8% error in L , -6% error in VV). 

Examination of the modeled deposit (Figure 4). however, reveals the union of a very 

narrow crescent and a circle instead of a parabola at the 5 = 1 cm contour. Thus, the 
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model fails for this feature, which has a crater radius of r = 4.0 km. 

17 of the 58 parabolas have source craters with r < 9.5 km. In general, 1 was unable 

to model this population of parabolas with this method, since the source craters of these 

parabolas have radii on the same order as (or less than) the transition radius that Vervack 

and Melosh (1992) calculated. The slightly larger r detlned by this population (9.5 km 

compared to the 8 km calculated radius) probably reflects the role of aero-braking that 

Vervack and Melosh explicitly neglected (Section 2.1). If I discard the population of 

parabolas outside the model's requirements, I have successfully matched 27 out of 41 

parabolas, approximately 65% of the applicable population. (This number includes those 

parabolas that I could model only with 5> 1 cm.) Figure lb shows the best model tit to 

Bassi. Figure 5a shows an example of a parabola with a putative source crater 

(DuChatelet, r = 9.25 km) that has r < r. Figure 5b shows the best model t"it to 

DuChatelet; the model fails for DuChatelet. since r < r. 

One noteworthy detail of Table Sis the extremely poor "best t~it" to the L dimension 

of the features that Campbell et al. (1992) classify as circular deposits. While the W, 

and fits tend to be quite good (with a few exceptions, namely Stanton and iMumtaz 

Mahal), the L fits tend to be extremely low. The model underpredicts this dimension by 

-50%. Occam's Razor suggests that the processes that formed these large circular 

deposits should not be radically different from the processes that formed the parabolas. 

The final shape of the modeled deposit depends, in part, on the details of how the 

particles fall within the atmosphere (phase 4 of the model) as well as the partitioning of 

kinetic energy during the initial stage of the particles' ballistic trajectory (phase 2 and Eq. 

1). Changes in these stages of the model would tend to alter the shape of the tlnal 

deposit. I leave further discussion and investigation of these details to future work. 

An additional point of interest comes from the observation that one misfit parabola. 
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Greenaway, corresponds to the largest crater (/- = 46 km) on Venus to exhibit a strictly 

parabolic deposit. An additional misfit deposit, Stanton, corresponds to the largest crater 

(r = 55 km) to exhibit a circular feature. During their fall to the surface, ejecta particles 

from craters of these large sizes may be close enough to each other to introduce 

significant inter-particle forces, violating the assumptions of the mode'. In addition, for 

ejecta from large craters, the curvature of the planet may become important. I 

successfully fit the parabolas around the craters Stuart and Stowe (34.5 km and 41 km 

radius, respectively), however, suggesting that the transition radius to this new. 

hypothetical domain (where inter-particle forces and planetary curvature become 

important) is between 41 km and 46 km. 

The existence of a second large crater (Marie Celeste, at 23.45° N. 140.2°E. r = 47.5 

km) within the Greenaway parabola may further complicate attempts to model that 

feature. If Marie Celeste is relatively young, it should also exhibit a parabola, since we 

expect all Venusian craters with r > r to produce parabolas. If such a parabola exists 

around Marie Celeste, then this hypothetical parabola would lie within the region 

currently attributed entirely to Greenaway; Greenaway may actually be the union of two 

parabolas. It is impossible to estimate adequately Marie Celeste's age relative to 

Greenaway (and therefore to determine whether Marie Celeste should exhibit a parabola 

or not) by observing the crater floor's backscatter cross section (Chapter 1). While the 

crater is dark-floored, this darkening may be due to the fallout of the Greenaway ejecta 

rather than to age. 

In Figure 6,1 plot a versus r for the 41 strictly parabolic features with source crater 

r > 9.5 km. a is very tightly constrained and remains approximately constant over the 

wide range of crater radii modeled. The average value for a is 2.65 ± 0.05. 

