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Figure 5.40. OSLMMLEM reconstructions of list-mode data Â (X) for P = 2 311
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Abstract

This dissertation investigates the application of list-mode data to detection, estima-

tion, and image reconstruction problems, with an emphasis on emission tomography

in medical imaging.

We begin by introducing a theoretical framework for list-mode data and we use it

to define two observers that operate on list-mode data. These observers are applied to

the problem of detecting a signal (known in shape and location) buried in a random

lumpy background. We then consider maximum-likelihood methods for the estimation

of numerical parameters from list-mode data, and we characterize the performance of

these estimators via the so-called Fisher information matrix.

Reconstruction from PET list-mode data is then considered. In a process we called

“double maximum-likelihood” reconstruction, we consider a simple PET imaging sys-

tem and we use maximum-likelihood methods to first estimate a parameter vector for

each pair of gamma-ray photons that is detected by the hardware. The collection of

these parameter vectors forms a list, which is then fed to another maximum-likelihood

algorithm for volumetric reconstruction over a grid of voxels.

Efficient parallel implementation of the algorithms discussed above is then pre-

sented. In this work, we take advantage of two low-cost, mass-produced computing

platforms that have recently appeared on the market, and we provide some details

on implementing our algorithms on these devices.

We conclude this dissertation work by elaborating on a possible application of

list-mode data to X-ray digital mammography. We argue that today’s CMOS de-

tectors and computing platforms have become fast enough to make X-ray digital

mammography list-mode data acquisition and processing feasible.
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CHAPTER 1

Introduction

1.1 Motivation

The field of medicine relies heavily on images for the diagnosis of pathologies, their

treatment and monitoring, and for the discovery and development of new drugs [11].

To answer the need for images that allow physicians to do diagnosis and carry out

research, many different imaging modalities have been developed [12]. Among them,

we want to list here X-ray radiography, ultrasound, fluorescence and bioluminescence

optical imaging, computed tomography (CT), positron-emission tomography (PET),

single-photon emission computed tomography (SPECT), magnetic-resonance imag-

ing (MRI) and spectroscopy (MRS), endoscopy, medical thermography, medical pho-

tography and microscopy.

Preclinical (animal) studies and drug development make heavy use of medical

imaging. Animal models are used in early stages of drug development to study,

among other things, feasibility, and safety of a potential drug or treatment [13]. Ani-

mal studies have been crucial in deepening our knowledge of carcinogenesis via tumor

modeling, monitoring of their growth, and detection of metastasis [8, 14]. Small ani-

mals, such as mice and rats, have many advantages over larger animals: low housing

and maintenance costs, short reproductive cycle, ease of transport, and well-developed

protocols and methodologies for genetic manipulation [15,16]. With non-invasive in-

vivo imaging, it is not necessary to sacrifice the animal at each time point of interest;

this allows working with fewer animals and it also increases the statistical validity of

the data by reducing the level of experimental variation [9, 17].

Building an imaging device for a small animal is usually less expensive than build-

ing a human-size imaging system. However, the small size of the animal used in pre-
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clinical testing also translates into the requirement for higher sensitivity and spatial

resolution to maintain the equivalent accuracy as human studies [18–21]. A compari-

son between clinical and preclinical PET and SPECT imaging systems is reported in

Table 1.1.

Modality Sensitivity Resolution
Field of view

(FOV)

Clinical
{

PET 1–3% ≈ 5 mm ≈ 50 cm

SPECT 0.01–0.03% ≈ 10 mm ≈ 50 cm

Preclinical
{

PET 2–4% 1–2 mm ≈ 7 cm

SPECT 0.3% 0.5–2 mm ≈ 8 cm

Table 1.1. Comparison between clinical and preclinical PET/SPECT imaging sys-
tems (adapted from [8])

Many imaging devices have been proposed in the past. Along with hardware,

software—in the form of reconstruction algorithms—has been developed. The goal of

this dissertation is to attack the problem of image reconstruction (or, more specifically,

signal detection and parameter estimation) with the formal mathematical methods

of image quality assessment. This, in turn, will show how the information collected

by the hardware can be optimally processed to increase detection/estimation perfor-

mance.

The underlying requirement to accomplish this goal is list-mode data storage and

processing. In a sentence, list-mode data representation consists of storing (hence,

preserving) in a list all the information learned about each detected photon. Using list-

mode data, common pre-processing steps—such as binning of photons into detector

pixels or voxels—are avoided, along with the inherent information loss that these

steps might introduce.

List-mode data representation has traditionally been overshadowed by other data

representations, such as the already-mentioned binned data. Perhaps, this is due to

the fact that processing list-mode data necessitates high-performance computational
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hardware and—to a lesser extent—to the lack of a detailed theoretical framework.

This dissertation strives to provide a theoretical framework with which to interpret

and manipulate list-mode data and, at the same time, illustrate how today’s mass-

produced parallel commodity computing hardware can be used to process list-mode

data.

1.2 Nuclear Medicine Imaging

Generally speaking, we can define nuclear medicine imaging as any imaging technique

that relies on radioactive isotopes (radioisotopes) to generate images of a patient’s

organs in a non-invasive way. Different radiotracers have different biochemical prop-

erties and tend to concentrate in particular organs. For example, 131I tends to accu-

mulate in the thyroid gland while 11C is often used to study pathologies that affect

metabolism, such as: gout, anemia, diabetes, and acromegaly (hormonal disorder

characterized by excessive production of growth hormone in the anterior pituitary).

The beginning of nuclear medicine can be traced back to 1895 when Wilhelm

Conrad Röntgen (March 27, 1845–February 10, 1923) discovered X-rays and Marie

Curie (November 7, 1867–July 4, 1934) laid down a theory for radioactivity and

discovered two radioactive elements: polonium and radium. Another important con-

tribution came from George Charles de Hevesy (August 1, 1885–July 5, 1966) who

played a key role in the development of radioactive tracers to study chemical processes

such as the metabolic processes in animals.

Among all the possible modalities we listed at the beginning of this chapter, we will

focus our attention on those falling under the category of emission tomography [10].

In emission tomography imaging, a radiopharmaceutical is administered to a patient.

The radiopharmaceutical is a radioactive drug in which radioactive elements (in the

form of radionuclides) are bound to a pharmaceutically-active molecule. This process

is carried out by synthesizing a molecule in which one of the elements is replaced by
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a radioactive isotope (radionuclide) [1, 2], as shown in Figure 1.1. Some parameters

of interest of commonly used radionuclides are reported in Table 1.2.
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HO OH





18F-FDG

Figure 1.1. Synthesis of 18F-FDG by electrophilic fluorination (adapted from [1,2])

Depending on their biochemical nature, radiopharmaceuticals tend to accumulate

and get metabolized in specific organs or tissues. When the radioactive part of a

radiopharmaceutical (i.e., the radionuclide) undergoes radioactive decay, gamma-ray

photons are emitted isotropically, thus forming a gamma-ray emission density corre-

sponding to the body’s uptake. These gamma-ray photons can be collected over time

by specialized detecting devices (known as gamma-ray cameras), and this information

is recorded for processing. This allows physicians to detect and localize tumors or

lesions, identify regions of the brain influenced by drugs or external stimuli, and so

on. Leading medical imaging techniques encompassed by emission tomography in-

clude single-photon emission computed tomography (SPECT) and positron emission

tomography (PET). We will devote the next two sections to the description of these
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Radionuclide Decay Mode Half-Life Principal γ-Ray(s) Modality

11C β+ (100%) 20.39 m 511 keV PET
13N β+ (100%) 9.97 m 511 keV PET
15O β+ (100%) 2.04 m 511 keV PET
18F β+ (96.7%) 109.77 m 511 keV PET

62Cu β+ (100%) 9.74 m 511 keV PET
64Cu β+ (17.6%) 12.70 h 511, 1346 keV PET

EC (43.4%) 1346 keV
β− (39.0%) no γ-rays

68Ga β+ (100%) 68.1 m 511 keV PET
76Br β+ (100%) 16.1 h 511 keV PET

99mTc IT (100%) 6.02 h 142 keV SPECT
111In EC (100%) 2.80 d 171, 245 keV SPECT
123I EC (100%) 13.22 h 159 keV SPECT
124I β+ (22.8%) 4.18 d 511, 603, 723, 1691 keV PET
131I β− (100%) 8.03 d 364 keV SPECT

201Tl EC (100%) 3.04 d 68–80 keV x-rays SPECT

β+ = beta decay with positron emission; β− = beta decay with electron emission; EC = electron capture, IT = isomeric transition.

Table 1.2. Common PET and SPECT radionuclides used for imaging (adapted from [8,9])
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two imaging modalities.

Even though some of the mathematical tools that we will develop in the remainder

of this dissertation are very general and applicable to other imaging modalities as

well (such as X-ray imaging) we will usually give preference to SPECT and PET

imaging.

1.3 Single-Photon Emission Computed Tomography (SPECT)

As remarked above, SPECT imaging [10] takes advantage of the fact that some ra-

dionuclides are unstable and, when they undergo decay to form another isotope, a

high-energy, externally detectable gamma-ray photon is emitted. Radionuclides com-

monly used in SPECT imaging include 99mTc, 111In, 123I, and 201Tl [10]. Table 1.2

lists some of the properties of these and other radionuclides.

Parallel-hole

collimator

Detector

(a) Imaging with a parallel-hole collimator

Object f

(b) Schematic diagram of a SPECT de-
tector arrangement

Figure 1.2. SPECT imaging

Photons are emitted isotropically from each point of the object reached by the

radiotracer, and the mean number of photons emitted during a sufficiently long time

interval is proportional to the concentration of the radiotracer distribution within the
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object. The location of emission and direction of propagation of these photons are

ill-defined [22] quantities. The direction of propagation can be restricted by placing

a collimator between the object and the detector. The collimator is usually made of

tungsten (or any other high-density radiation-absorbing material such as lead) and

its job is to absorb and block gamma-ray photons that do not propagate along spe-

cific paths. As an example, Figure 1.2a, shows the case of a parallel-hole collimator:

photons that propagate in a direction oblique to the axes of the collimator’s aper-

tures strike on the walls of the collimator and get absorbed. By selecting—via the

collimator(s)—some of the gamma-ray photons based on their direction of propaga-

tion, a correspondence between points in object space and image space is established,

and this correspondence is used to create an image on the detector.

SPECT imaging is carried out by collecting data along different projections, as

shown in Figure 1.2b. This setup can be accomplished by either rotating the object

or by moving the collimator-detector assembly around the object, as shown in Fig-

ure 1.2b. Systems with multiple collimator-detector assemblies have been developed

as well [20,23–26]. An alternative approach to SPECT imaging is by means of coded

apertures [27–31].

As a final note on SPECT imaging, we remark that the SPECT radionuclides listed

in Table 1.2 allow for a wide variety of gamma-ray photon energies being emitted.

If high-energy resolution detectors are used [32], dual-isotope SPECT imaging is

possible [33–35]. Dual-isotope imaging enables the investigation of multiple biological

processes at the same time, thus opening new areas in research and drug development.

1.4 Positron Emission Tomography (PET)

Similarly to SPECT, PET imaging [10, 36] uses gamma-ray photons emitted when

unstable radionuclides (such as 11C, 13N, 15O, 18F [10]) decay. The decay mechanism

used in PET imaging is, however, different. We can trace back [37,38] the development
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of positron emission tomography to the middle of the 1950s, when it was recognized

that some radionuclides exhibit chemical properties that render them suitable for the

tracing of important physiological pathways [38], such as oxygen tension in malignant

neoplasms. Some examples of preclinical PET scanners are discussed in [39–41].

Positron emission (also called β+ decay) occurs when a proton is converted into

a neutron via the weak nuclear force. This process is immediately followed by the

release of a positron (the antimatter counterpart of the electron). The positron travels

for a short distance (no more than a few millimeters [42]) before it annihilates with a

nearby electron. Positron-electron annihilation results in the emission of two gamma-

ray photons—traveling at nearly 180◦ apart—each one with energy equal to the rest

mass of the electron (511 keV) [43, 44]. Figure 1.3a schematically display this whole

process.

Nucleus

β+

e−

γ

γ

(a) Electron-positron annihilation

Object f

180◦

(b) Schematic diagram of a PET de-
tector arrangement

Figure 1.3. PET imaging

The gamma-ray photons are detected by a set of gamma-ray cameras surrounding

the object. Figure 1.3b shows a possible setup. When two photons are detected

within a short period of time (say, 10 ns [36]) by opposite detectors, a coincidence

event occurs. Specialized hardware and software are used to pair two detected photons

and form a coincidence event [45,46], as shown in Figure 1.4.
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Coincidence processing

Image reconstruction Visualization

Figure 1.4. Schematic diagram of a PET imager

The two locations in the gamma-ray cameras at which photons have been detected

define a line, called line of response (LOR). All we can learn by a coincidence event

is that a positron-electron annihilation occurred somewhere along the LOR or in

its close proximity. It is important to note that the knowledge of the LOR defines

the direction of propagation of the two gamma-ray photons: contrary to the case

of SPECT, no physical collimation is needed. Coincidentally, the process of pairing

photon interaction to form a LOR is usually referred to as electronic collimation.

The short decay time of some commercially available gamma-ray camera crystals

allows for better coincidence timing resolution so that the location of positron-electron

annihilation along the LOR can be estimated by measuring the time-of-flight of the

two coincident photon-crystal interactions [47]. Currently, time resolutions of the

order of 500 ps are achievable, and this figure translates into a ∆x = 7.50 cm con-

straint [48] on the position of the positron-electron annihilation along the LOR. As
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such, reconstructions based on time-of-flight measurements will not be of benefit for

small-animal PET imaging. For objects of the size of the transverse human body, re-

ductions of noise variance of a factor of about 5 has been predicted and obtained [48]

when time-of-flight measurement is included in the reconstruction algorithm [49].

The absence of physical collimators is one of the major advantages of PET over

SPECT, as a larger number of photons reach the detectors and might get detected,

thus resulting in higher sensitivity than SPECT. To increase the fraction of photons

that are absorbed and therefore detected by a gamma-ray camera, thick (say, 20 mm

or thicker) crystals are needed. Thick crystals give high sensitivity at the expense of

requiring estimation of the depth of interaction (DOI) [50–52]. Knowledge of the DOI

increases spatial resolution as the location of the LOR defined from each coincidental

photon pair is determined with less uncertainty (see Figure 1.5) and degradations in

the reconstructed data due to parallax errors are reduced [53].

A wide variety of variations on the basic design of a gamma-ray camera have been

proposed to allow or improve depth of interaction resolution. This would include

placing different crystals (with different decay times) one on top of the other [54,55],

or in more complicated arrangements [56]. Information on the depth of interaction has

also been obtained by calculating the ratio of light collected by two adjacent cameras

in a detector ring arrangement [57]. Alternatively, an array of photodiodes has been

used, in which each photodiode was coupled to one end of a scintillation crystal. The

opposite ends of the crystals were coupled to a photomultiplier tube. Each crystal

was coated with a lossy reflector, so the ratio of light detected in the photodiode and

photomultiplier tube depends on the interaction depth in the crystal, and it is used

to determine the depth of interaction on an event by event basis [58]. Algorithms for

the estimation the depth of interaction have been proposed as well [53, 59–63].

Compared to SPECT, PET imaging has some disadvantages as well: PET radio-

pharmaceuticals are more expensive to produce than SPECT radiopharmaceuticals,

and the short half-life of PET radionuclides requires an on-site or nearby cyclotron
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Figure 1.5. Examples of parallax errors on the estimated line of response for two
different detector geometries

for their production. PET imagers are more expensive than SPECT scanners and,

because of the non-zero positron range, there are inherent physical limitations to their

spatial resolution [64]. This translates into a resolution of the order of 1–2 mm for

preclinical PET images (see Table 1.1).

1.5 Intent of the Dissertation

The significant progress achieved in recent years on gamma-ray cameras for small-

animal imaging along with the development of fast general-purpose computing archi-

tectures opened the possibility to process raw gamma-ray camera data in a differ-

ent and theoretically sound way. Indeed, massively parallel commodity computing

hardware, such as Sony’s Cell Broadband Engine (Cell BE) and NVIDIA’s graphics

processing units (GPUs), has made it possible to apply maximum-likelihood esti-

mation methods directly to gamma-ray camera outputs. Accurate list-mode data

processing has now become computationally feasible, naturally leading to “optimal”

reconstruction codes based on maximum-likelihood.

Even though the concept of fast maximum-likelihood list-mode processing perme-

ates the dissertation in its entirety, the main research goals can be partitioned into



27

four categories, which we now describe in some more detail.

Maximum-likelihood estimation in medical imaging

In maximum-likelihood estimation (MLE) we estimate a parameter θ by maximizing

for θ the probability (or “likelihood”) pr(g | θ) of the observed data g. ML esti-

mates θ̂ML have many favorable mathematical properties. For example, as the size

of the data g increases, ML estimates are—in a sense that we will clarify later—

asymptotically optimal. Another property of ML estimates states that they are

unbiased: 〈θ̂ML〉g = θ, where θ is the true, unknown value of the parameter be-

ing estimated and 〈. . .〉g denotes average over g. One goal of this dissertation is

to show how ML techniques—in conjunction with list-mode data—can be effectively

used in medical imaging. That would include fast estimation of parameters from pho-

tomultiplier tube (PMT) data and reconstruction algorithms (such as the list-mode

maximum-likelihood expectation-maximization algorithm, or LMMLEM algorithm)

as well.