I plot the relationship between c/ and r in Figure 7. The best least-squares fit to this 
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relationship is a power-law function: 

<=2400/;-"-'"'. (2) 

where c/ is in meters and r in kilometers. The coefficient in Eq. 2 has a 1-cr range of 

jq3.39-()35^ i.e. from 1 ICQ to 5500, or about a factor of 2. Note that the reference size 

decreases with increasing crater size. Extrapolating the particle size back to the crater 

rim (r = r ) suggests that large craters will have smaller ejecta near the rim than smaller 

craters. This result is contrary to observations of blocks on lunar crater rims (e.g. Moore. 

1971); however, my vvork focuses on the distal portion of a crater's ejecta, so the 

extrapolation from our results back to the crater rim may not be meaningful (Chapter 2). 

Campbell et al. (1992) constrain the mean thickness 7^ of the observed parabolas 

by modeling the reduction of backscatter cross section across plains units that the 

parabola material has partially covered. Their analysis is consistent with thicknesses of a 

few centimeters to a few meters. My results agree with their estimates; the best fit to 

Cohn (/- = 10.25 km) has T =1 cm, and the best fit to Stowe (r =41.0 km) has T = 
L nic'iin L fHi'U/i 

137 cm. Cohn and Stowe represent the extremes of model parabola mean thicknesses. 

For a typical model parabola. 2 cm < 7 < 20 cm; larger craters produce more material 

of a given size and therefore thicker parabolas. 

Finally, I matched the model to most of the parabolas assuming S= 1 cm; I could only 

fit the remaining few, however, with higher values of S. The larger values of S for these 

parabolas may be an age effect; I explore the implications of this observation in the next 

chapter. 
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TABLE 3, Modeled Parabola Parameters (Caption) 

TABLE 3: Best-fit model parameters and dimensions for the Venusian ejecta parabolas. I 

show the percent-error between the best model and the observed deposit in each case; the 

percent-error is calculated as (model dimension - observed dimension)/observed 

dimension. A bullet ("•") beside a parabola's name indicates that I consider it to be a 

successful fit; parabolas with source crater r < 9.5 km are not included with the 

successes, as discussed in Chapter 3. r is the crater radius, a and J are parameters for 

Eq. I, 5 is the minimum detectable thickness, and T is the mean thickness of the 

deposit. L , W, and VK are defined in the caption for Table 2. 
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TABLE 3. Modeled Parabola Parameters 

Model Parameters Best-Fit Model Dimensions 

Name ikm) a < S 

•Annia Faustina 11.25 2.68 38 1 •ATc -i3rc -20'~c -l5'-r T 

Holiday 13 2.62 37 1 5'-r -3l'7r -52^^ -15'-r 3 

Ruth 9.0 2.67 55 1 {Tc 35<> -57'-, -57'r 4 

•Stuan 34.5 2.67 3.75 1 -I'f 9'> -22'-< -21'-, S 

unnamed 9.75 2.65 57 1 9"^ -30'> -57'r -4.S'~r 5 

•Bathsheba 18.0 2.63 26 1 6'7c 15T- -45"^- -42'"c 7 

Francesca 9.0 2.47 27 1 llTr -12^^ -yc OTr 5 

•Bassi 16.5 2.65 12 1 irc - I ' t  -25<-r -16'rr 7 

Jadwiga 6.25 2.57 46 1 S'-r 389- -48 -44'-, 1 

•Li Quingzhao 10.75 2.63 31 1 17T- -16'rr -34^-, -22'-c T 

•Boulanger 36.0 2.64 4.5 1 UQ -22'> -24'7- ss 

•Caldwell 22.0 2.65 S 1 8''r -35'> -10'", 20 

•Yonge 12.75 2.75 39 1 •y'i 5'"c -39'7 -26'-, 

Merit Ptah 9.25 2.64 12 1 7^r -41'-r •44'"r -15'-, 5 

Pimiko 18.25 2.64 17 1 -l-^r 36^ -21^7 -IS'-f 7 

Phyllis 6.25 2.65 170 1 6'^ 20'^r -38'-f -2'-, T 

Greenaway 46.0 2.59 20 1 -I4rr -43'7- -43""^ -43'-, 221 

Ban Zhao 21.0 2.58 10 1 5^^ 53'^ -17'> 7'-, 14 

•Austen 23.0 2.66 14 1 l^f 20^^ 1'7 -1 I'-r 17 

•Winema 11.0 2.67 33 0'"c 21'"c -l--. J •» 