Development and evaluation of reconstruction codes

As mentioned above, Cell BE and GPU technologies are revolutionizing the world of

scientific computing with fast, cheap, and massively parallel-computing devices. In

this dissertation, we will elaborate on some of the capabilities and benefits that these

technologies offer. That includes 2D and 3D ML position-of-interaction estimation

from PMT data and list-mode reconstruction for a simple geometry. Other pieces

of code that will be developed are a method for the generation of random numbers

on a multicore device (such as a GPU device) and parallel code for evaluation of

expectations via Markov chain Monte Carlo (MCMC). These tools will be developed

as “utility” tools: they are not the main topic of the dissertation but, nonetheless,

they are crucial in the calculation of results for which a closed form cannot be found.
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Signal detection with list-mode data

The performance of any detection task is rigorously studied using the receiver operat-

ing characteristic (ROC) curve and by measuring the area under it. This area, which

is usually called the area under the curve (AUC), is a meaningful figure of merit to

assess task performance. Two different observers can be compared by calculating the

corresponding AUCs, and the observer with the largest AUC outperforms the other

in terms of detection performance. From the theory of signal detection, it is well

known that the observer that maximizes the AUC uses the likelihood ratio Λ(g) as a

test statistic

Λ(g) =
pr(g | H1)

pr(g | H0)
,

where pr(g | H1) is the probability density function of the data g under the signal-

present hypothesis (H1) and pr(g | H0) is the same probability density function but

under the signal-absent hypothesis (H0).

In many practical cases, knowledge of these probability density functions repre-

sents an obstacle that is avoided by forcing the observer to be of a particular form, for

which calculations are easily carried out without the need of knowing the complete

statistics of g. Traditionally, the optimal linear observer—known as the Hotelling

observer—has represented the only viable alternative to the ideal observer.

List-mode data provide an ideal framework to study signal detection. Indeed,

an expression for the probability density function pr(Â | Hk) of the list-mode data

Â = {Â(1), . . . , Â(J)} given the hypothesis Hk can be derived and used to write a

manageable expression for the likelihood ratio on the data Â

Λ(Â ) =
pr(Â | H1)

pr(Â | H0)
.

From realizations of Λ(Â ), many quantities (such as the AUC) linked to task perfor-

mance can be calculated and used to compare the performance of the list-mode ideal

observer with other observers, such as the Hotelling observer.
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Information content of a photon

In this research goal, we want to quantify how much each photon (or, in general,

each attribute vector Â(j) of the list Â ) contributes to task performance. The figure

of merit we will use is the ideal observer’s signal-to-noise ratio (SNR). The the-

ory can be worked out quite easily for the signal-known-exactly/background-known-

exactly (SKE/BKE) case [5]. In such a case, the likelihood of the data Â under the

hypothesis Hk is

pr(Â | Hk) =

[
1∫

FOV
s(r)fk(r) dr

]J J∏

j=1

{ ∫

∞
pr(Â(j) | A(j)) ×

×
[∫

FOV

s(r)fk(r)pr(A(j) | r) dr

]
dA(j)

}
,

where the function fk(r) denotes the real object under the hypothesis Hk, the integer

number J is the number of elements in the list Â , and, finally, the function s(r)

denotes the sensitivity of the imaging system for point r in the field of view. The

subscript “FOV” in
∫
FOV

. . . dr denotes integration over the field of view, while “∞”

in
∫
∞ . . . dA(j) denotes integration over the space of attribute vector A(j).

If we take the logarithm of pr(Â | Hk) and do some manipulations

ln pr(Â | Hk) =
J∑

j=1

{
ln

∫

FOV

s(r)fk(r)pr(Â(j) | r) dr − ln

∫

FOV

s(r)fk(r) dr

}
.

The ideal observer uses the likelihood ratio Λ(Â ) = pr(Â | H1)/pr(Â | H0) or its

logarithm λ(Â ) = ln Λ(Â ) as test statistic. It is easy to see that

λ(Â ) =
J∑

j=1

{
ln

∫
FOV

s(r)f1(r)pr(Â(j) | r) dr
∫
FOV

s(r)f0(r)pr(Â(j) | r) dr
− ln

∫
FOV

s(r)f1(r) dr∫
FOV

s(r)f0(r) dr

}
=

=
J∑

j=1

λ({Â(j)}),

in which the last part of the expression above shows that λ(Â ) is the sum of a large

number of independent quantities λ({Â(j)}). Thus, it is reasonable to assume that the
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log-likelihood ratio λ(Â ) is normally distributed. Normally distributed log-likelihood

ratios enjoy many properties [65], one of them can be summarized as follows

SNR2
λ = −2

〈
λ(Â )

〉
Â |H0

= −2
J∑

j=1

〈
λ({Â(j)})

〉
Â(j)|H0

,

where 〈. . .〉
Â |H0

denotes expectation over the list-mode data Â , statistically condi-

tioned on H0, and

〈
λ({Â})

〉
Â|H0

=

∫

∞
λ({Â})pr(Â | H0) dÂ.

The quantity above numerically quantifies the contribution of each event to the SNR2
λ.

1.5.1 Structure of the Dissertation

The remainder of the dissertation is structured in five chapters. In Chapter 2 we

will review the main concepts of image quality and we will discuss the two observers

that we will be concerned with in this dissertation. In Chapter 3 we will describe

maximum-likelihood estimation and we will review two algorithms for maximum-

likelihood estimation. The next chapter—Chapter 4—begins by presenting a treat-

ment of gamma-ray cameras with an emphasis on the statistical characterization of

the data they produce. This is followed by the description of two maximum-likelihood

algorithms: the first to perform estimation of position of interaction from gamma-ray

PMT data and the second to carry out image reconstruction with list-mode data.

Task performance with list-mode data and its processing for the case of emission to-

mography conclude Chapter 4. Parallel computational methods is the main topic of

Chapter 5. Finally, Chapter 6 summarizes our findings and discusses in some detail

a possible application of list-mode data to CADe/CADx X-ray mammography.
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CHAPTER 2

Assessment of Image Quality

in Medical Imaging

Images are routinely produced in the clinic to diagnose or monitor one or more dis-

eases. The accuracy with which medical experts can correctly diagnose a pathology

depends on their degree of expertise and on the “quality” of the images as well. In

medical imaging we are interested in objectively assessing image quality to devise a

well-defined parameter with which characterize the performance of trained experts (or

“observers”) and imaging systems for a particular clinical task, say, tumor detection.

This chapter begins by presenting the basic notions of assessment of image quality.

The treatment is then made more formal by discussing statistical decision theory and

signal detection. Objective assessment of image quality is applied to the problem of

signal detection by introducing the so-called receiver operating characteristic curve.

The chapter continues with the description of the two decision-making tools used in

this dissertation: the ideal observer and the Hotelling observer. While the theory

developed in this chapter is mainly presented for the case of images represented as

finite sets of numbers, the same concepts hold true if we define images as functions

of continuous variables, as discussed towards the end of the chapter.

NOTE: Parts of this chapter have been adapted from L. Caucci, “Point Detection

and Hotelling Discriminant: An Application in Adaptive Optics,” Master’s Thesis,

The University of Arizona, Tucson, AZ, 2007 [66].

2.1 General Considerations

The field of image science and data processing is concerned with the task of gener-

ating and manipulating data to be presented to an observer who is then asked to
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make a decision about the presence of a signal, or to estimate one or more numerical

parameters from the data. For example, in the case of radiology, the goal of an image

scientist is to devise an imaging system and/or an image reconstruction algorithm

that will provide images adequate for a correct diagnosis by a radiologist. In the

image processing literature, the concept of image quality is not always stated and

defined precisely. Indeed, some papers simply limit themselves to the description of

a new image enhancement/reconstruction algorithm and then show a few images ob-

tained with it along with the images that one would obtain with a previous method;

no well-defined objective definition of image quality is provided, and the interpreta-

tion of the results is left to the reader who is supposed to visually compare these

images and conclude that the new algorithm “performs better” because it provides

images that “look better.” When the interpretation of image quality is not left to the

reader, metrics—such as resolution, noise power spectrum, and modulation transfer

function—are provided [67]. Even though these physical measurements are easy to

calculate and understand, it is not clear, in general, to what extent they correlate

with task performance. As it turns out, any naive way of defining image quality will

almost surely fail [68].

Images are usually generated to fulfill a particular purpose. For this reason, any

meaningful way to assess the performance of a system producing images should take

into account the purpose—or “task”—for which these images are produced. Assessing

image quality means establishing how much the images produced suit the task of

interest and how well an observer can perform that task with these images [69–73].

The observer performance can be assessed with a cost function or by evaluating the

probability that an error is made. Generally, we can consider two types of tasks:

classification or estimation. In the case of classification, we want to “label” the object

that produced the image by associating it to a particular category or class. For

example, in the case of a satellite image of a field, we may want to classify the field

according to what is grown on it, or we may want to classify an astronomical image—
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or a sequence of related astronomical images—depending on whether or not a planet

orbiting a star is present at a particular location. In the case of medical imaging, we

might be interested in knowing if a tumor is present or not. It is not necessary to

assume the classification task be binary: any m-ary classification can be implemented

by performing a sequence of binary classifications. In the case of estimation, we are

interested in estimating numerical information from the image(s) we are observing.

For example, from the aerial view of a field, we may want to estimate the extent of

such a field. In astronomy, we may want to estimate the motion of a newly-discovered

planet orbiting a star, while in medical imaging we might be interested in the location

and size of a tumor mass.

In some cases, assessing image quality can be a laborious and time-consuming

process. Indeed, if we consider again the case of a radiologist examining images to

detect, for example, a tumor, objective assessment of image quality should take into

consideration the eye-brain system and the complicated processes that take place

within it. Such processes are still so poorly understood that psychophysical stud-

ies are usually necessary. In a psychophysical study, trained human observers are

presented images and they are asked to make a decision about the presence of a sig-

nal. The results (for example, fraction of incorrect classifications for each observer)

are then averaged over all observers. A more practical alternative to psychophysical

studies is to use mathematical observers. These mathematical observers can replace

a human observer if their performance is found to be in good agreement with human

performance evaluated through psychophysical studies.

For the case of a binary classification, and if we denote with g the data we have

measured, we can assume that a binary decision is based on the value that a test

statistic function t(g) takes on the observed data g. A yes/no decision can then

be made by comparing t(g) with a decision threshold or cutoff tcut [69, 74]. As it

will be discussed later, changing the value of tcut allows the plotting of a curve from

which meaningful figures of merit for the task of interest can be calculated. Two
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particular test statistics t(g) will be discussed in this chapter: the ideal observer and

the Hotelling observer. We will show that, as its name suggests, the ideal observer is

optimal in the sense that it sets the upper limit on the performance of any observer

on the task of interest. On the other hand, the Hotelling observer has the advantage

of being linear and, in general, easy to compute and handle mathematically.

2.2 Statistical Decision Theory

The objective of statistical decision theory [75–77] is to help a decision maker select

one alternative among many. The selection of one alternative out of all the possible

ones is based on some sort of partial, inaccurate, or noisy data about an event, and

it is carried out by taking into account the consequences and risks associated with

each available alternative. These kinds of studies began in the middle of the 18th

century when Thomas Bayes (c. 1701–1761) analyzed the problem of deducing which

one of two possible causes most likely resulted in the observed data [78]. Usually,

there is a cost associated to each alternative and, because the cost depends on the

alternative and on the actual causes that produced the observed data, the objective is

to make it possible for the decision maker to select the alternative that best explains

the observed data and minimizes the average cost.

Signal-detection theory [74] results from the combination of statistical decision

theory and the study of the statistical properties and distribution of noise and sig-

nals. When a signal is transmitted through a communication system and received

by a receiver, it usually undergoes some distortion due to noise. In many cases, the

noise is random, so the receiver is faced with the problem of deciding which signal

was most likely transmitted. The task of interest in signal-detection theory is to de-

termine whether or not a weak non-random auditory or visual signal is present in a

noisy random background. In other words, signal detection is the task that asks the

observer: “Do you see a signal?” In psychology, detection theory is used in medical
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and non-medical diagnosis and for the study of memory, cognition, and sensory psy-

chology [79]. Detection theory is extensively used in radar applications [80, 81] and

medicine [69,82,83] as well.

Detection theory embodies a way to assess observer performance for the task of

interest. If such a task is the detection of a signal in a noisy background, any error the

observer commits can be of two types: we can have “misses” or “false negatives” (the

signal is actually present but the observer concludes that it is not) and “false alarms”

or “false positives” (the signal is not present but the observer believes it is). For

example, a radiologist may be looking at a radiograph in order to determine whether

a patient has a cancer or not. The radiologist will issue a false negative if he/she

detects no tumor but the patient has one. On the other hand, the radiologist will

issue a false alarm if, from inspection of the radiograph, he/she concludes that the

patient has a cancer, but the patient is in fact healthy. Generally, the cost of a miss

is higher than the cost of a false alarm, so it is desirable to keep the number of misses

very small with respect the number of false alarms.

According to [74], there are three psychophysical procedures for decision making.

They are: “yes/no detection task,” “rating procedure,” and “m-alternative forced

choice.” In a yes/no detection task, the observer is presented one stimulus at a

time, and he/she is asked to say whether or not a particular signal is present in the

stimulus he/she perceives. So the output the observer produces is a yes/no answer.

The reiteration of this experiment many times with different stimuli gives a “stimulus-

response matrix” [74] for that particular observer. This matrix, which is of size 2× 2,

reports the number of misses (false negatives), the number of hits (true positives),

the number of false alarms (false positives) and the number of correct rejections (true

negatives). Table 2.1 summarizes these possible outcomes.

In the case of a detection task, the probability of a false positive and the prob-

ability of a true positive can be estimated from the stimulus-response matrix. This

information can be represented as a point on a curve [74, 84], which is called “re-
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Response
Signal

Present Absent

“Yes”
“hit” or

“true positive”
“false alarm” or
“false positive”

“No”
“miss” or

“false negative”
“correct rejection” or

“true negative”

Table 2.1. Possible scenarios for a yes/no detection task

ceiver operating characteristic” (ROC) curve. More specifically, an ROC curve is

a plot of the probability of false positive, which is also called “false-positive frac-

tion” (FPF), versus the probability of true positive, which is also called “true-positive

fraction” (TPF) [69,85].

In a rating procedure, the observer is presented one stimulus at a time, and the

output the observer produces is a number (in a rating scale) which expresses the likeli-

hood that the observation was caused by signal plus noise as opposed to just noise [74].

For example, in a tumor-detection task, a 1–5 scale could be used: “1” may mean

“tumor definitely absent,” and “5” may mean “tumor definitely present” [69]. Inter-

mediate values are to be interpreted as intermediate levels of certainty/uncertainty

that the tumor is present. A rating procedure can easily be converted into a yes/no

detection task by thresholding. Varying the threshold allows one to get more points

on the FPF-TPF plane, which can be fit to get an ROC curve [74].

In an m-alternative forced choice (mAFC), the observer is presented m stimuli

at a time. Only one stimulus out of the m > 1 contains the signal of interest.

The observer—who knows that only one stimulus contains the signal—is asked to

select the stimulus that he/she believes most likely contains the signal in addition to

noise [74]. A particular case of the m-alternative forced choice is the 2-alternative

forced choice (2AFC), in which the observer is presented two stimuli at a time, one

where the signal is present and the other where it is not, and the observer is asked to

decide in which stimulus he/she believes the signal is present [74].
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2.3 The ROC Curve

As briefly alluded to earlier, the ROC curve is a plot of the true-positive fraction (also

called “sensitivity” [69, 86]) versus the false-positive fraction. The true-negative frac-

tion is also called “specificity” [69,86]. In order to plot an ROC curve, different values

for the true-positive fraction (TPF) and the false-positive fraction (FPF) are needed.

As noted above, this can be carried out by changing some of the observer’s internal

parameters such as the threshold tcut used to convert a rating procedure into a yes/no

detection task. While ROC analysis plays a key role in radiology [73, 87–96], it has

found applications in numerous other fields, such as information retrieval, weather

forecasting, psychology, aptitude testing, survey research, medical imaging, materials

testing, and polygraph lie detection [97–101].

For a 2-alternative forced choice test [92,102], we can introduce a “figure of merit”

for the decision maker as the probability of a correct answer. It can be proved [74]

that the area between the ROC curve for 0 6 FPF 6 1 and the horizontal axis (called

“area under the ROC curve” or AUC) is the probability of a correct answer in a 2-

alternative forced choice test [92]. The AUC provides a figure of merit for the decision

maker in the sense that it provides a way to assess its performance. This figure of

merit ranges from 1/2 for a worthless decision maker, to 1 for a perfect one.

Besides the area under the ROC curve, other figures of merit for the assessment of

the observer’s ability to detect a signal have been introduced. The general idea is to

use a single number as a measure of system performance for the task of interest. For

example, if both data distributions under the signal-present hypothesis H1 and the

signal-absent hypothesis H0 are univariate Gaussian with means µH0 and µH1 , and

variances σ2
H0

and σ2
H1

, respectively, the quantity [74,103]

d2
A =

[
µH0 − µH1

]2

Pr(H0) σ2
H0

+ Pr(H1) σ2
H1

(2.1)

is a meaningful figure of merit for the assessment of the observer’s ability to detect the
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signal of interest. In the expression above, Pr(H0) and Pr(H1) denote the probability

of the hypotheses H0 and H1, respectively. The quantity dA just introduced is known

in the literature as “index of detectability” [103]. For the special case of σ2
H0

= σ2
H1

=

σ2 the index of detectability dA is denoted as d′ and it is given by [103–106]

d′2 =

[
µH0 − µH1

]2

σ2
. (2.2)

We have seen that if we want to get an ROC curve, we need to vary the observer’s

false-positive fraction and true-positive fraction. To do this, we may think of the

observer as composed of two independent mechanisms: the “sensory” mechanism and

the “decision” mechanism [74]. For example, the sensory mechanism can output a

number, say t(g), where g is the observed data. The function t(g) is called a “test

statistic.” We will make the assumption that the vector g is a vector in a Hilbert

space. In many practical cases, g is a vector in an Euclidean space. However, if we

are carrying out a theoretical analysis, we may interpret g as a function g(r) of, say,

a 2D or 3D spatial variable r.