•Martinez 12.5 2.66 185 1 2^c -ZWr -33'-r -9'-, 

Akiko 11.75 2.65 20 1 jO'r -11 <7 lO'-r 4 

•Yablochkina 31.5 2.65 10 1 l^r 169 -I2'"r -25'-, 56 

unnamed 20.0 2.64 12.5 3 2'> -7'-< 15 

•Edinger 17.0 2.64 18 50 1 IT- -46'7 -28'-, 

•Boleyn 34.5 2.63 4.25 1 5'> -5'^ -16'-, 7S 

•Akelcy 12.25 2.67 27 I -2':^ -2S'"i -IS'-r > 

Glaspell 13.0 2.60 50 1 17"^- 409^ -52<> -I5'> 3 

Lyon 6.75 

O
 

ri 

120 1 6"^ 37'> -60Tr - y T r  

•Momesori 21.75 2.67 10 1 9Tr -U'-c -23'7 -y-. 17 

•Cotton 23.5 2.70 12 23 3T-t l'"c -68T -49'^r 

•Dashkova 23.75 2.65 IS 4 -3'~r -2't - l 9 '-f -35'-, 19 

Aurelia 15.5 2.62 55 1 29'"r -17<7 -23'-, T 

•Magnani 13.3 2.70 18 1 -1 I'^r -14'?; 5 

•Comnena 9.75 2.78 50 1 OTr iTr -l2'-r -12'-, 5 

Carson 20.5 2.60 9.5 1 O'-c 35'> -lOTr 15 

Audrey 7.6 2.74 30 1 -5 "J \Tr 22'7f •i'-r 9 
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TABLE 3-—continued 

•Adivar 15.5 2.72 52 3 2'r 17", -53'^r •341 5 

unnamed 4.0 2.49 205 1 8'-c -6"c -63':^r -(>21 < 1 

•Monika 13.0 2.60 220 1 -\l"c -1 17r -35Tr \()1 s 

du Chalclct 9.25 2.70 160 1 -25T- -49'7r -421 4 

Guan-Daosheng 23.0 2.54 45 1 •ATc 3n- -54':^ -551 -) 

•Sitwell 17.25 2.65 15 1 O'Tc -I -11 9 

Von Schuurman 145 2.67 27 1 3^ 2ITr -151- f)1 5 

•Eudocia 13.75 2.60 340 1 -14T- -30Tf -431 •> 

•Stowe 41.0 2.66 10.5 1 -I3':r -15'r -28'^ -\51 137 

Adaiah 9 5 2.66 50 3 -63'r 53^^ -5 I '7 -401 4 

Sabin 18.0 2.55 29 1 3'? -31T- •251 •451 6 

Abington 11.25 2.64 26 1 24'"r -ITr -38'7 11 

•Cohn 10.25 2.79 90 1 -3'-r I2'> -4()<3^ •3b1 1 

unnamed 3.0 2.56 850 1 -1 \"c -52T- -83'^ -85'^r < 1 

•Frank 11.5 2.65 55 1 3'r 7^- -9'-c -36'(: -t 

unnamed 6.5 261 76 1 16rr -33'~r -53'^r -43'7 T 

unnamed 2.5 2.60 400 1 13^: 100'^ -95'> -84'r- < 1 

Rose 7.5 2.62 370 1 -25^ -.^9''r -57'> -711 "> 

unnamed 5 4 2.71 125 1 26<-r -29'> -74'7 -111 < 1 

unnamed 6.4 2.55 140 1 I'^c -23'? -63'", -56^7 1 

Nadine 9.5 2.56 54 1 Zr-c -10":^ -66"^ -52'", 4 

Flagslad 20.0 2.60 15 1 1<^C 21 lO'-r 77 

Zenobia 19 5 2.52 59 1 -30'> -2'r - 1 1 1  0<~r 10 

Erniolova 32.0 2.65 12 1 -41'?r 0<7r 31 iirr 66 

•unnamed 19.0 2.66 67 3 2'f 5'> -31 b1 15 

Stanton 55.0 2.43 I 1 -44<> -44 -41':-, 414 

Mumtaz Mahal 19.5 2.57 140 I -lOTr -23''r -4'~r -23'7 21 

Hayasi 23.5 2.54 35 1 •Wr ()'> -18<7 10'-, 29 

Galina 9.0 2.69 90 1 I'-c -31'^ ')1 7 

Lind 14.0 2.62 10 I -66'7r O'I'c 01 101 12 

TABLE 3: (Caption on page 29) 
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FIGURE 4. Unnamed Parabola at -39.10°N. 97. IO°E 