Given a fixed threshold tcut, a decision is made by the decision mechanism using

the following rule: say “signal present” if t(g) > tcut, otherwise say “signal absent.”

Two restrictions are implicit in the process just outlined. First, no randomness in the

decision rule is allowed and, second, for every g, one and only one alternative between

“signal present” and “signal absent” is selected [69]. This decision rule partitions

the set of vectors g into two distinct and non-overlapping regions. A value for the

threshold tcut corresponds to a point on the ROC curve, and so tcut parametrizes the

ROC curve. More formally, if s is the signal vector we want to detect and the random

vector n is the noise, the observed data vector g can be written under hypotheses H0

and H1 as:

H0 : g = n,

H1 : g = s + n,
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respectively. Vectors g, n, and s all belong to the same Hilbert space. The test

statistic function t(g) is a scalar function of the random vector g and so it is a

random variable itself. It makes sense to consider the probability density functions

pr(t | H0) and pr(t | H1) of t(g) under the hypotheses H0 and H1, respectively. From

these probability density functions, the true-positive fraction, false-positive fraction,

true-negative fraction, and false-negative fraction (all of them as functions of the

threshold tcut) can be formally defined as [65,69]:

TPF(tcut) =

∫ ∞

tcut

pr(t | H1) dt, FPF(tcut) =

∫ ∞

tcut

pr(t | H0) dt,

TNF(tcut) =

∫ tcut

−∞
pr(t | H0) dt, FNF(tcut) =

∫ tcut

−∞
pr(t | H1) dt.

These probabilities are shown as shaded areas in Figure 2.1. Figure 2.2 shows the

corresponding ROC curve.

tcut

pr(t | H1)

pr(t | H0)

(a) True-positive fraction (TPF)

tcut

pr(t | H1)

pr(t | H0)

(b) False-positive fraction (FPF)

tcut

pr(t | H1)

pr(t | H0)

(c) True-negative fraction (TNF)

tcut

pr(t | H1)

pr(t | H0)

(d) False-negative fraction (FNF)

Figure 2.1. Probabilities for the four possible outcomes for a yes/no detection task

If the plots of the densities pr(t | H0) and pr(t | H1) are well separated and do

not overlap, the system performance will be very high because a wrong decision will
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Figure 2.2. ROC curve for a yes/no detection task

have a very small probability. The AUC [69,98]

AUC = −
∫ ∞

−∞
TPF(tcut)

dFPF(tcut)

dtcut

dtcut (2.3)

will then be close to 1. The minus sign in (2.3) arises since FPF(tcut) → 1 as

tcut → −∞ [69]. On the other hand, if the densities pr(t | H0) and pr(t | H1)

almost completely overlap, the probability of a detection error will be close to the

probability of a correct decision: the observer is doing almost nothing but guessing

and, consequently, TPF(tcut) ≈ FPF(tcut) for all tcut. The AUC will therefore be close

to 1/2.

Another figure of merit we can consider is the signal-to-noise ratio (SNR) associ-

ated to the test statistic t(g) [69]

SNR2
t(g) =

[〈
t(g)

〉
H1

−
〈
t(g)

〉
H0

]2

1
2

(
σ2

t(g)|H1
+ σ2

t(g)|H0

) , (2.4)
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where

〈t(g)〉Hk
=

∫ ∞

−∞
t pr(t | Hk) dt,

and

σ2
t(g)|Hk

=

∫ ∞

−∞

[
t − 〈t(g)〉Hk

]2
pr(t | Hk) dt,

for k ∈ {0, 1} are the mean and variance of t(g) under the hypothesis Hk. When

the test statistic t(g) is normally distributed under both hypotheses, the AUC and

SNRt(g) are related via [65,69]:

AUC =
1

2
+

1

2
erf

(
SNRt(g)

2

)
, (2.5)

in which

erf(x) =
2√
π

∫ x

0

e−u2

du.

The expression in (2.5) allows us to calculate SNRt(g) if we know the AUC [65, 69]:

SNRt(g) = 2 erf−1(2 AUC − 1).

It is important to note that the relation above is valid only when t(g) follows normal

statistics under the H0 and H1 hypotheses. If the hypothesis of normality of t(g) is

not satisfied, we can use the expression above to define another figure of merit for

detection performance [65,69]:

dA = 2 erf−1(2 AUC − 1). (2.6)

To conclude this discussion on ROC curves, we note that, in many applications,

we are interested in detecting a signal and, if the signal is present, in estimating its

location (or some other parameter). An example from the field of medicine is the

detection of a tumor, paired with finding its location (within some tolerance). A non-

medical example would be the detection and localization of a dim planet orbiting a

star [66, 107]. It therefore makes sense to extend the concept of ROC curves to such

hybrid problems and define “localization ROC curves” (LROCs) [108, 109] or, in the

more general case, “estimation ROC curves” (EROCs) [110, 111]. Areas under these

curves (ALROC and AEROC, respectively) can be considered as well.
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2.4 The Ideal Observer

We noted before that whenever a decision is made, there is a cost associated to it.

For example, if a radiologist believes that a patient has cancer, a biopsy is usually

carried out in order to verify if the radiologist’s diagnosis is correct and the patient

needs treatment.

Recall that the hypotheses H0 and H1 were defined as “signal absent” and “signal

present,” respectively. Let Pr(H0) be the probability of the event “hypothesis H0 is

true” and let Pr(H1) = 1 − Pr(H0) be the probability of the event “hypothesis H1 is

true.” Hypotheses H0 and H1 are mutually exclusive and exactly one of them is true.

We can consider a cost matrix [69,112] of the following form

C =

(
c0,0 c0,1

c1,0 c1,1

)
,

where each ci,j is defined as the cost (or, if negative, the profit) incurred by choosing

hypothesis Hi when hypothesis Hj is actually true. With this notation, the cost

of a false alarm is given by c1,0, while the cost of a miss is c0,1. Suppose that our

observer uses the decision function Λ(g) and, when presented with the data vector

g, selects decision D1 “signal present” if the value Λ(g) is greater than or equal to

a fixed decision level tcut; the observer selects decision D0 “signal absent” otherwise.

Define the following sets [113]:

Γ0 = {g | Λ(g) < tcut}, and Γ1 = {g | Λ(g) > tcut}.

The goal is to select the function Λ(g) in such a way that the expected average cost (or

“risk”) [112]

c = Pr(H0)

[
c0,0

∫

Γ0

pr(g | H0) dg + c1,0

∫

Γ1

pr(g | H0) dg

]
+

+ Pr(H1)

[
c0,1

∫

Γ0

pr(g | H1) dg + c1,1

∫

Γ1

pr(g | H1) dg

]

is minimized. This strategy takes the name of “Bayes criterion” [78] and the value of

c is called “Bayes risk.” A detector that employs the Bayes criterion is called “Bayes
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detector.” The Bayes criterion is said to be optimal in the sense that it minimizes

the expect average cost c. With some algebraic manipulation, the average cost c can

be rewritten in the following way [69,114,115]:

c = c0,1Pr(H1) + c0,0Pr(H0) +

+

∫

Γ1

[
(c1,0 − c0,0)Pr(H0)pr(g | H0) − (c0,1 − c1,1)Pr(H1)pr(g | H1)

]
dg.

(2.7)

Because the vector g is assumed to belong to Γ1 if Λ(g) > tcut and to Γ0 if Λ(g) < tcut,

finding the optimal Γ1 is equivalent to finding a test statistic Λ(g) that is optimal,

and vice versa. The quantity c0,1Pr(H1) + c0,0Pr(H0) that appears in (2.7) does not

depend on Γ1, so c0,1Pr(H1)+c0,0Pr(H0) can be ignored when finding the choice of Γ1

that minimizes the cost c. Assuming that c1,0 > c0,0 and c0,1 > c1,1 (the cost incurred

in making a wrong decision is greater than the cost incurred in making a correct

decision), a way to minimize the quantity in (2.7) is to have the integrand negative

whenever g ∈ Γ1 [115]. In other words, for all g ∈ Γ1 we want to have [113,115]

(c0,1 − c1,1)Pr(H1)pr(g | H1) > (c1,0 − c0,0)Pr(H0)pr(g | H0).

Equivalently [116]
pr(g | H1)

pr(g | H0)
>

c1,0 − c0,0

c0,1 − c1,1

Pr(H0)

Pr(H1)
. (2.8)

This tells us how the function Λ(g) and the threshold tcut should be selected. Indeed

we have

Λ(g) =
pr(g | H1)

pr(g | H0)
,

and

tcut =
c1,0 − c0,0

c0,1 − c1,1

Pr(H0)

Pr(H1)
.

This particular choice of Λ(g) is called “likelihood ratio” [112, 115]. It can be shown

that the likelihood ratio test statistic maximizes the true-positive fraction for every

value of the false-positive fraction, so it also maximizes the area under the ROC

curve (see Figure 2.2) [65, 69]. For this reason, the “ideal observer” is defined as the

observer that uses Λ(g) (or any monotonic function of Λ(g)) as test statistic.
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As a special case, consider data vectors g (with M components) normally dis-

tributed under both hypotheses H0 and H1, with known means g0 and g1, and known

covariance matrices Kg|H0 = Kg|H1 = Kg (whenever Kg|H0 and Kg|H1 are the same,

we say that the set of probability distributions of g under hypotheses H0 and H1 is

“homoscedastic” [69]). In other words, the densities pr(g | H0) and pr(g | H1) are

pr(g | Hk) =
1√

(2π)M det(Kg)
exp

[
−1

2
(g − gk)

TK−1
g (g − gk)

]
,

for k ∈ {0, 1}. In this case, we have

Λ(g) =
pr(g | H1)

pr(g | H0)
= exp

[
−1

2

(
g1

TK−1
g g1 − g0

TK−1
g g0

)]
×

× exp

[
1

2

(
g1

T − g0
T
)
K−1

g g +
1

2
gTK−1

g (g1 − g0)

]
=

= C exp
[
(g1 − g0)

TK−1
g g

]
.

Because the logarithm is a strictly increasing function, we can take the logarithm on

both sides of (2.8) and leave the inequality still satisfied. For the case of the normally

distributed data vector above, we can then define

λ(g) = ln [Λ(g)] = (g1 − g0)
TK−1

g g + ln C = wTg + ln C.

This shows that, apart from an additive constant ln C—that can be incorporated

in the logarithm of the threshold tcut—the test statistic for the case of normally

distributed data is linear and given by the dot product between the vector w =

(K−1
g )

T
(g1 − g0) = K−1

g (g1 − g0) and the data vector g. The function λ(g) = ln Λ(g)

is usually called “log-likelihood ratio” [69].

2.5 The Hotelling Observer

Linear discriminant analysis [117,118] is concerned with the study of classifiers of the

form t(g) = wTg, where g is the data vector. One reason for using linear test statistics
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is that they are easy to calculate and analyze mathematically. Furthermore, there

is some evidence that linear test statistics might deliver performances comparable to

those of the human observer [119] for a detection task. Computing the dot product

wTg can be interpreted as projecting the vector g along a line in the direction of w.

A binary classification is then carried out by comparing t(g) to a threshold tcut: if

the projection t(g) = wTg is greater than or equal to tcut, then it is assumed that the

vector g belongs to the class Γ1; if wTg < tcut, then g is assumed to belong to the class

Γ0. Equivalently, we can say that decision Dk is taken whenever the data vector g is

thought to belong to the class Γk [69]. Clearly, the goal is to find a vector w that, in a

given sense, maximizes the “separation” between the projection along w of the vectors

in Γ0 and the projection along w of the vectors in Γ1. Many measures of separations

between two classes have been proposed in the past; among them is the “coefficient of

racial likeness T 2” [120] introduced in 1931 by Harold Hotelling (September 29, 1895–

December 26, 1973) to assess the likelihood that two sets of samples were drawn from

distributions with the same mean.

The study of linear discriminant functions continued with the analysis carried

out in 1936 by Ronald A. Fisher [121]. In order to classify an object into one of

two classes and measure class separability, Fisher employed a linear function of the

data and proposed to use the ratio of the among-classes sum-of-squares of this linear

function to its within-classes sum-of-squares as measure of discrimination between the

two classes. This ratio, which turned out to be strongly related [122] to Hotelling’s

T 2 coefficient of racial likeness, can be calculated by means of the “between classes”

and “within classes” scatter matrices S1 and S2, which are defined as:

S1 =
|Γ0|

|Γ0| + |Γ1|
(g − g0) (g − g0)

T +
|Γ1|

|Γ0| + |Γ1|
(g − g1) (g − g1)

T

and

S2 =
∑

g∈Γ0

(g − g0) (g − g0)
T +

∑

g∈Γ1

(g − g1) (g − g1)
T,
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where

gk =
1

|Γk|
∑

g∈Γk

g,

g =
1

|Γ0| + |Γ1|
∑

g∈Γ0∪Γ1

g,

and |Γk| denotes the number of samples in the set Γk. The discriminant measure

J(w) between the classes Γ0 and Γ1 is then [121]

J(w) =
wTS1w

wTS2w
.

With some algebra, the matrix S1 can be rewritten as follows

S1 =
|Γ0|

|Γ0| + |Γ1|

( |Γ1|
|Γ0| + |Γ1|

)2

(g1 − g0) (g1 − g0)
T +

+

( |Γ0|
|Γ0| + |Γ1|

)2 |Γ1|
|Γ0| + |Γ1|

(g1 − g0) (g1 − g0)
T =

=
|Γ0|

|Γ0| + |Γ1|
|Γ1|

|Γ0| + |Γ1|
(g1 − g0) (g1 − g0)

T.

Substituting we get

J(w) =
|Γ0| |Γ1|

(|Γ0| + |Γ1|)2

wT (g1 − g0) (g1 − g0)
Tw

wTS2w
=

|Γ0| |Γ1|
(|Γ0| + |Γ1|)2

(
t1 − t0

)2

wTS2w
,

where

tk =
1

|Γk|
∑

g∈Γk

t(g) = wTgk.

The expression found above shows that maximizing J(w) is equivalent to finding

the vector w that maximizes the distance between the means of the two classes

while minimizing the variance within each class. In order to find the vector w that

maximizes J(w), we can consider the gradient of J(w) with respect to w, set it to

zero, and solve for w the resulting system. It is easy to see [123] that any vector w

that maximizes J(w) must satisfy

S1w = αS2w,
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for some constant α. Noting that S1w ∝ (g1 − g0)
[
(g1 − g0)

Tw
]

and observing

that multiplying by any positive constant the optimal vector wopt (i.e., the one that

maximizes J(w)) does not change its optimality, we have that the vector wopt sought

can be written as

wopt = S−1
2 [g1 − g0] , (2.9)

provided that the inverse of S2 exists. The vector wopt is the “template” vector for

the Fisher’s linear discriminant.

In practice, this method is seldom used because S2 is almost always singular [69,

124]. Indeed, it can be proved that a necessary condition for having S2 invertible is to

require that the number of vectors g in Γ0 ∪Γ1 is at least the number of components

of g [69]. In some cases—for example when the vectors in Γ0 ∪Γ1 are the raster-scan

representations of images of size 512× 512 pixels—it may be impossible to collect or

simulate such a huge number of vectors.

A more viable option is the Hotelling observer [120, 125] where, instead of using

a sample covariance matrix, an ensemble covariance matrix is used [69]. This covari-

ance matrix can sometimes be derived analytically from the statistics of the original

objects, the properties of the imaging system, and the noise. If Kg|Hk
for k ∈ {0, 1}

are the covariance matrices under the two hypotheses H0 and H1, we introduce the

mean covariance matrix as

Kav =
1

2

[
Kg|H0 + Kg|H1

]

and define the Hotelling test statistic as

tHot(g) = [g1 − g0]
TK−1

av g = [wHot]
Tg, (2.10)

where

wHot = K−1
av [g1 − g0]

is the template vector for the Hotelling test statistic. It can be shown that if the classes

Γ0 and Γ1 are equiprobable, then the template vector for the Hotelling test statistic
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and the one for the Fisher’s linear discriminant are the same (up to a constant) [122].

Another remarkable advantage of the Hotelling observer is that it does not require

knowledge of the densities under both hypotheses, but only knowledge of the mean

covariance matrix Kav and the ability to invert it [69].

Linear test statistics are given by the sum of a large number of random variables

and so they are usually normally distributed by dint of the central-limit theorem [126–

128]. Furthermore, as it was shown in § 2.4, in the case of homoscedastic normal

distributions under the hypotheses H0 and H1, the log-likelihood ratio λ(g) turns out

to be a linear function. Thus, for normally distributed data, the Hotelling observer

and the log-likelihood ratio are the same (in the sense that the two test statistics

differ only by a constant) and optimal (in the sense that both maximize the area

under the ROC curve). Furthermore, as shown in [129], the Fisher’s discriminant

function t(g) = [wopt]
Tg, where wopt is the vector defined in (2.9), minimizes the

probability of misclassification in the case of normally distributed homoscedastic test

statistics. This relates the problem of assessing class separation to the problem of

optimal classification of an object into one of two classes.

The covariance matrix Kav that appears in (2.10) is symmetric and positive def-

inite and so, taking advantage of its eigenvalue decomposition, we can find a matrix

K
1/2
av such that K

1/2
av K

1/2
av = Kav [69]. With some algebra, we can rewrite (2.10) as

tHot(g) =
[
K

−1/2
av (g1 − g0)

]T [
K

−1/2
av g

]
,

which shows that the Hotelling observer can be interpreted as the simple matched fil-

ter between “prewhitened” versions of the vectors g1−g0 and g [69]. For the Hotelling

observer, means of tHot(g) under the signal-absent and signal-present hypotheses are

given by

〈tHot(g)〉H0 =
〈
[g1 − g0]

TK−1
av g

〉
H0

= [g1 − g0]
TK−1

av g0,

〈tHot(g)〉H1 =
〈
[g1 − g0]

TK−1
av g

〉
H1

= [g1 − g0]
TK−1

av g1,
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in which we used the 〈. . .〉Hk
notation to denote ensemble average conditioned on the

hypothesis Hk. It follows that

〈tHot(g)〉H1 − 〈tHot(g)〉H0 = (g1 − g0)
TK−1

av (g1 − g0) .

For the variance of t(g) conditioned on the hypothesis H0, we have

σ2
tHot(g)|H0

=
〈
[tHot(g) − 〈tHot(g)〉H0 ]

2 〉
H0

=

=
〈 [

(g1 − g0)
TK−1

av g − (g1 − g0)
TK−1

av g0

]2 〉
H0

=

=
〈 [

(g1 − g0)
TK−1

av (g − g0)
]2 〉

H0
=

=
〈
(g1 − g0)

TK−1
av (g − g0) (g − g0)

TK−1
av (g1 − g0)

〉
H0

=

= (g1 − g0)
TK−1

av

〈
(g − g0) (g − g0)

T
〉

H0︸ ︷︷ ︸
Kav

K−1
av (g1 − g0) =

= (g1 − g0)
TK−1

av (g1 − g0) ,

in which we have recognized
〈
(g − g0) (g − g0)

T
〉

H0
= Kav. Similarly

σ2
tHot(g)|H1

= (g1 − g0)
TK−1

av (g1 − g0) = σ2
tHot(g)|H0

= σ2
tHot(g).

Because tHot(g) is normally distributed under hypotheses H0 and H1, we can use (2.2)

to calculate the detectability d′
Hot for the Hotelling observer

d′2
Hot =

[〈tHot(g)〉H1 − 〈tHot(g)〉H0 ]
2

σ2
tHot(g)

= (g1 − g0)
TK−1

av (g1 − g0) .

With similar calculations, we can derive an expression for the SNR for the Hotelling

observer

SNR2
Hot =

[〈tHot(g)〉H1 − 〈tHot(g)〉H0 ]
2

1
2

(
σ2

tHot(g)|H1
+ σ2

tHot(g)|H0

) = (g1 − g0)
TK−1

av (g1 − g0) .

Our treatment assumed that vectors g, s, and n above were vectors of size M in

the same Euclidean space. Consequently, covariances were matrices of size M×M . In

a practical application, such as the analysis of radiological images for the detection of
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lesions, the number M is the number of pixels in the image being evaluated. Hence,

M can be quite large and easily exceed 106, thus making the matrix Kav challenging

to store and calculate with today’s computer technology. This problem has already

been spotted in [66,69,124,130], and clever ways to calculate K−1
av or wHot have been

proposed [131]. Alternatively, we can reduce the size of our data structures by first

passing the data g through a bank of channels [73, 132–136]. More specifically, we

introduce C = {C1, . . . , CK} and we implement channel Ck as the dot product between

g and the channel template vector ck: Ck(g) = cT

k g, for k = 1, . . . , K. Because now

each Ck(g) is simply a scalar value—as opposed to a vector of size M—the size of the

covariance matrix for the channelized data is just K×K, much smaller than M ×M .

As a final note, we remark that all the notions developed in this chapter can be

extended to the generic case in which the data vector g is a vector in a Hilbert space.

For example, g could be a continuous function of a 2D or 3D spatial variable r. We

can still consider the Hotelling observer and associated figures of merit. This time,

however, instead of the covariance matrix Kav we will be dealing with a covariance

operator Kav and we will denote its integral kernel [137] as [Kav](r, r′). The definition

of the Hotelling that was given in (2.10) now assumes the form

tHot(g) =

∫
wHot(r)g(r) dr = w†

Hotg,

in which the symbol “†” denotes the adjoint of a vector or operator in a Hilbert space.

The template vector for the Hotelling observer is now given by

wHot(r) =

∫ [
K−1

av

]
(r, r′)

(
g1(r

′) − g0(r
′)
)
dr′,

where K−1
av is the inverse of the operator Kav. Similarly, the SNR for the Hotelling

observer is rewritten as

SNR2
Hot =

∫∫ (
g1(r) − g0(r)

)[
K−1

av

]
(r, r′)

(
g1(r

′) − g0(r
′)
)
dr dr′ =

= (g1 − g0)
†K−1

av (g1 − g0) . (2.11)
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CHAPTER 3

Maximum-Likelihood Estimation

This chapter provides an introduction to maximum-likelihood estimation and its main

properties. Once the basic ideas of maximum-likelihood estimation are presented, a

simple and efficient algorithm to perform maximum-likelihood estimation is described.

This algorithm works very well when we just need to estimate a few parameters. For

larger problems, a specialized iterative maximum-likelihood estimation algorithm—

called “maximum-likelihood expectation-maximization” or MLEM—is derived. The

chapter concludes with a treatment of the basic properties of the MLEM algorithm.

3.1 General Idea

Maximum-likelihood estimation (MLE) is a statistical method used to estimate model

parameters from observed noisy data [138,139]. For a good historical development of

the concept of maximum-likelihood estimation, the interested reader can consult [140].

In broad terms, given a set of observed data and an underlying model (which

depends on some unknown parameters), MLE tries to determine the values of the

model parameters that better explain the observed data [69]. One important fact to

be aware of and that will be reminded throughout our treatment, is that the observed

data that we use to perform maximum-likelihood estimation are to be interpreted as

realizations of random variables. Thus, parameters we estimate from these data are

to be considered as realizations of random variables as well.

Mathematically, we can introduce the set of parameters we want to estimate as the

vector θ. The model itself is characterized by a probability density function (PDF)

of the form pr(x | θ). The vector x, which belongs to the set X, represents the

complete data [141]. The observed data vector y, which we will also call incomplete
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data, belongs to the set Y. We stress the fact that we do not observe x directly,

but only indirectly and through the vector y [141]. We will assume that vectors x

and y are statistically related via the PDF pr(y | x). Probability density functions

pr(x | θ) and pr(y | x) allow us to write

pr(y | θ) =

∫

X

pr(y | x,θ) pr(x | θ) dx =

=

∫

X

pr(y | x) pr(x | θ) dx,
(3.1)

in which pr(y | θ) is the PDF of the observed data y given the parameter θ and we

made use of the fact that the statistics of y conditioned on x and θ actually, depend

on x only. This assumption is valid if we imagine two separate “mechanisms” that,

when concatenated, produce a sample y from the value of θ. The first mechanism

samples pr(x | θ) to produce the complete data x; the second mechanism produces

the incomplete data y from the value of x. Thus, conditioning on θ in pr(y | x, θ) is

unnecessary and we can simply write pr(y | x,θ) = pr(y | x).

As an example, we can consider a PET system and assume that the vector θ repre-

sents a 2D or 3D continuous radiotracer distribution. In other words, θ is a function of

a 2D or 3D spatial variable. As a side note, θ is usually a vector in a Euclidean space,

but that is actually not a requirement for our treatment. Continuing with our PET

example, x could represent the information about J pairs of photons emitted by the

object. The vector x would thus be made of J components and each of them would

be a pair xj = (r(j), ~s(j)), in which r(j) denotes the location at which the jth pair of

gamma-ray photons is created and ~s(j) is a vector with norm (length) 1 that denotes

the direction along which one of the photons of the jth pair propagates (we are mak-

ing the simplifying assumption in which the two photons propagate along the same

straight line but in opposite directions). Photons propagate to gamma-ray cameras

where they might get detected and produce measurable signals at the PMT outputs.

If they get detected, attribute vectors Â(1), . . . , Â(J) will be available and will make

up the vector y = (y1, . . . , yJ) = (Â(1), . . . , Â(J)). It does not hurt to recall that we
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do not actually observe x = (x1, . . . , xJ) (which contains the locations of the pho-

ton pairs creation and the directions of propagation); we can only observe (measure)

y. Thus, for the example we are considering here, the probability density function

pr(y | x) =
∏J

j=1 pr(Â(j) | r(j), ~s(j)) models the propagation and absorption of the

photons and it also accounts for all the random processes occurring inside the gamma-

ray cameras. On the other hand, density pr(x | θ) =
∏J

j=1 pr(r(j), ~s(j) | θ) models

the photon pair creation spatial distribution and the distribution of the direction of

propagation.

We said above that MLE solves the estimation problem by finding the parameter

vector θ that best explains the observed data y. Mathematically, this concept is

formalized as [69]

θ̂MLE = arg max
θ

[
pr(y | θ)

]
= arg max

θ

[
L(θ; y)

]
, (3.2)

in which θ varies over the whole parameter vector space, the “hat” symbol denotes

an estimated quantity, and we have introduced the likelihood

L(θ; y) = pr(y | θ).

We observer that L(θ; y) has to be interpreted as a function of θ for fixed (mea-

sured) y and with the “arg maxθ L(θ; y)” notation in (3.2) we denote the value of θ

that maximizes the likelihood. Recall that y is the result of a noisy measurement,

so the actual value of y in (3.2) might change if the measurement is repeated. In

other words, y is a random quantity, and this implies that the ML estimate θ̂MLE

is random as well. Therefore, we can—and in some cases we will—investigate the

statistical properties of θ̂MLE.

An alternative way to calculate θ̂MLE consists on rewriting (3.2) as [69]

θ̂MLE = arg max
θ

[
ln pr(y | θ)

]
= arg max

θ

[
`(θ; y)

]
, (3.3)

in which we have introduced the log-likelihood

`(θ; y) = ln L(θ; y) = ln pr(y | θ). (3.4)
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Because the logarithm is a strictly monotonic function, the expression in (3.3) is

equivalent to (3.2). Often times, the log-likelihood `(θ; y) is numerically easier to

treat than the likelihood L(θ; y).

From the definition (3.2) of the maximum-likelihood estimate, it follows that

∂pr(y | θ)

∂θ

∣∣∣∣
θ=θ̂MLE

= 0,

provided that pr(y | θ) is differentiable at θ = θ̂MLE. It is important to note that the

equation above might have more than one solution. In other words, the maximum-

likelihood estimate θ̂MLE might not be unique.

3.2 Important Properties

Maximum-likelihood estimates have many favorable properties. Some of these prop-

erties, which often have theoretical or practical importance, are summarized below

without providing much mathematical detail or formal proof. Whenever possible, the

interested reader can find a more formal treatment and proofs in the literature we

reference.

Asymptotic efficiency. Before discussing asymptotic efficiency of MLE, we need to

recall that the observed data y is a random noisy quantity. Thus, the maximum-

likelihood estimate θ̂MLE calculated from y is a random quantity as well. For

the case in which y represents a set of repeated independent and identically dis-

tributed samples, asymptotic efficiency of MLE refers to the fact that, asymp-

totically and as the size of the set y increases, the variance of each component

of the vector θ̂MLE attains the smallest possible value [142,143], which is given

by the Cramér-Rao lower bound [144,145].

Functional invariance. Assume the MLE of a parameter θ is θ̂MLE and consider

a function u(θ) of the parameter θ. We can identify u(θ) with the parameter



55

µ, for which we can consider a maximum-likelihood estimate µ̂MLE. Then [146,

147],

µ̂MLE = u(θ̂MLE).

The equation above shows that the property of being a maximum-likelihood

estimate is conserved if we consider a function of the maximum-likelihood esti-

mate itself.

Sufficiency. In statistics, a quantity calculated from some samples and used to es-

timate an unknown parameter θ is said to be a sufficient statistic if no other

quantity that can be calculated from the same samples would provide additional

information regarding the value of the parameter θ [138]. Intuitively, a suffi-

cient statistic is a function of the samples that “compresses” the data y without

loosing any information about θ. Sufficiency for a maximum-likelihood esti-

mate θ̂MLE can be stated by saying that θ̂MLE must be a function of a sufficient

statistic for θ [148,149].

Consistency. Consistency of an estimator regards the behavior of the estimator as

the sample size increases. Let us consider again the case in which y is a set

of repeated independent and identically distributed samples. It is possible to

show that, when the range of the elements of the set y is independent on the

parameter θ, there exists a maximum-likelihood estimate θ̂MLE that, as the size

of the set y goes to infinity, converges in probability [127] to the true value θ of

the parameter [144,150]. The property of consistency can be restated by saying

that there exists a maximum-likelihood estimate θ̂MLE that is unbiased [69] as

more and more data are collected. It can be shown that a consistent maximum-

likelihood estimate is unique [150].

Asymptotic normality. The property of asymptotic normality states that, as the

sample size increases, the probability density function of maximum-likelihood
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estimate θ̂MLE asymptotically approaches the probability density function of

a normally-distributed random variable. More specifically, we have conver-

gence [46,69,139,144,151] to a normally distributed random variable with mean

equal the true parameter we want to estimate and covariance matrix equal to

the inverse of the Fisher information matrix [114,152,153].

3.3 MLE for Low-Dimensional Problems

We saw in (3.2) that performing a maximum-likelihood estimation entails performing

a search for a maximum of the likelihood L(θ; y) or, equivalently, the log-likelihood

`(θ; y). In some cases, this search problem can be solved analytically. The example

that follows shows one such case. At the same time, it provides a more concrete

introduction to maximum-likelihood estimation.

Consider J independent identically distributed Poisson random variables Y1, . . . , YJ

with parameter (mean) θ. In other words [127]:

Pr(Yj = yj | θ) =
θyj

yj!
e−θ,

in which Pr(Yj = yj | θ) denotes the probability that the random variable Yj assumes

the value yj, given that the parameter (mean) of the Poisson random variable Yj is θ.

The goal is to estimate the parameter θ from the realizations y1, . . . , yJ . Each number

yj is a non-negative integer number. We can collect the realizations of Y1, . . . , YJ in

the vector y = (y1, . . . , yJ). By the hypothesis of independence, we can write the

likelihood as

L(θ; y) = Pr(Y1 = y1, . . . , YJ = yJ | θ) = e−Jθ

J∏

j=1

θyj

yj!
,

and the log-likelihood is

`(θ; y) = ln L(θ; y) =
J∑

j=1

[
yj ln θ − ln(yj!)

]
− Jθ.
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In this simple case, we can find an estimate of the parameter θ by calculating the

derivative of `(θ; y), setting it zero, and solving for θ the resulting equation. Specifi-

cally
d`(θ; y)

dθ
=

[
1

θ

J∑

j=1

yj

]
− J ,

which gives

θ̂MLE =
1

J

J∑

j=1

yj. (3.5)

The maximum-likelihood estimate θ̂MLE of θ turns out to be the sample mean of the

observed data y1, . . . , yJ . This should not be a surprising result because the mean of

a Poisson random variable corresponds to its parameter and the arithmetic mean of

realizations y1, . . . , yJ is an unbiased estimator of the mean of any of the Yj:
〈

1

J

J∑

j=1

Yj

〉
=

1

J

J∑

j=1

〈Yj〉 =
1

J

J∑

j=1

θ = θ.

To show that the quantity found in (3.5) maximizes the log-likelihood, we can consider

the second derivative of `(θ; y) and evaluate it for θ = θ̂MLE:

d2`(θ; y)

dθ2

∣∣∣∣
θ=θ̂MLE

= − 1

θ̂2
MLE

J∑

j=1

yj.

Because the numbers y1, . . . , yJ are non-negative, the quantity at the right-hand side

is always negative or zero. Hence, θ̂MLE is a maximum of `(θ; y), as desired.

In many practical cases, however, an analytic solution of the maximum-likelihood

estimation problem is not possible. This would be, for example, the case in which the

gradient of the likelihood L(θ; y) has a very complicated expression and the resulting

equations cannot be solved explicitly for θ. If the number of components of the vector

θ is large (for example, greater than 5), an exhaustive search as the one suggested

in (3.2) is not computationally feasible. In these cases, we are usually forced to

use an optimization algorithm to find a point that solves (3.2). We will not try to

face the problem of providing a survey of all the optimization methods that have
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appeared in the literature. For a good treatment of the topic, the interested reader

can consult [154–172].

In the remainder of this section, we want to present an alternative technique that

can be used to search for the maximum of the likelihood L(θ; y). For reasons that will

be clear later, this method is feasible when the number of components of the vector

θ is relatively small and L(θ; y) is a “smooth” function of θ. To fix the ideas, let

assume that θ = (θ1, . . . , θN) with, say, N 6 5 and let assume that we know a priori

that each θn can only take values between an and bn. In other words, an 6 θn 6 bn.

Cases like this frequently appear in practical problems. For example, if the parameter

vector θ to estimate is a 3D location of interaction of a photon within a scintillation

crystal, then N = 3 and the point θ cannot lie outside the detector’s crystal. In

other words, an 6 θn 6 bn for n = 1, 2, 3 where quantities an and bn define the crystal

boundaries.

The search algorithm [45,173,174] starts by choosing Q points θ
(1)
n , . . . , θ

(Q)
n equally

spaced in each of the [an, bn] intervals. The separation between points will be ∆n =

(bn−an)/Q. An N -dimensional grid of parameter vectors θ(q1,...,qN ) =
(
θ

(q1)
1 , . . . , θ

(qN )
N

)

is created by considering all the possible choices for the indices q1, . . . , qN . Such a grid

will thus be made up of QN parameter vectors θ(q1,...,qN ) and we can think of it as an

N -dimensional grid with Q points in each dimension. Points are evenly spaced by ∆n

in the nth dimension. This grid is centered at θmid =
(

a1+b1
2

, . . . , aN+bN

2

)
. Notice that

θmid might not necessarily belong to the grid. The likelihood L(θ(q1,...,qN ); y) is then

calculated for all the QN parameter vectors θ(q1,...,qN ) of the grid and the parameter

vector θ? of the grid that maximizes L(θ(q1,...,qN ); y) is retained. A new N -dimensional

grid is considered; this second grid will be centered at θ? and will be obtained from the

previous one by reducing the separation between points. In particular, we can decide

that points in the nth dimension of the new grid will now be separated by ∆n/α, for

α > 1. For example, we can set α = 2, meaning that the separation between adjacent

points in the second grid is half the separation between adjacent points in the first
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grid. The process outlined above is then repeated: L(θ(q1,...,qN ); y) is calculated for

all the parameter vectors of the second grid, a new parameter vector θ? is selected, a

third grid—smaller than the second—is considered, and so on for a prefixed number

of iterations. Because the separation between points in the grid is divided by α > 1 at

each iteration, the algorithm is able to find a local maximum of L(θ(q1,...,qN ); y) with

an accuracy that grows exponentially with the number of iterations. We will usually

refer to the algorithm just described as the contracting-grid algorithm [45,59,173].