unnamed 
I 1 I I I I I I 1 1 1 I I I I I I I I 1 I 1 I 1 I I I I I I 1 I I I I 

-200 
ji ' ' ' ' ' ' _l l_I I L_L. I I I I I 
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FIGURE 4: The thickness contours for the unnamed feature located at -39.10°N, 97.10°E 

(r. = 4.0 km), showing that the deposit is not a successful fit. despite the good results in 

Table 3. Contours are shown for 1 cm (solid line) and 3 cm (dashed line). The center of 

the crater is located at the origin of the plot. Note the change in scale between this figure 

and Figure lb. Distances are in km. 
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FIGURE 5a, DuChatelet Parabola 

FIGURE 5: (a) The ejecta parabola around the crater DuChatelet, located at 21.5°N, 

165.0°E. rc = 9.25 km. Note that for DuChatelet, r < r. The image is approximately 

1800 km across. (Image from C2-MIDR.OON183;1.) 
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FIGURE 5b, DuChatelet Parabola (Modeled) 

DuChatelet 
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FIGURE 5: (b) Thickness contours for the best tit model to DuChatelet. using a = 2.65. 

d - 65 m, and d= 1 cm. Contours are show for 1 cm (solid line). 3 cm (short dash), and 

10 cm (long dash). Higher contours were omitted for clarity. Distances are in km. The 

plot is at the same scale as (a), and the crater DuChatelet is located at the origin of the 

plot. The origin of the plot matches the center of DuChatelet in Figure 5a. 
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FIGURE 6, a vs. r 
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FIGURE 6: Plot of a versus r . The range of a for ejecta from the Terrestrial impact 

structure off the coast of Chicxulub, Mexico is shown for comparison. The dashed lines 

indicate the standard deviation in the average value for a. 



38 

FIGURE 7, cl vs. r 
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FIGURE 7: Plot of tl versus r . The range for ejecta from Chicxulub is shown for 

comparison. The dashed lines indicate the I-a error in intercept of the best fit curve to 

the data. 
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CHAPTER 4 

Discussion 

This investigation has identitled three important implications: {1) Observational 

evidence supports the transition size calculation of Vervack and Melosh (1992) (with only 

slight modifications) and thus reinforces their model. (2) we can apply this model of the 

scattering of distal ejecta to Terrestrial impacts, including the crater Chicxulub. and (3) 

the role of the minimum thickness S may be significant in determining the relative ages 

of the parabolas. I consider each of these topics below. 

4.1. Source Crater Transition Radius 

I noted in the previous chapter that fifteen of the parabolas that I cannot reproduce 

using this model have source craters of r < 9.5 km. This result supports the transition 

size calculation of Vervack and Melosh (1992). who predicted that the actual size would 

be slightly larger than their result (r = 8 km) due to their neglect of aero-braking. I set an 

upper limit for r of 9.5 km for Venusian atmospheric and surface conditions. 

Interestingly, each of the eight features identified as emissivity parabolas (i.e. 

parabolas that appear only in the Magellan emissivity data-set) by Campbell et al. (1992) 

(in their Table II) has a source crater of r < r, with the exception of crater Frank, with r 

= 11.5 km (as measured by Schaber et al. [1992]). Thus, a different process than the one 

that Vervack and Melosh describe may be responsible for the formation of the emissivity 

parabolas. Frank is an apparent anomaly; it is an emissivity parabola with source crater 

r > r, but I can reproduce it with the model of Vervack and Melosh (1992), as can I 

several SAR parabolas with r < r < (e.g. Cohn. Comnena, and Winema). Thus, the 

process that forms emissivity parabolas may be different than the process that forms 
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parabolas with source craters smaller than the transition radius. The fact that /^^^^^^(the 

apparent upper-bound of emissivity parabola formation) agrees well with the Vervack-

Melosh transition radius may be a coincidence. 

4.2. Agreement with Chic.xulub and Extension to Non-Venusian Craters 

Vervack and Melosh (1992) report the estimated parameters a and cl for the distal 

ejecta from the Terrestrial crater Chicxulub. (r = 90 km. a is in the range from 2.0 to 

2.5, and d is in the 1.4 to 1.7 m range.) I plot these parameters in Figures 6 and 7 for 

comparison with the model results. They agree quite well with my results, suggesting 

that the distribution model for distal ejecta (Eq. 1 and Eq. 2) may be equally valid for 

non-Venusian craters. 

The agreement with the Chicxulub data suggests that we can extend the model to 

other planets that have atmospheres, particularly Titan but perhaps Mars as well. 

Determining the parameters for Mars requires extensive in situ exploration, as global 

climate patterns would tend to erode impact ejecta deposits, much as they do on Earth. 

For Titan, however, the radar mapper aboard Cassini may provide an opportunity similar 

to that of Venus (Lorenz et al.. 1996). 

4.3. The Role of Minimum Thickness 5 

Eight parabolas around craters with radii in the range of 9.5 to 24 km can only be fit 

by the model of Vervack and Melosh (1992) if the ejecta thickness contour, 5. is larger 

than 1 cm at the limit of discemibility. Aside from requiring a larger 5. there is nothing 

special about these craters: A59c of all Venusian craters (Schaber et al.. 1992) and 65% of 

all craters with parabolas have radii between 9.5 km and 24 km. These eight parabolas 

are scattered over Venus in roughly the same spatial distribution as the remainder; they 
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are not localized in one particular region. Assuming, then, that these eight parabolas 

were formed under similar conditions, in similar environments, and by the same process 

as the remaining 59 features, we would expect them to have originally possessed the 

same 6 as well. I propose that the observed discrepancy in d is caused by the erosion of 

material from the ejecta deposits of these craters and thus indicates that these parabolas 

are older and more degraded than the rest. This erosion is probably eolian. caused by the 

gradual removal of sand-size grains by saltation and dust-size material in suspension. 

The identification by Greeley, et al. (1992) of two fields of apparent sand dunes in the 

Magellan data suggests that aeolian process are currently active on the surface of Venus. 

In the final phases of the formation of a parabola, the accumulating ejecta builds up a 

graded deposit, such that the larger particles (about 1 to 5 cm for craters with radii in the 

range of 10 to 40 km) are closer to the source crater and at the bottom of the pile 

(qualitatively similar to the airfall deposits of volcanic ash on Earth). The smallest 

particles in a parabola (about 200 to 1000 [im) are the most distant and on top. because 

they travel greater distances on their ballistic trajectories than larger particles (Eq. I) and 

settle more slowly once they have reached terminal velocity (Section 2.1). As surface 

Venusian winds selectively remove these fine top layers of ejecta debris, the overall area 

of the parabola decreases. The remaining, coarser, deposits are distributed in a pattern 

that reflects a larger thickness contour than the original S= 1 cm, as we observe for these 

eight parabolas. 

If this interpretation is correct, the relafively small number of degraded parabolas. 8. 

compared to 59 undegraded parabolas also indicates that the removal process, once it 

begins, acts swiftly to erase the entire parabola. In this sense, parabolas are similar to 

terrestrial cinder cones which stand unscarred by fluvial channels for long periods of time 

due to the high infiltranon capacity of the loose, highly porous cinders. However, once 
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soil begins to develop on these cones and mnoff begins, their lack of resistance to shear 

forces makes them disappear in a geologic blink of time. Clearly, fluvial processes are 

not implicated in Venusian parabola removal, but some weathering-related threshold 

process must be inferred to explain the small proportion of degraded parabolas. From 

this proportion alone, 8/59 degraded parabolas, it appears that the mean interval between 

the beginning of observable degradation and complete removal is about 0.14 ± 0.05 of the 

mean lifetime of the parabolas themselves. 

Arvidson et al. (1992) first estimated the mean time to remove a parabola as -60 Myr. 

assuming that all Venusian craters originally possessed one. My present observations 

allow me to refine this estimate somewhat. The parabola formation model of Vervack 

and Melosh suggests that nearly all impact craters should form parabolic deposits; even 

craters with r < r have parabolas, down to r = 2.5 km (an unnamed crater at 66.2° N. 