3.4 The MLEM Algorithm

As we alluded to above, many algorithms to find the point that maximizes the likeli-

hood (or its logarithm) are available. These algorithms range from classical minimiza-

tion algorithms (such as the steepest-descent and the conjugate-gradient methods) to

derivative-free optimization routines, and from simulating annealing to and genetic

algorithms. We also presented in some details a very simple algorithm [45] that runs

fast when just a few parameters θ1, . . . , θN need be estimated.

In medical applications, we might want to use MLE to reconstruct an image from

observed data. In such a case, the vector θ will stand for the reconstructed image.

Typically, such an image is of size 128×128 pixels or larger, leading to θ = (θ1, . . . , θN)

with N > 1282 = 16384. Even the fastest algorithm described above might take

an incredible amount of time to solve this maximum-likelihood estimation problem.

Fortunately, we can take advantage of the mathematical structure—such as the re-

lationship in (3.1)—of the problem at hand and devise a fast iterative algorithm to

solve (3.2). The goal of this section is to briefly present a derivation of the expectation-

maximization (EM) algorithm [141, 175–178] and also mention its main properties.

The EM algorithm will be used to solve a maximum-likelihood (ML) problem for the

particular case in which the noise in the data follows Poisson statistics, thus lead-

ing to the derivation of the maximum-likelihood expectation-maximization (MLEM)
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algorithm [179–184] in the form commonly used in medical applications.

The MLEM algorithm constructs a sequence θ̂(1), θ̂(2), . . . , θ̂(k), . . . of estimates

such that

lim
k→∞

θ̂(k) = θ̂(∞),
∣∣θ̂(∞)

∣∣ < ∞,

and

`(θ̂(1); y) < `(θ̂(2); y) < · · · < `(θ̂(k); y) < · · · < `(θ̂(∞); y) = max
θ

[
`(θ; y)

]
,

where `(θ; y) is the log-likelihood defined in (3.4). Given one of the terms in the se-

quence θ̂(1), θ̂(2), . . . , θ̂(k), . . . , we can consider the quantity `(θ; y)−`(θ̂(k); y). Notice

that this quantity is a function of θ for fixed observed data y. With some manipula-

tions and using (3.1), we can write

`(θ; y) − `(θ̂(k); y) = ln pr(y | θ) − ln pr(y | θ̂(k)) =

= ln

∫

X

pr(y | x, θ) pr(x | θ) dx − ln pr(y | θ̂(k)) =

= ln

∫

X

[
pr(y | x, θ) pr(x | θ)

pr(x | y, θ̂(k))

]
pr(x | y, θ̂(k)) dx − ln pr(y | θ̂(k)) =

= ln

〈
pr(y | x, θ) pr(x | θ)

pr(x | y, θ̂(k))

〉

x|y,θ̂(k)

− ln pr(y | θ̂(k)),

in which we have recognized that the integral is nothing but the expectation over x

given y and θ̂(k) of the quantity in [. . .] above. Notice that the logarithm is a concave

function. Thus, by Jensen’s inequality [185] applied to 〈. . .〉x|y,θ̂(k) :

`(θ; y) − `(θ̂(k); y) >

〈
ln

[
pr(y | x, θ) pr(x | θ)

pr(x | y, θ̂(k))

]〉

x|y,θ̂(k)

− ln pr(y | θ̂(k)) =

=

〈
ln

[
pr(y | x,θ) pr(x | θ)

pr(x | y, θ̂(k))

]〉

x|y,θ̂(k)

− 〈ln pr(y | θ̂(k))〉x|y,θ̂(k) =

=

〈
ln

[
pr(y | x, θ) pr(x | θ)

pr(x | y, θ̂(k)) pr(y | θ̂(k))

]〉

x|y,θ̂(k)

.
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If we define

˜̀(θ; θ̂(k), y) = `(θ̂(k); y) +

〈
ln

[
pr(y | x,θ) pr(x | θ)

pr(x | y, θ̂(k)) pr(y | θ̂(k))

]〉

x|y,θ̂(k)

,

then, by the result derived above:

˜̀(θ; θ̂(k), y) 6 `(θ; y).

We further have:

˜̀(θ̂(k); θ̂(k), y) = `(θ̂(k); y) +

〈
ln

[
pr(y | x, θ̂(k)) pr(x | θ̂(k))

pr(x | y, θ̂(k)) pr(y | θ̂(k))

]〉

x|y,θ̂(k)

=

= `(θ̂(k); y) +

〈
ln

[
pr(x, y | θ̂(k))

pr(x, y | θ̂(k))

]〉

x|y,θ̂(k)

︸ ︷︷ ︸
0

=

= `(θ̂(k); y).

To summarize, the two important results we have found so far are:

• ˜̀(θ; θ̂(k), y) 6 `(θ; y),

• ˜̀(θ̂(k); θ̂(k),y) = `(θ̂(k); y).

If we choose θ̂(k+1) as

θ̂(k+1) = arg max
θ

[
˜̀(θ; θ̂(k),y)

]
,

then

`(θ̂(k+1); y) > `(θ̂(k); y),

where the last result follows from the previous two and by the definition of θ̂(k+1) as

the point θ that maximizes ˜̀(θ; θ̂(k), y). Figure 3.1 shows an example of the basic

steps of the MLEM algorithm.
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θθ̂(k) θ̂(k+1) θ̂(k+2) θ̂(∞)

˜̀(θ; θ̂(k), y)

˜̀(θ; θ̂(k+1), y)

`(θ; y)

Figure 3.1. Illustration of the MLEM algorithm

Expanding the relationship θ̂(k+1) = arg maxθ
˜̀(θ; θ̂(k), y), yields

θ̂(k+1) = arg max
θ



`(θ̂(k); y) +

〈
ln

[
pr(y | x, θ) pr(x | θ)

pr(x | y, θ̂(k)) pr(y | θ̂(k))

]〉

x|y,θ̂(k)



 =

= arg max
θ

{〈
ln [pr(y | x,θ) pr(x | θ)]

〉
x|y,θ̂(k)

}
=

= arg max
θ

{〈
ln

[
pr(x, y, θ)

pr(x, θ)

pr(x,θ)

pr(θ)

]〉

x|y,θ̂(k)

}
=

= arg max
θ

{〈
ln pr(x, y | θ)

〉
x|y,θ̂(k)

}
,

(3.6)

which shows that θ̂(k+1) is obtained by first performing an estimation, denoted above

as 〈ln pr(x, y | θ)〉x|y,θ̂(k) , and then by performing the maximization with respect to

θ of this quantity. Thus, each iteration of the algorithm involves two steps: the

expectation step (which we will also call the “E-step”) and the maximization step (the

“M-step”).

Some theoretical results about the MLEM algorithm can be found in [141,186,187].

For example, it is shown that successive iterations of the E- and M-steps always

increase the likelihood and that if convergence to θ̂(∞) is reached, then θ̂(∞) is a
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stationary point of the likelihood. In [141], conditions for convergence and rate of

convergence to a stationary point are discussed as well.

We will devote the rest of this section to the derivation of the MLEM algorithm

in the form that is usually used in medical imaging. In order to do that, we first

need to introduce some notation and describe the physical model that we will as-

sume. In nuclear medical imaging, a radionuclide-bearing compound is introduced

into the object being imaged. This compound forms an unknown gamma-ray emitter

distribution that we will denote with the function f(r), in which r is a 3D spatial

variable that varies over the entire field of view (FOV). The units of f(r) are number

of emissions per unit time, per unit volume. We will divide the field of view into N

non-overlapping voxels B1, . . . , BN and define:

fn =

∫

Bn

f(r) d3r,

for n = 1, . . . , N . Collectively, the numbers f1, . . . , fN will be denoted as the vector

f . The expression above represents a particular case of a more general model:

fn =

∫

FOV

ϕn(r)f(r) d3r,

where
{
ϕ1(r), . . . , ϕN(r)

}
is a set of expansion functions, usually an orthonormal

basis. Given an estimate f̂ of the vector f , we define the estimate f̂(r) of f(r)

as [69]

f̂(r) =
N∑

n=1

f̂nφn(r),

where functions φn(r) are not necessarily the same as ϕn(r).

Gamma-ray photons emitted by the radiotracer distribution f(r) are detected by

one or more detectors. We will assume pixelated detectors with a total of M pixels,

and we will denote the total count in pixel m as gm, for m = 1, . . . , M . Again, we will

denote as g the vector of elements g1, . . . , gM . Thus, g is the vector of the observed
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or incomplete data. We can further assume that gm can be written as

gm =
N∑

n=1

cm,n,

in which cm,n is the number of gamma-ray photons collected by the mth detector pixel

and emitted from voxel Bn in the field of view. From the physics, each cm,n is a random

variable that follows a Poisson distribution with mean (parameter) hm,nfn, where hm,n

can be interpreted as the probability that a gamma-ray photon emitted from voxel

Bn in object space is detected at detector pixel m, multiplied by some exposure time

τ . We will also assume that random variable cm,n for m = 1, . . . , M and n = 1, . . . , N

are independent and we will collect all of them in the vector c. Notice that we cannot

directly measure c; thus, in the language introduced in § 3.1, c represents the vector

of complete data. From the assumption of independence of the random variables

cm,n and from the fact that the random variables cm,n follow Poisson statistics, we

obtain that gm is a Poisson random variable with mean
∑N

n=1 hm,nfn. In image

reconstruction, it is customary to interpret the randomness in gm as noise. Within

this framework, the goal of any reconstruction algorithm is to calculate an estimate

f̂ of f given the noisy data g and for known values of hm,n, with m = 1, . . . , M

and n = 1, . . . , N . For the case of maximum-likelihood, estimate f̂ is defined as any

object distribution that maximizes the probability of measuring the data g [188,189]:

f̂ = arg max
f

[
L(f ; g)

]
= arg max

f

[
Pr(g | f)

]
.

For reasons that will become clear later, we will start by calculating the conditional

probability Pr(g, c | f). Notice first that if gm 6= ∑N
n=1 cm,n for some m, then the

probability Pr(g, c | f) would be 0. If, on the other hand, gm =
∑N

n=1 cm,n for all

m = 1, . . . , M , then we can use the rules of conditional probability to write

Pr(g, c | f) =
M∏

m=1

Pr(gm, cm,1, . . . , cm,N | f) =
M∏

m=1

Pr(gm, cm,1, . . . , cm,N ,f)

Pr(f)
=



65

=
M∏

m=1

[
Pr(gm | cm,1, . . . , cm,N , f) × Pr(cm,1, . . . , cm,N | f)

]
=

=
M∏

m=1

[
N∏

n=1

[hm,nfn]cm,n

cm,n!
e−hm,nfn

]
,

where we used the fact that cm,n follows a Poisson distribution with mean hm,nfn.

With some abuse of notation, we can include the Pr(g, c | f) = 0 case and the

Pr(g, c | f) 6= 0 case in the same expression and write

Pr(g, c | f) =
M∏

m=1

[
δKron

(
gm −

N∑

n=1

cm,n

)
×

N∏

n=1

[hm,nfn]cm,n

cm,n!
e−hm,nfn

]
, (3.7)

in which δKron(k) is the Kronecker delta function defined as

δKron(k) =

{
1 if k = 0,
0 otherwise.

(3.8)

Notice that in (3.7), we used the relationship gm =
∑N

n=1 cm,n to express the proba-

bility Pr(gm | cm,1, . . . , cm,N , f) using the Kronecker delta function.

To calculate the likelihood for the problem at hand, we need the probability Pr(g |
f), which is obtained from Pr(g, c | f) by marginalizing over c:

Pr(g | f) =
M∏

m=1

Pr(gm | f) =
M∏

m=1




∑

cm,1,...,cm,N

Pr(gm, cm,1, . . . , cm,N | f)


 =

=
M∏

m=1




∑

cm,1+···+cm,N=gm

N∏

n=1

[hm,nfn]cm,n

cm,n!
e−hm,nfn


 =

=
M∏

m=1

e−
PN

n=1 hm,nfn

gm!

{
∑

cm,1+···+cm,N=gm

gm!

cm,1! . . . cm,N !
×

× [hm,1f1]
cm,1 × · · · × [hm,NfN ]cm,N

}
=

=
M∏

m=1





[∑N
n=1 hm,nfn

]gm

gm!
e−

PN
n=1 hm,nfn



 =

M∏

m=1

Pr(gm | f),
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in which the last step shows that g1, . . . , gM are independent Poisson random variables

with means
∑N

n=1 h1,nfn, . . . ,
∑N

n=1 hM,nfn, as expected. From the expression above,

it follows that the log-likelihood `(f ; g) is

`(f ; g) = ln Pr(g | f) =
M∑

m=1

{
gm ln

[
N∑

n=1

hm,nfn

]
−

N∑

n=1

hm,nfn − ln(gm!)

}
.

It is show in [179] that the matrix of second derivatives of `(f ; g) is negative semi-

definite. Therefore, `(f ; g) as a function of f is concave. To calculate the maximum-

likelihood estimate, we can calculate the gradient of `(f ; g) with respect to f , set

it to zero, and try to solve the resulting system of equations for f . The gradient of

`(f ; g) is

∂`(f ; g)

∂fn′

=
M∑

m=1

{
gmhm,n′

∑N
n=1 hm,nfn

− hm,n′

}
, n′ = 1, . . . , N ,

leading to
1

∑M
m=1 hm,n′

M∑

m=1

gmhm,n′

∑N
n=1 hm,nf̂n

= 1, n′ = 1, . . . , N .

The system of equations above, however, cannot be explicitly solved for f̂ . On the

other hand, the MLEM algorithm, as developed in (3.6), yields

f̂ (k+1) = arg max
f

{〈
ln Pr(c, g | f)

〉
c|g,f̂(k)

}
,

where

〈
ln Pr(c, g | f)

〉
c|g,f̂(k) =

=
M∑

m=1

N∑

n=1

[
〈cm,n〉c|g,f̂(k) ln(hm,nfn) − 〈ln(cm,n!)〉c|g,f̂(k) − hm,nfn

]
.

For the purpose of calculating the maximum with respect to f , we can discard all the

terms of
〈
ln Pr(c, g | f)

〉
c|g,f̂(k) that do not involve f :

f̂ (k+1) = arg max
f

{
M∑

m=1

N∑

n=1

[
〈cm,n〉c|g,f̂(k) ln(hm,nfn) − hm,nfn

]}
. (3.9)
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To calculate 〈cm,n〉c|g,f̂(k) we note that such a quantity is the fraction of gm,n that is

coming from the nth voxel, conditioned on f̂ (k):

〈cm,n〉c|g,f̂(k) = gm
hm,nf̂

(k)
n

∑N
n′=1 hm,n′ f̂

(k)
n′

.

Define Q(f ; f̂ (k), g) as the quantity in {. . .} that appears in (3.9):

Q(f ; f̂ (k), g) =
M∑

m=1

N∑

n=1

[
〈cm,n〉c|g,f̂(k) ln(hm,nfn) − hm,nfn

]
=

=
M∑

m=1

N∑

n=1

[
gm

hm,nf̂
(k)
n

∑N
n′=1 hm,n′ f̂

(k)
n′

ln(hm,nfn) − hm,nfn

]
.

The gradient is

∂Q(f ; f̂ (k), g)

∂fn

=
1

fn

M∑

m=1

gm
hm,nf̂

(k)
n

∑N
n′=1 hm,n′ f̂

(k)
n′

−
M∑

m=1

hm,n.

Thus, the maximum of Q(f ; f̂ (k), g) is reached for f = f̂ (k+1), where

f̂ (k+1)
n = C(k)

n f̂ (k)
n = f̂ (k)

n

{
1

∑M
m=1 hm,n

M∑

m=1

gmhm,n∑N
n′=1 hm,n′ f̂

(k)
n′

}
, (3.10)

in which the coefficients C
(k)
n describe how the pixel intensities in the reconstructed

image are updated throughout the iterations of the MLEM algorithm.

We conclude this section by commenting on some of the properties of the MLEM

algorithm that follow directly from the relation just derived above. First of all, recall

that the numbers hm,n were defined as the exposure time τ multiplied by the prob-

ability that a gamma-ray photon emitted from voxel Bn in object space is detected

at detector pixel m. Thus, all the hm,n are non-negative and so are the numbers

gm, as they count the number of gamma-ray photons collected at the mth detector

pixel. If all the f̂
(k)
n for n = 1, . . . , N are non-negative, then also all the f̂

(k+1)
n are

non-negative, as the quantity in {. . .} above is non-negative. In other words, iter-

ations of the relation in (3.10) automatically ensures positivity of f̂ (k+1), provided
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that f̂ (k) satisfies positivity constraints as well. Notice further that the probability sn

that a gamma-ray photon emitted from voxel Bn satisfies sn =
∑M

m=1 hm,n > 0 for all

n = 1, . . . , N . This property, along with the positivity of f̂ (k) ensures that, in (3.10),

a positive number is never divided by zero [179]. Should zero divided by zero occur

in (3.10), we will define such a quantity as zero [179].