177.6° E), the smallest crater to exhibit a parabola. It is highly probable, then, that a 

parabolic deposit accompanies the formation of any impact crater on Venus, possibly with 

a lower limit of r = 2.5 km. This supposition implies that aeolian processes eventually 

remove (or blanket) all of the material in a parabola, leaving only the source crater to 

scatter radar energy. Hence, the Venusian craters that do not have parabolas are part of an 

older crater population. 

Schaber et al. (1992) identified 842 impact craters over 89% of the surface of Venus. 

Of these craters, 17 have r < 2.5 km, leaving 825 craters that might have formed with 

accompanying parabolas. Normalizing over the entire surface of the planet, there may be 

~930 such craters. If we assume that the surface of Venus is 500 ± 200 million years old 

(Schaber et al.. 1992) and that the rate of impact cratering has been steady over this 

period (as Schaber et al. and other researchers have suggested, based on impact crater 

populations), then the mean time to erode a Venusian parabola is 35 ± 15 million years; 
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larger parabolas may take longer to erode than smaller ones. We expect, therefore, that 

the mean age of the Venusian parabolas is less than 35 ± 15 million years, with most of 

the removal occurring during the last -14% of their lifespans. 

Parabolas may be the principal source of "sand" size particles on the surface of Venus 

(i.e. particles that are in the correct size range to move predominantly by saltation. 60-

2000 |im on Venus (Greeley et al. 1992) under present atmospheric conditions). Using 

the fits to the ejecta particle size distribution for a given crater size. Melosh and Schaller 

(1996) employ the McGetchin et al. (1973) estimate of ejecta blanket thickness vs. range 

to give the ejecta volume and my relation between mean particle size and range to give 

the radius limits between which sand size ejecta occur. They integrate to find the total 

volume of sand-size material produced by this crater. 

Supposing that all Venusian impact craters larger than 2.5 km in radius produce ejecta 

deposits. They next integrate over the total population of craters to determine the total 

volume of sand-size material available. From Eq. 2. it is clear that large craters dominate 

the production of fine material, so the choice of the exact lower limit of crater size does 

not change the calculation much. Melosh and Schaller (1996) show that the total volume 

of sand-size material produced by Venusian impact cratering is 3.5 x 10"* km', more than 

sufficient (by a factor of 10) to account for the dune fields that Greeley et al. (1992) 

detected. It thus appears that all of the loose sand-sized material on the surface of Venus 

could have been derived from impact ejecta in the form of eroded parabola material. 
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CHAPTER 5 

Conclusions 

This work supports the model of parabola formation that Vervack and iMelosh (1992) 

have proposed: it is in good agreement with the observational results of Campbell et al. 

(1992). I successfully modeled 65% of the parabolas that fall within the specified 

physical domain of the model. Two notable exceptions are Greenaway and Stanton, 

which as the largest craters involved, may establish an upper boundary to the applicable 

crater size domain. Complicating the issue somewhat is the obser\'ation that Greenaway 

may have been superposed by another parabola. 

I have determined a quantitative law that describes the distribution of fine, distal 

ejecta over a planetary surface. At a distance r from the center of an impact crater on 

Venus of radius r, the mean diameter d of the impact ejecta (neglecting the effects of 

wind-transport) is given by 

where r and r are in kilometers, and d and d are in meters. 

My modeling of the Venusian parabolas has resulted in several implications for the 

formation of parabolas on Venus and the distribution of fine, distal impact crater ejecta 

over a planetary surface: I have confirmed and improved the Vervack-Melosh transition 

a = 2.65 ±0.05 
(3) 

d =24G0r 
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radius calculation with the observed Venusian parabolas. I have shown that results for the 

Venusian parabolas agree quite well with the Eq. I parameters for the Terrestrial impact 

crater Chicxulub; this result suggests that the distal ejecta distribution laws empirically 

derived for Venus might be applicable to other planetary bodies. Finally, I have presented 

a method for determining which parabolas are most heavily eroded and therefore older. 

Parabolas may be a significant source of the tine-grained material that observed dune 

fields imply. 
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