An important property of the MLEM algorithm can be obtained by multiplying

both sides of (3.10) by sn =
∑M

m=1 hm,n and then by summing over n, for n = 1, . . . , N .

This gives
N∑

n=1

snf̂ (k+1)
n =

M∑

m=1

gm

∑N
n=1 hm,nf̂

(k)
n

∑N
n′=1 hm,n′ f̂

(k)
n′

=
M∑

m=1

gm = constant,

which implies that the MLEM algorithm conserves the quantity
∑N

n=1 snf̂
(k)
n through-

out the iterations. Notice that
∑M

m=1 gm is the total number of photon counts collected

by the hardware during the exposure time τ . Hence, we can interpret one iteration of

the MLEM algorithm as a way to redistribute the total detectable activity
∑N

n=1 snf̂
(k)
n

so that Pr(g | f̂ (k+1)) > Pr(g | f̂ (k)) for k > 0.

The relation in (3.10) is clearly non-linear in f̂ (k). Instead, estimate f̂ (k+1) is cal-

culated by multiplying f̂ (k) by a (non-negative) corrective factor C
(k)
n . In particular,

we notice that if agreement between the data and the estimate is reached (in other

words,
∑N

n=1 hm,nf̂
(k)
n = gm for all m = 1, . . . ,M) then all the corrective factors C

(k)
n

will be 1. An alternative way to state this is by saying that if
∑N

n=1 hm,nf̂
(k)
n = gm

for all m = 1, . . . , M , then f̂ (k) is a fixed-point for the relationship in (3.10).

We noticed above that the data g we collected are necessarily noisy. Thus, any f̂ (k)

for which agreement with the data is enforce is necessarily noisy. The multiplicative

nature of the MLEM algorithm as presented in (3.10) precludes the possibility for the

noise in f̂ (k) to be normally distributed. Indeed, if that were the case, we would have

a non-zero probability to have one of the f̂
(k)
n take on a negative value, in violation

of the positivity constraints automatically enforced by the MLEM algorithm. On

the other hand, it has been observed that the probability density function for the
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grey level at a pixel in the image is well approximated by a log-normal probability

law [190,191].

We noted at the beginning of this chapter that the goal of MLE is to find a value of

the parameter vector that maximizes the likelihood (or, equivalently, its logarithm).

In a practical case, there might be more than one parameter vector that maximizes

the likelihood. In the context of image reconstruction (in which the parameter vector

we want to estimate is an image f), we talk about null functions [192, 193]. A null

function fnull for f is a function that when added to f produces the same mean data

as f does. Here, “mean data” have to either be understood as the data g averaged

over many realizations of the noise (so that the noise itself is averaged out), or as

the expected data vector 〈g〉. Hence, the interpretation of a null function is that

if we take two data sets, say g and g′, the former produced by imaging f and the

latter produced by imaging f + fnull, any difference between g and g′ is solely due to

different realizations of the random noise. In other words, it is not possible to discern

between f and f + fnull by examining the two data sets. Null functions depend on

the imaging system we are using. In a sense, they are objects that are “invisible”

through the system. If the imaging system has null functions, there are many object

estimates that give the same likelihood.

An important question that the relation in (3.10) does not answer concerns the

number of iterations of (3.10) we need to perform to obtain an image suitable for the

task of interest. As we saw above, the MLEM algorithm strives for agreement between

the noisy measured data g and the image of the estimate [69]. If a large number of

iterations is performed, agreement with the measured data often results in a virtually

useless image consisting of a few bright pixels in a black uniform background (“night-

sky” reconstruction). It can be shown [69] that if the MLEM algorithm is used to

reconstruct a discretized object, then the algorithm will converge to a unique night-

sky reconstruction, regardless of starting point. It has also been shown [194] that

image quality perceived by a human observer reaches a peak after a small number of
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iterations and then it rapidly decreases due to the night-sky effect. Other artifacts,

such as large distortions near the edges of the image, have been observed as well [195].

It has also been noticed that noise and reconstruction artifacts generally increase as

successive estimates f̂ (k) are calculated. Such artifacts are essentially due to the

ill-posedness [22, 196] of the image-reconstruction process.

One way to control noise in the ML reconstruction is to introduce a stopping rule

and to stop the algorithm before excessive noise amplification occurs. Some stopping

rules are discussed in [197, 198]. For example, the rule suggested in [197] consists in

stopping the reconstruction algorithm when the following condition is reached:

χ2 =
M∑

m=1

[
gm − ∑N

n=1 hm,nf̂
(k)
n

]2

∑N
n=1 hm,nf̂

(k)
n

≈ M ,

in which we have recognized the expression for a χ2 test [199, 200]. More elaborate

stopping rules, based, for example, on the pixel updating coefficients C
(k)
n introduced

in (3.10) have been proposed as well [201,202].

Whatever stopping rule is used, it should take into consideration the fact that

images are often being viewed by a human observer to learn something about the

object being imaged. This links the development of a stopping rule to the concept

of task-based assessment of image quality, as discussed in Chapter 2. Some work has

been done in that direction. For example, in [203] the authors compare different im-

age reconstruction algorithms—including the MLEM algorithm—and stopping rules.

A ranking of these methods based on the AUC for a signal detection task is then

produced.

A second way to reduce edge artifacts and noise in the reconstructed image is

to modify the iterative expression in (3.10) so that the estimate is intentionally a

blurred version of the underlying intensity f , rather than the intensity itself. The

maximum-likelihood estimate can also be forced to belong to a set of vectors that

satisfy some desirable properties, such as smoothness near the edges of the image.
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This approach has been successfully pursued in [195].

Other modifications of the basic MLEM algorithm have been proposed and ana-

lyzed. This includes the addition to the model of prior knowledge of the statistical

properties of f [184]. Another important modification to the MLEM algorithm con-

sists in grouping the data into an ordered sequence of subsets and processing these

subsets one after the other. This method has been shown to greatly speed up the

reconstructing algorithm while maintaining the same reconstruction quality [204]. Fi-

nally, adaptation mechanisms [205] have been fruitfully used in conjunction with the

MLEM algorithm, as shown in the preliminary results of [7].
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CHAPTER 4

List-Mode Data and Maximum

Likelihood Estimation

This chapter begins with a discussion of the basic setup of gamma-ray cameras. The

physical phenomena responsible for the generation of a signal upon interaction of a

gamma-ray photon with the camera’s crystal are discussed in some detail. A formal

description of the statistical processes occurring inside a photomultiplier tube (PMT)

provides the theoretical framework for the remaining topics covered in the chapter,

such as maximum-likelihood estimation (MLE) of position of interaction and image

reconstruction from list-mode data. After a brief digression on Markov chain Monte

Carlo (MCMC) methods, the chapter continues by presenting the theory of list-mode

task performance for some relevant observers, namely the Hotelling and the ideal

observers. Estimation from list-mode data is covered in more details towards the

end of the chapter. We then apply the list-mode maximum-likelihood expectation-

maximization (LMMLEM) algorithm to two different problems: estimation of a vector

of parameters that characterize the object being imaged and image reconstruction

from list-mode PET data.

4.1 The Gamma-Ray Camera

A gamma-ray camera is a device used in nuclear medicine to image gamma-ray

radiation generated by radioisotopes. The first gamma-ray camera was developed

in 1957 by Hal Oscar Anger (May 20, 1920–October 31, 2005). Anger’s original de-

sign [206–208], often referred to as an “Anger camera,” is still widely used today. The

gamma-ray camera that Anger proposed [207] consisted of a lead housing with a pin-

hole aperture enclosing a 4-inch-diameter, 1/4-inch-thick circular scintillation crystal
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made of thallium-activated sodium iodine, coupled with a bank of seven 1.5-inch-

diameter photomultiplier tubes (PMTs), arranged in a hexagonal configuration (six

PMTs at the vertices of a hexagon plus a PMT at the center). One side of the scin-

tillation crystal is facing the pinhole aperture, while the other side is facing the PMT

bank. The space between the scintillation crystal and the PMTs is filled with a trans-

parent optical fluid. The gamma-ray camera is connected via appropriate circuitry

to a cathode-ray tube (CRT) for display. The circuitry, which included resistances,

difference circuits, and amplifiers, used the PMT outputs to generate—using Anger

arithmetic—signals approximatively corresponding to the 2D location of scintillation

in the crystal:

X̂ =

∑K
k=1 gkXk∑K

k=1 gk

, Ŷ =

∑K
k=1 gkYk∑K

k=1 gk

,

where g1, . . . , gK are the PMT signals and X1, . . . , XK and Y1, . . . , YK are the X

and Y PMT locations, respectively. The expressions above correspond to centroid

estimation. Variants on this basic idea have been proposed as well [209,210].

Scintillation locations due to the gamma-rays that make it through the pinhole

in the lead shield are reproduced as flashes of light on the CRT display. Over time,

they form an image of the gamma-ray emitting source distribution. The camera was

used for in vivo 131I imaging of the human thyroid gland.

A diagram of a typical gamma-ray camera is provided as Figure 4.1. Many designs

for gamma-ray cameras have been proposed in the past (see, for example, [211–219]).

A relevant design is the one discussed in [211, 212], which is a modular gamma-ray

camera featuring a large detector area and optimal position estimation based on

maximum-likelihood. This camera can be used as building block for larger imaging

systems [220].

When a gamma-ray interacts with the scintillation crystal, a shower of visible-

light photons is produced. Some of these photons travel through the crystal and the

light guide, and enter the PMT bank. When a photon enters a PMT and interacts
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Front view Side view

Scintillation
crystal

Light guide

PMT

PMT

PMTPMT 1 PMT 2 PMT 3

PMT 4 PMT 5 PMT 6

PMT 7 PMT 8 PMT 9

Figure 4.1. Diagram of a gamma-ray camera
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with it, a measurable electric signal is produced. This signal is amplified by the PMT

and processed by the camera’s electronics. To provide a more detailed explanation of

the whole process, we first need to describe how a gamma-ray photon interacts with

matter, how the scintillation process takes place, and, finally, how a PMT converts

optical photons into electric signals.

4.1.1 Linear Attenuation

A beam of gamma-ray radiation passing through matter gets attenuated according

to Beer’s Law [221,222]:

I(z) = I0e
−µz,

in which I0 is the incident gamma-ray flux (measured in photons per unit area),

I(z) is the gamma-ray flux at depth z in the traversed medium, and µ is the linear

attenuation coefficient, as shown in Figure 4.2.

µ

I0 I(z)

Figure 4.2. Diagram of absorption of a beam of light as it travels through the
traversed medium

The linear attenuation coefficient µ measures the probability of a photon-matter

interaction per unit length traveled in the medium. It depends on many factors,

including photon energy E and density and effective atomic number Zeff of the

medium [221,223]. A gamma-ray photon can interact with matter via three different

processes. These are: photoelectric absorption, Compton scattering, and positron-

electron pair production. The prevalence of each of these different processes depends
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on the atomic number of the chemical elements making up the transversed medium

and on the energy of the gamma-ray photons. For example, positron-electron pair

production (usually denoted as γ → e− + β+) only occurs when the energy of the

gamma-ray photon exceeds twice the rest energy of an electron. Usually, gamma-ray

photons used in medical imaging have energies between 50 keV and 550 keV, well be-

low the 1022 keV energy threshold for positron-electron pair production. Thus, only

Compton scattering and photoelectric absorption are of interest in nuclear medicine.

4.1.2 Compton Scattering

Compton scattering [224, 225] is a phenomenon whereby an incoming gamma-ray

photon interacts with a loosely-bound or free electron in an atom, and only a portion

of the energy of the gamma-ray photon is transferred to the electron. The electron

recoils and departs from the atom, which becomes ionized. The remaining energy

is emitted as a scattered photon. If this photon has enough energy, the process

just described may be repeated. Conservation of total energy and momentum and

special relativity allow us to calculate scattering angles and energy of the scattered

photon. The relationship between the shift in wavelength and the deflecting angle of

the scattered photon is as follows [224]:

λ′ − λ =
h

mec

(
1 − cos ϑ

)
,

in which λ and λ′ are the wavelengths of the incident and scattered photons, respec-

tively, h is Planck’s constant, me is the mass of the electron, c is the speed of light,

and ϑ is the scattering angle of the scattered photon (see Figure 4.3). In terms of

photon energies E = hc/λ and E ′ = hc/λ′, the expression above becomes [224]

E ′ =
E

1 +
E

mec2

(
1 − cos ϑ

) .
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Figure 4.3. Diagram of Compton scattering interaction

The relationship between the scattering angle ϑ and the electron recoil angle ϕ is

given by

cot ϕ =

(
1 +

h

λmec

)
tan

(
ϑ

2

)
.

The angular distribution of the scattered gamma-ray photon is modeled by the

Klein-Nishina formula [226]. This distribution takes the form:

dσ

dΩ
= Zr2

0

[
1

1 + α(1 − cos ϑ)

]2 (
1 + cos2 ϑ

2

){
1 +

α2(1 − cos ϑ)2

(1 + cos2 ϑ)[1 + α(1 − cos ϑ)]

}
,

where dσ/ dΩ is the differential scattering cross-section per solid angle, Z is the

atomic number, r0 is the electron radius, and we have set α = E/mec
2 for notational

convenience. The differential scattering cross-section dσ/ dΩ for different energies of

the incident photon is plotted in Figure 4.4. For convenience, we assumed Zr2
0 = 1

in these plots. Some methods for generating random scattering angles according to

the distribution above have been proposed in [227–229].
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Figure 4.4. Differential scattering cross-sections for different energies E of the
incident photon. In these plots, we assumed Zr2

0 = 1
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4.1.3 Photoelectric Absorption

In photoelectric absorption, an incoming gamma-ray photon is completely absorbed

by an electron and it transfers all of its energy to the electron [10]. This process

usually involves one of the most tightly bound electrons, in the inner shells of the

atom. The electron, now referred to as a photoelectron, ejects from the atom, which,

as in the case of Compton scattering, becomes ionized (see Figure 4.5). The recoil of

the atom left behind conserves momentum. No scattered photon is emitted from the

atom, as all the energy of the incident photon is absorbed by the electron. Again, by

conservation of energy, the kinetic energy of the photoelectron equals the energy of

the gamma-ray photon minus the electron’s binding energy. The probability that a

Incident photon

Photoelectron

K
L

M

Figure 4.5. Diagram of photoelectric absorption interaction

photoelectric interaction will occur is related to the atomic number Z of the nucleus

and it is approximatively proportional to Z3 [230]. For this reason, good scintillation

materials have high atomic numbers [10]. In materials with low Z (such as soft

tissues), photoelectric absorption accounts for a small fraction of photon interactions

with matter [230].
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4.1.4 Scintillators and the Scintillation Process

A scintillator is any material able to emit low-energy photons in the visible range upon

absorption of high-energy photons, such as gamma-ray photons [230]. To describe how

a scintillator converts gamma-ray photons into visible photons that can be used to

produce a measurable electric signal, we have to make use of solid-state physics and

describe the band structure [231, 232] of an inorganic scintillator. A diagram of the

typical band structure of a scintillator [10, 233] is shown in Figure 4.6. The filled

band corresponds to the lower energy levels that are usually filled by electrons. The

next allowed energy levels are collectively referred to as the valence band, which is

occupied by electrons that are bound to the crystalline lattice. The valence band

is also the uppermost filled band at absolute zero. The filled band and the valence

band are separated by a forbidden band, which, according to the laws of quantum

mechanics, corresponds to energy levels that electrons are not allowed to have [230].

Finally, the conduction band contains electrons that have enough energy to move

freely throughout the crystal. The energy gap between the valence band and the

conduction band is called band gap and it is denoted as Eg.

Filled band

Forbidden band

Forbidden band

Valence band

Conduction band

with intermediate
energy levels

Energy
gap Eg

Activator

Activator
excited

ground

states

state

Scintillation
photon

Figure 4.6. Diagram of the typical band structure of a scintillator
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Upon light-matter interaction between a gamma-ray photon and an atom in the

crystal, either Compton scattering or photoelectric absorption can occur. This results

in a high-energy electron that in turn excites electrons so that their energy increases

from the valence band to the conduction band. When this happens, holes are created

in the valence band. In a pure crystal, electrons that have moved from the valence

band to the conduction band can lose energy in a variety of ways. One of them is

by emitting a photon. That would make the electron go back to the valence band

and recombine with the hole. This emitted photon of light is usually re-absorbed by

another valence electron before it can escape the crystal [10].

To deal with this problem, impurities (called activators) are intentionally intro-

duced in highly diluted concentrations into the crystal to alter the band structure by

creating lattice imperfections (called luminescence centers), thus allowing additional

energy levels in the forbidden band, between the conduction band and the valence

band. These impurities increase the efficiency for dissipating the absorbed gamma-ray

energy in the crystal as scintillation photons and introduce intermediate energy levels

in the band structure, so that emitted photons now have longer wavelength and are in

or near the visible range of the electromagnetic spectrum [10,230]. The wavelength of

the visible photons emitted by the crystal depends on the energy differences between

the new energy levels in the forbidden band. Such energy differences, in turn, depend

on the dopant material used. Ideally, we would like to have emission energies that

do not overlap with the crystal absorption band gaps, so that reabsorption of the

emitted photons does not occur [10,233].

By far, the most popular material for a scintillation crystal is NaI(Tl). For a

detailed description of the scintillation process in NaI(Tl), the interested reader can

consult [234] and the references cited therein. Advantages of NaI(Tl) include high

light yield (ηNaI(Tl) = 37700 photons/MeV, see [235]) resulting in good energy resolu-

tion, short decay time (230 ns) allowing a high detection rate, high effective atomic

number (Zeff = 51, see [10]), high density (3.67 g/cm3), no significant self absorption
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of the scintillation light, and low cost. The high density contributes to a large ab-

sorption coefficient (about 0.3384 cm−1 at 511 keV [236]), thus reducing the need for

a very thick slab of material to obtain a high-absorbing crystal. Scintillation crystals

made of NaI(Tl) can be fabricated in a wide variety of sizes and shapes. They can

be as small as 1 cm in diameter up to 60 cm× 40 cm in size [230]. The absolute scin-

tillation efficiency, which is defined as the percentage of absorbed gamma-ray energy

that is emitted as visible photons, of NaI(Tl) has been reported to be about 10.8–

13.5% [230,235,237]. This number puts NaI(Tl) among the most efficient scintillation

materials.

However, NaI(Tl) also presents some disadvantages. For example, NaI(Tl) crys-

tals are quite fragile, and may fracture under conditions of mechanical stress or rapid

temperature change. In addition, NaI(Tl) is highly hygroscopic, meaning that it

absorbs the moisture naturally present in the air. When this happens, the crys-

tal turns yellow and starts absorbing scintillation photons [233]. To prevent this,

NaI(Tl) scintillation crystals are hermetically sealed to prevent air or water coming

into contact with the crystal. Important parameters of NaI(Tl) and other common

scintillation materials [238] are summarized in Table 4.1. Further details can be found

in [235,237,239–242].

4.1.5 Photomultiplier Tubes

We saw above that after a gamma-ray photon interacts with the crystal, a shower of

visible-light photons is emitted in the crystal. These photons are converted to mea-

surable electric signals by means of a bank of photomultiplier tubes (PMTs) coupled

to the scintillator via a light guide. Features of these signals—such as amplitude and

shape—are used to estimate parameters of the gamma-ray photons absorbed by the

crystal. A diagram of a PMT is provided in Figure 4.7. A typical PMT consists of

a hermetically sealed chamber enclosing a photocathode, a focusing grid, a series of
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Material
Density

[g/cm
3
]

Effective
atomic

number, Zeff

Wavelength
of maximum
emission [nm]

Decay
time
[μs]

Index of refraction
at maximum
emission, n

Photons
per MeV

Hygroscopic?

NaI(Tl) 3.67 51 415 0.23 1.85 37700a yes
CsI(Na) 4.51 54 420 0.63 1.84 38500a slightly
CsI(Tl) 4.51 54 540 0.68 1.80 51800a slightly
Lu2SiO5(Ce) 7.40 65 420 0.04 1.82 25000b no
CaF2(Eu) 3.19 17 435 0.9 1.44 23650a no
6LiI(Eu) 3.49 54 470 1.4 1.96 10680c very
CsF 4.11 53 390 0.004 1.48 2000d very
CdWO4 7.90 64 480 5.0 2.20 15300a no
GdSiO5(Ce) 6.71 59 430 0.06 1.85 7540e no

a [235]; b [239]; c [237]; d [240]; e [241].

Table 4.1. Physical parameters for common scintillation materials (adapted from [10])
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terminals known as dynodes, an anode, and a bank of resistors.

The photocathode is the component of the PMT that is closest to the crystal. It

consists of a thin layer of material (such as K2CsSb or Na2KSb [233]) that possesses

photoemissive properties. When a scintillation photon enters the PMT through the

entrance window and strikes the photocathode, a photoelectron is ejected from the

photocathode with some probability. This probability, which is called quantum effi-

ciency and is usually denoted as η, is defined as the ratio between the mean number of

emitted photoelectrons to the mean number of photons incident on the PMT. Typical

values for η are around 0.20–0.25. Vacuum must be maintained inside the PMT so

that no electrons are absorbed by gas molecules and lost [233].

Photocathode
Focusing
grid Dynodes Anode

Entrace
window

Output
signal

High-voltage
supply

Figure 4.7. Diagram of a photomultiplier tube (adapted from [3])

The focusing grid and dynodes are driven by a high-voltage supply. The voltage at

different ends of the PMT is on the order of 1000 V. This voltage gets split by a voltage

divider—typically consisting of a bank of high-impedance resistors and sometimes a

zener diode—so that the voltage differences between the focusing grid and the first

dynode and adjacent dynodes are on the order of 100 V. The voltage divider can
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also include decoupling capacitors connected across the last three or four dynodes

to provide transient signal charge. The voltage difference between one dynode and

the next induces an electric field inside the PMT. A photoelectron emitted by the

photocathode gets first focused by the focusing grid towards the dynodes. Along

its way to the first dynode, it acquires kinetic energy and accelerates due to the

presence of the electric field. An accelerated photoelectron colliding with the first

dynode causes a few secondary electrons being emitted. These electrons are, in turn,

accelerated by the electric field present between the first dynode and the next until

they hit the second dynode. Again, each electron hitting the dynode causes emission of

a few electrons, and the process outlined above continues until the bundle of electrons

reaches the anode at the end of the PMT. If the PMT has d dynodes and each electron

striking a dynode produces, on average, n electrons, then the overall multiplication

factor of the PMT is nd. For example, for d = 10 and n = 5, one electron ejected at

the photocathode gives rise to almost 107 electrons at the anode. This multiplication

factor can be fine-tuned by varying the voltages at the dynodes.

At the anode, all the electrons are collected and a measurable output signal—in

the form of a narrow current pulse—is produced. This pulse, whose peak amplitude

is of the order of 1 mA, is transmitted over a coaxial cable to amplifying electronics,

so that it can be analyzed. A transimpedance amplifier is used to convert the current

to a voltage pulse. A shaping amplifier further amplifies the signal and reshapes it,

making it broader and smoother. A broad pulse is easier to sample via an analog-to-

digital converter. The digitized samples are then scanned for events. Detected events

are, in turn, fed to a computer for further processing [45].

Photomultiplier tubes are currently the best devices we can use for converting vis-

ible photons into a current signal. They, however, present some disadvantages. They

are bulky and sensitive to changes in temperature, humidity, and magnetic fields [230].

Alternatives to PMTs do exist. These include solid-state photon detectors, such as

avalanche photodiode arrays [243,244].
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4.1.6 Statistical Model

Our discussion of gamma-ray cameras would not be complete if we did not discuss how

we can statistically describe all the random processes involved with the generation of

a signal upon the interaction of a gamma-ray photon with the crystal. In this section,

we will provide only the general idea; for a detailed treatment the interested reader

can consult [69,245].

As we saw above, an interaction between a gamma-ray photon at location R

in the crystal produces a shower of lower-energy optical photons. The efficiency of

this process is very low. As we mentioned earlier, for NaI(Tl), which is one of the

most efficient scintillation materials, the absolute scintillation efficiency is about 10.8–

13.5%: most of the gamma-ray energy gets dissipated as phonons (crystal lattice

vibrations). The rarity with which the optical photons are generated satisfies the

postulates for Poisson statistics [69] and it therefore allows us to define a Poisson

random variable, Nopt, for the number of optical photons generated upon interaction of

a gamma-ray photon with the crystal. We will denote the mean of Nopt as Nopt(Eint),

in which Eint is the energy deposited during interaction in the scintillator at location

R. Although there is evidence that Nopt might not follow Poisson statistics [246,247]

we will assume, for simplicity, that the statistics of Nopt are well approximated by

the Poisson model.

As shown in Figure 4.1, some of the Nopt optical photons will propagate through

the crystal and the light guide and will impinge upon the entrance faces of the PMTs.

This process is mathematically formalized by introducing the probability βk(R) that

an optical photon emitted at location R in the crystal will reach the kth PMT.

The probability βk(R) is a strong function of R and k, but it does not depend on

Eint. Conditioned on the knowledge of Nopt, the number of photons reaching the

kth PMT follows a binomial distribution [127, 128] with parameters Nopt and βk(R).

Furthermore, by the binomial selection theorem [69] and if we treat Nopt as random,
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the number of optical photons reaching the kth PMT for an interaction at R is a

Poisson random variable with mean βk(R)Nopt(Eint).

A photon that arrives at the kth PMT has a probability ηk (which we called

the quantum efficiency) of producing a photoelectron upon impinging on the pho-

tocathode. Once again, by the binomial selection theorem, the mean number of

photoelectrons produced follows a Poisson distribution with mean [245]

nk(R, Eint) = ηkβk(R)Nopt(Eint). (4.1)

To complete the analysis, we have to consider the amplification process taking place

inside each PMT. We saw before that when an electron collides with a dynode

stage, a small random number of secondary electrons is emitted. Thus, we have to

treat the whole multiplication process inside the kth PMT as a random phenomena

characterized by the probability density function of the gain Gk. It is argued in [245]

that all the random processes that take place right after each scintillation event will

result in PMT outputs Vk(R, Eint) being normally distributed with means

V k(R, Eint) = Gknk(R, Eint) = Gkηkβk(R)Nopt(Eint),

where Gk is the mean gain of the kth PMT and k = 1, . . . , K. Notice that what

happens inside one PMT is independent on what happens inside another PMT. For

this reason, the covariance matrix of the vector of the V k(R, Eint) for k = 1, . . . , K is

diagonal. For good-quality PMTs, the distribution of Gk is sharply peaked (meaning

that most of the randomness in Vk(R, Eint) is due to the randomness in nk(R, Eint))

and so we can estimate the number of electrons at the anode of the kth PMT by

dividing Vk(R, Eint) by Gk and rounding to the nearest integer [69, 245]

Uk = round

(
Vk(R, Eint)

Gk

)
,

where the function round(x) rounds the value of x to its nearest integer. An excellent

model for the statistics of U1, . . . , UK (and, in general, for the output of any photo-
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counting detector [69]) is a multivariate Poisson probability [245]:

Pr
(
U | R

)
=

K∏

k=1

[Uk(R)]Uk

Uk!
e−Uk(R), (4.2)

where the U1(R), . . . , UK(R) are the means of the random variables U1, . . . , UK ,

which, in turn, are the components of the random vector U . Notice that

Uk(R) ≈ V k(R, Eint)

Gk

=
Gknk(R, Eint)

Gk

= nk(R, Eint),

where k = 1, . . . , K and the numbers nk(R, Eint) were introduced in (4.1). Knowledge

of the statistics of digitized PMT outputs U1, . . . , UK is important because it allows us

to perform position estimation via more sophisticated algorithms—such as maximum-

likelihood methods [45,211]—than the simple centroid method of [206–208].

4.2 What is List-Mode Data?

Today’s gamma-ray cameras are imaging devices able to deliver many parameters for

each event they collect. For example, we can consider the raw PMT outputs and

mathematically collect them in a vector, which we call attribute vector. Alternatively,

from the collection of PMT data, we can—as we will discuss in the next section—

estimate the location of gamma-ray photon interaction within the crystal. In the

latter case, we can still define an attribute vector; this time the attribute vector

might include the estimated location of interaction, the total gamma-ray energy, a

time-stamp, and so on. In both cases, we will denote the attribute vector as Â(j)

with the superscript j running from 1 to the total number J of collected events. The

“hat” symbol we used in defining the attribute vector emphasizes the fact that such

attribute vector is an estimated quantity. In other words, Â(j) is a random quantity,

and its statistical properties will play a crucial role in the reminder of this work.

When an object is imaged, a collection of J attribute vectors is measured. There

are at least two possible ways to organize the information we learn from the detectors.
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The first way, which is suggested from the description above, is to create the list Â

of the J attribute vectors:

Â =
{
Â(1), . . . , Â(J)

}
.

Again, the hat notation we used in Â underlines the fact that the list Â is random.

We will refer to these data as list-mode data. List-mode data are not restricted to

medical imaging applications [248], but they are used in high-energy physics [249]

and astronomy [250] as well.

An alternative to collecting data in list-mode is to perform binning. In binning,

the attribute space is partitioned into bins. Bins do not overlap and cover the whole

attribute space. The list Â is analyze and, for each bin, the number of events that

fall within that bin is counted. At the end of this process, the counts for all the bins

form a histogram of the data in Â . The histogram is retained and the original list

Â is discarded. For simplicity, the descriptions we have just presented makes use

of the list Â . In practice, such list is never produced. Instead, the attributes Â(j)

are processed one at a time as they are acquired by the camera. Binning can also

be performed by the camera circuitry, and the bin counts are read from the camera

when the exposure time has elapsed.

As an example, assume that we are imaging a planar self-luminous object through

a lens onto a detector. The lens will produce an image on the detector. Because of the

lens, the image will be inverted and reversed. Depending on the separation between

the object, the lens, and the detector, the image may also be magnified (or minified).

In any case, we would expect the image on the detector to be similar to the planar

object. To each photon emitted from the object that impinges on the detector, we

can associate an attribute vector, for example the 2D location on the detector face at

which the photon was absorbed and detected. In the case of list-mode data, the image

of the object is simply represented in the memory of the computer as the list of 2D

photon locations. If, on the other hand, we use the binned data representation, the
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image will be represented as a 2D grid of gray-level pixel intensities. In the latter case,

which is very convenient if the image needs to be printed or displayed on a computer

screen, a gray-level intensity is calculated by counting the number of photons that

were localized within a small, square region of the detector.

List-mode data have several advantages over binned data. First of all, list-mode

data, especially at low counts, allow for huge amounts of savings in storage require-

ments. To show this point, let us consider an example. Consider again the case of

the 2D planar self-luminous object we discussed above. For the case of list-mode

data, we can assume the attribute Â(j) stores the K PMT outputs, where K is the

number of PMTs. For this example, we will assume K = 9. As we argued before, we

also assume that the PMT outputs are integer numbers. If each integer number takes

up two bytes to be represented and if the total number J of events collected is, say,

105, then storing the list Â takes 2 × 9 × 105 bytes, which corresponds to, roughly,

1.72 MB. If, on the other hand, we opt for using binning, we first need to decide how

to bin the attribute space. The simplest way consists of quantizing the K-dimensional

attribute space along each dimension with, say, 256 bins. The attribute space will

result partitioned into 256K = 2569 ≈ 4.72 · 1021 bins. Even if we would use just

one byte for each bin count, storing the histogram would require about 4.29 · 109 TB.

As a comparison, the largest hard disk for which a prototype has been demonstrated

has a storage capacity of 4 TB; it would take over a billion such disks to store in

binned-mode the data from the example described above.

The second advantage of list-mode data is that all the desired information about

an event can be easily stored without information loss. For example, in some cases we

might be interested in associating a time-stamp to every event, or we might want to

characterize an event based on the total energy of the gamma-ray photon. The time-

stamp turns out very useful when we want to perform dynamic studies. For example,

if we are imaging the heart, we might be interested in reconstructing images of the

heart at different stages of the cardiac cycle. Or, we might want to use the collected
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data to estimate the amount of blood pumped out by the heart at each beat. Energy

information can be used to select events and use only those events whose energy falls

within a given energy window of interest. If we were to use binned-data to memorize

all this information, we would realize pretty soon that storage is possible only if we

use large bins. And as the bin size increases, more and more events will fall in the

same bin and they will contribute to the bin count. Events in the same bin might

thus be fairly “far apart” but they will still give the same contribution to the bin

count.

For a theoretical standpoint, the most important advantage of list-mode data is

that they allow for an accurate representation of what we measured. On the other

hand, we can interpret binning as replacing an event vector with the one at the center

of the bin into which the original vector falls. Thus, by binning, a systematic error

is inevitably introduced [251] into the data. This does not happen if list-mode data

are used instead.

Detector technology also makes us favor list-mode data versus binned data. In-

deed, if the detector output is just a sequence of events, the detector circuitry is

very simple and less prone to failure or fatigue. List-mode data also scale well with

detector technology. To illustrate this point, consider a 2D gamma-ray camera and

assume that each event Â(j) it outputs is a pair (x̂(j), ŷ(j)) of spatial coordinates. As

scintillation technology advances, we would expect more and more accurate estimates

x̂(j) and ŷ(j). Any algorithm that uses list-mode data would not need be modified to

process these better estimates. On the other hand, if we use binned data, it seems

reasonable to use bins whose size is comparable to the standard deviation with which

x̂(j) and ŷ(j) can be estimated. To reiterate the concept, list-mode data allow for the

hardware to be upgraded with minimal (if any) software upgrade; if binned data are

used, a software update will likely be needed. The new data structures (with smaller

bins) might no longer fit into the memory of the computer.

Another advantage of list-mode data is that, with list-mode data, we can start
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doing reconstruction as soon as we collected information about the first event. This

advantage of list-mode data has been emphasized multiple times in the literature. For

example, we can acquire data in list-mode format and perform a real-time reconstruc-

tion. Or we can record smaller lists—one after the other—and use them cyclically in

the reconstruction. Many more variants are possible too. On the other hand, binned

data would require to wait for the whole collection time to elapse before starting the

image reconstruction step. Most of the flexibility that list-mode data allow is simply

not possible with binned data.

4.3 2D and 3D Position Estimation

In the previous section, we considered an example of an imaging system, and we used

it to collect list-mode data. The data we collected in the list Â were the attribute

vectors Â(j), and we used the “hat” symbol to mean that the components of Â(j)

were noisy quantities. These quantities corresponded to estimates of electric charges,

which were obtained by integrating over time the current pulses at the PMT outputs.

However, we also mentioned the case in which the PMT outputs are processed to

estimate spatial coordinates. In the latter case, the estimated spatial coordinates

will still make up attribute vectors, which we will keep denoting by Â(j). In this

section, we want to address the problem of estimating the spatial coordinates from

PMT outputs. Various methods have been proposed to carry out this estimation

step. Among them, we want to recall the ones described in [45, 53, 60, 174, 252–255].

The method we present here [45,59,60,173,174,253,256,257] is based on maximum-

likelihood estimation [138,139]. Thus, it enjoys all the properties we briefly discussed

in § 3.2.

Assume that the vector g represents noisy PMT outputs for a photon-crystal

interaction that occurred at location R in the camera’s crystal. In our treatment, R

will either represent a 2D or a 3D location. According to our discussion about PMTs,
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we will assume that the K components g1, . . . , gK of g are independent and follow

Poisson statistics with parameters g1(R), . . . , gK(R), respectively. We will refer to

the vector g(R) of parameters as the mean detector response function (MDRF) vector

for the location of interaction R. As our notation implies, the MDRF vector g(R)

depends on the location of interaction R within the crystal. The ML estimation

problem is mathematically formalized as

R̂MLE = arg max
R0∈D

[
L(R0; g)

]
= arg max

R0∈D

[
pr(g | R0)

]
,

in which D denotes the crystal space and pr(g | R0) is the probability density function

of the measured data g conditioned on the assumption that the location of interaction

was R0. Equivalently

R̂MLE = arg max
R0∈D

[
`(R0; g)

]
= arg max

R0∈D

[
ln pr(g | R0)

]
. (4.3)

In the problem outlined above, R is the parameter we want to estimate and g is the

observed data. Thus, our goal is to use g to find R.

From our discussion on gamma-ray cameras, we know that the K PMT outputs

g1, . . . , gK obey Poisson statistics and that they are statistically independent [127,

128]. Thus, we can make use of (4.2) to replace the probability density function

pr(g | R0) in (4.3) with a probability:

Pr(g | R0) =
K∏

k=1

[gk(R0)]
gk

gk!
e−gk(R0).

If we take the logarithm of Pr(g | R0), we get

ln Pr(g | R0) =
K∑

k=1

{
gk ln [gk(R0)] − ln(gk!) − gk(R0)

}
.

Inserting this expression in (4.3) gives [45]:

R̂MLE = arg max
R0∈D

[
K∑

k=1

{
gk ln [gk(R0)] − ln(gk!) − gk(R0)

}]
=
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= arg max
R0∈D

[
K∑

k=1

{
gk ln [gk(R0)] − gk(R0)

}]
, (4.4)

where the last form was obtained from the previous by discarding the ln(gk!) term,

which does not depend on R0.

In a practical case, we might have MDRF data g(R0) only for a discrete set

of points R0 in D. This would be the case in which MDRF data are obtained

through simulation or experimentally measured [59, 60]. Typically, the detector D

is partitioned into pixels (for a 2D estimation) or voxels (for a 3D estimation) and

MDRF data g(R0) are available for points R0 at which the pixels or voxels are

centered.

As noted in [45], one possible way to solve the estimation problem formalized

above, consists of using (4.4) to precompute R̂MLE for every possible value of g, and

use g as the address in a look-up table. However, the size of the look-up table grows

exponentially with the number of bits needed to store the vector g in the memory of

the computer. Even when the gamma-ray camera has only a few PMTs, this approach

is not feasible [45].

Alternatively, we can take advantage of the fact that ln pr(g | R0) is a smooth

function of R0 for fixed g, and consider an algorithm that performs multiple iterations

to refine the estimate R̂MLE. The algorithm we are going to use is the one we presented

in § 3.3, but adapted for the particular problem at hand. Recall that the MDRF data

g(R0) is available only for a discrete set of points. This poses some limitations on

the implementation of the algorithm. For example, we cannot perform an arbitrary

number of iterations and make the final grid as small as we want: the separation

between adjacent points in the grid cannot be smaller than one pixel/voxel. Similarly,

we will assume that the separation between adjacent points is halved at each iteration

of the algorithm. These assumptions are very convenient when g(R0) is sampled on a

pixel/voxel grid. Because the size of the grid and the number of iterations are fixed,

this algorithm is well suited for hardware implementation [45]. Some robustness
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considerations are reported in [45] as well.

To clarify how the algorithm works, let us consider the example of a 2D estimation

from PMT outputs. The steps of the algorithm are graphically show in Figure 4.8.

The detector is divided into an array of 81×81 pixels. For this example, six iterations

are enough to achieve convergence and to identify the pixel that attains the largest

log-likelihood. For each pixel in the array, MDRF data g(R0) are available [59, 60].

Thus, given noisy PMT outputs g, we can calculate the log-likelihood `(R0; g) for all

the pixel locations R0.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

Figure 4.8. Illustration of the contracting-grid algorithm

Figure 4.8 shows plots of the log-likelihood data, and we marked the points of the

grids with green dots. The green dots are in correspondence with the pixels at which

the log-likelihood is considered during each iteration. Because we choose to halve the

grid spacing at each iteration, the grid spacing will always be a power of 2. This
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means that, at the first iteration, some of the points of the grid might actually fall

outside the detector. To cope with this problem, we zero-pad the log-likelihood data.

In § 5.5 and § 5.6 we will present two implementations of the algorithm for the

cases of 2D and 3D estimation, and we will provide details for the implementation on

two different parallel architectures.

4.4 The LMMLEM Algorithm

After mathematically formalizing the MLEM algorithm in § 3.4 and discussing list-

mode data in § 4.2, we proceed by applying the theory of maximum-likelihood esti-

mation to list-mode (LM) data to derive the list-mode MLEM algorithm (LMMLEM

algorithm for short) [248, 258, 259]. Our derivation strictly follows the methods de-

veloped in § 3.4 and it is similar to the one of [258]. The main difference between our

derivation and the one of [258] is that the former uses a different and—we believe—

more intuitive definition of the complete data. Yet another different derivation is

discussed in [260]. In it, the authors introduce a “complete data energy” objective

function and alternatively perform coordinate descent with respect to the complete

data and the estimate of the object. Event if their approach is different than the one

of [258], it leads to the same final expressions.

The results derived below can be applied equally well to the case of SPECT or

PET. In the former case, an entry Â(j) in the list-mode data Â is an estimated 2D

location of interaction within the scintillation crystal (we will assume a parallel-hole

collimator), thus Â(j) = R̂(j), where the capital letter denotes a point in detector

space. For PET, we will assume Â(j) = (R̂
(j)
1 , R̂

(j)
2 ), in which the subscripts tell

to which of the two detector spaces the point belongs to, and R̂
(j)
1 and R̂

(j)
2 are

now 3D points in the scintillation crystals. For PET, it is customary to consider

arrival times associated with points R̂
(j)
1 and R̂

(j)
1 and use these arrival times to

perform coincidence time-windowing. However, for our case, we will assume that
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coincidence time-windowing has already been performed and that coincidental events

in the detectors have already been paired.

As in § 3.4 we will assume that the object f(r) (where r denotes a 3D spatial

variable in the field of view) is discretized over a set of N voxels Bn to obtain a vector

f with components

fn =

∫

Bn

f(r) d3r,

for n = 1, . . . , N . It is worth recalling that the number fn represents the mean number

of counts emitted from voxel Bn per unit time. Thus, the units of fn are s−1. For

each voxel Bn, we can also introduce the probability that a count emitted from that

voxel gets actually detected by the hardware. We will denote such probability as sn

for n = 1, . . . , N . The numbers sn do not depend on the object f being imaged. On

the contrary, they depend on the system’s geometry and detectors. If τ denotes the

total exposure time, then the mean number of events that are emitted from voxel

Bn and get detected is given by λn = τsnfn. The actual number of events that are

emitted from voxel Bn and get detected is a random variable, which we denote as

cn. Conditioned on f , cn follows Poisson statistics [127, 128] with mean λn = τsnfn.

In symbols cn ∼ P(τsnfn) and, as we did for f and s, we introduce the vector of

counts c with components c1, . . . , cN . A consequence of our model is that cn and cn′

are (conditionally) independent for n 6= n′.

As we pointed out in § 4.2, list-mode data are represented as a list

Â =
{
Â(1), . . . , Â(J)

}

of J random attribute vectors Â(j) for j = 1, . . . , J . Because the jth collected event

must have been generated from some voxel Bn in the field of view, we can introduce

discrete random variables Ij for j = 1, . . . , J which tell from which voxel the jth

collected event was generated. In other words, Ij takes values in {1, . . . , N} and if

Â(j) was measured for an event that was generated from voxel Bn, then Ij = n. The
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probability law on Ij conditioned on f is given by [258,261]

Pr(Ij = n | f) = Pr(n | f) =
snfn∑N

n′=1 fn′sn′

, (4.5)

in which the intermediate form has to be understood as the probability of an event

occurring in voxel Bn, given the object f . The fact that Pr(Ij = n | f) does not

depend on j can be explained by noticing that the actual order of the elements of the

list Â does not matter. Mathematically speaking, Â should be interpreted as a set

rather than a list of attribute vectors. Given Ij for j = 1, . . . , J , we can write any of

the cn as

cn =
J∑

j=1

δKron(n − Ij),

where δKron(k) is the function that was introduced in (3.8).

To apply the MLEM algorithm to the list-mode data Â , notice first that, with

the notation developed prematurely in § 3.4, the iterative algorithm takes the form

θ̂(k+1) = arg max
θ

{
〈ln pr(x, y | θ)〉x|y,θ̂(k)

}
,

where θ̂(k) is the estimate of θ at the kth iteration, x is the vector of the complete

data, and y is the vector of the incomplete (measured) data. Rewriting the algorithm

above for list-mode data yields

f̂ (k+1) = arg max
f

{
〈ln pr(c, {Â , τ} | f)〉c|{Â ,τ},f̂(k)

}
,

which was obtained by setting x = c, y = {Â , τ}, and θ̂(k) = f̂ (k). Our notation

for the incomplete data implies that the exposure time τ is part of the measured

data. That would be the case of, for example, collecting a specified number J of

events. This is known in the literature as “preset-count” case [258]. The alternative

to preset-count is “preset-time” [258], in which τ is a specified amount of time and J

is a random number. In the present-count case, the exposure time τ is part of the

measured data, hence the need to combine it with the list of events as in {Â , τ}.
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By repeated application of Bayes’ theorem and taking advantage of the indepen-

dence (conditioned on f) of Â(1), . . . , Â(J), we can write

pr({Â , τ}, c | f) = pr(τ | c, f) pr(Â | c, f) Pr(c | f) =

= pr(τ | c, f)

[
J∏

j=1

pr(Â(j) | c,f)

]
Pr(c | f).

The expression above can be made more useful by writing pr(Â(j) | c, f) as a marginal

density

pr(Â(j) | c,f) =
N∑

n=1

pr(Â(j), n, c,f)

pr(c, f)
=

N∑

n=1

pr(Â(j) | n) Pr(n | c, f),

where pr(Â(j) | n) is the probability density function for the attribute vector Â(j)

conditioned on the voxel Bn, and we used the fact that pr(Â(j) | n, c, f) = pr(Â(j) |
n). Moreover, the last term in the expression above can be written as

Pr(n | c, f) =
cn∑N

n′=1 cn′

=
cn

J
,

where the last form was obtained by noting that each count in any of the c1, . . . , cN

corresponds to one and only one attribute vector in the list Â , so that
∑N

n′=1 cn′ = J .

If we use the result above, we get

pr({Â , τ}, c | f) = pr(τ | c, f)
J∏

j=1

[
N∑

n=1

cn

J
pr(Â(j) | n)

]
Pr(c | f),

and its logarithm is

ln pr({Â , τ}, c | f) = ln pr(τ | c, f)+
J∑

j=1

ln

[
N∑

n=1

cn

J
pr(Â(j) | n)

]
+ln Pr(c | f). (4.6)

To write an expression for pr(τ | c, f), recall first that, for the case of preset

time, the random variables c1, . . . , cN are independent and follow Poisson statistics:

cn ∼ P(λn), for λn = τsnfn. Thanks to their independence, the sum of the cn’s is

also a Poisson random variable but with parameter τ
∑N

n=1 snfn. Alternatively [258],
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we can model the measurements of attribute vectors Â(j) as a Poisson process with

rate
∑N

n=1 snfn. A fundamental result that holds for Poisson processes is that the

waiting time between two consecutive events follows an exponential distribution with

parameter equal to the rate of the Poisson process [127,128]. Going back to the case

of preset count, notice that the random variable τ now measures the waiting time

needed to collect
∑N

n=1 cn = J measurements of the attribute vectors. A random

variable defined in this way is said to follow an Erlang distribution [262, 263] whose

density is

pr(τ | c,f) = pr

(
τ

∣∣∣
N∑

n=1

cn,f

)
=

=
1

τ
(∑N

n=1 cn − 1
)
!

(
τ

N∑

n=1

snfn

)PN
n=1 cn

exp

(
−τ

N∑

n=1

snfn

)
, (4.7)

in which quantities
∑N

n=1 snfn and
∑N

n=1 cn are called “rate” and “shape,” respectively.

Although we will not use it, we notice that, as
∑N

n=1 cn → ∞, the probability density

function pr(τ | c,f) is well approximated by the probability density function of a

Gaussian random variable

pr(τ | c, f) ≈

≈ 1√
2π

∑N
n=1 cn

/(∑N
n=1 snfn

)2

exp


−1

2

(
τ − ∑N

n=1 cn

/∑N
n=1 snfn

)2

∑N
n=1 cn

/(∑N
n=1 snfn

)2


 ,

and

〈τ〉 =

∑N
n=1 cn∑N

n=1 snfn

, σ2
τ =

∑N
n=1 cn(∑N

n=1 snfn

)2 .

If we take the logarithm of pr(τ | c, f) in (4.7), we get

ln pr(τ | c,f) =

(
N∑

n=1

cn

)
ln

(
τ

N∑

n=1

snfn

)
− τ

N∑

n=1

snfn − ln

[
τ

(
N∑

n=1

cn − 1

)
!

]
.
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Finding an expression for the probability Pr(c | f) needed in (4.6) requires some

reasoning. We first need to recall that the sum of the counts c1, . . . , cN must equal

the number of attribute vectors in Â :
∑N

n=1 cn = J . Second, the probability that

a collected event was generated in voxel Bn is Pr(n | f) = snfn/
∑N

n′=1 sn′fn′ [258].

From this, it follows that c conditioned on the knowledge of f follows a multinomial

distribution [127,128]:

Pr(c | f) =

[(
N∑

n=1

cn

)
!

]
N∏

n=1

1

cn!

(
snfn∑N

n′=1 sn′fn′

)cn

.

With simple algebraic manipulations, we obtain

ln pr({Â , τ}, c | f) =

(
N∑

n=1

cn

)
ln

(
τ

N∑

n=1

snfn

)
− τ

N∑

n=1

snfn +

− ln

[
τ

(
N∑

n=1

cn − 1

)
!

]
+

J∑

j=1

ln

[
N∑

n=1

cn

J
pr(Â(j) | n)

]
+

+ ln

[(
N∑

n=1

cn

)
!

]
+

N∑

n=1

[
cn ln(snfn) − cn ln

(
N∑

n′=1

sn′fn′

)
− ln(cn!)

]
.

If we take the expectation, we get

〈ln pr({Â , τ}, c | f)〉c|{Â ,τ},f̂(k) =

(
N∑

n=1

〈cn〉c|{Â ,τ},f̂(k)

)
ln

(
τ

N∑

n=1

snfn

)
−τ

N∑

n=1

snfn+

−
〈

ln

[
τ

(
N∑

n=1

cn − 1

)
!

]〉

c|{Â ,τ},f̂(k)

+
J∑

j=1

〈
ln

[
N∑

n=1

cn

J
pr(Â(j) | n)

]〉

c|{Â ,τ},f̂(k)

+

+

〈
ln

[(
N∑

n=1

cn

)
!

]〉

c|{Â ,τ},f̂(k)

+
N∑

n=1

〈cn〉c|{Â ,τ},f̂(k) ln(snfn) +

−
N∑

n=1

〈cn〉c|{Â ,τ},f̂(k) ln

(
N∑

n′=1

sn′fn′

)
−

N∑

n=1

〈ln(cn!)〉c|{Â ,τ},f̂(k) .

When we maximize 〈ln pr(c, {Â , τ} | f)〉c|{Â ,τ},f̂(k) to find f̂ (k+1) from f̂ (k), we can

discard the terms that are constant with respect to f . Thus we can write:

f̂ (k+1) = arg max
f

{
N∑

n=1

〈cn〉c|{Â ,τ},f̂(k) ln(snfn) − τ

N∑

n=1

snfn

}
=
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= arg max
f

{
Q

(
f ; f̂ (k), {Â , τ}

)}
, (4.8)

where we defined

Q
(
f ; f̂ (k), {Â , τ}

)
=

N∑

n=1

〈cn〉c|{Â ,τ},f̂(k) ln(snfn) − τ

N∑

n=1

snfn.

To find the vector f̂ (k+1) that maximizes the quantity Q
(
f ; f̂ (k), {Â , τ}

)
in (4.8)

above, we calculate the gradient of Q
(
f ; f̂ (k), {Â , τ}

)
with respect to f , we set it to

zero, and we solve the resulting equations for f . The components of the gradient are

∂Q
(
f ; f̂ (k), {Â , τ}

)

∂fn

=
〈cn〉c|{Â ,τ},f̂(k)

fn

− τsn. (4.9)

Note that

〈cn〉c|{Â ,τ},f̂(k) =
J∑

j=1

〈δKron(n − Ij)〉cn|{Â ,τ},f̂(k) =
J∑

j=1

Pr(n | f̂ (k), Â(j)) =

=
J∑

j=1

pr(Â(j) | n, f̂ (k)) pr(n, f̂ (k))

pr(Â(j) | f̂ (k)) pr(f̂ (k))
=

J∑

j=1

pr(Â(j) | n) Pr(n | f̂ (k))

pr(Â(j) | f̂ (k))
.

Furthermore

pr(Â(j) | f̂ (k)) =
N∑

n=1

pr(Â(j) | n) Pr(n | f̂ (k)),

which, upon substitution, gives

〈cn〉c|{Â ,τ},f̂(k) =
J∑

j=1

pr(Â(j) | n) Pr(n | f̂ (k))
∑N

n′=1 pr(Â(j) | n′) Pr(n′ | f̂ (k))
=

=
J∑

j=1

pr(Â(j) | n)snf̂
(k)
n

/∑N
n′′=1 sn′′ f̂

(k)
n′′

∑N
n′=1 pr(Â(j) | n′)sn′ f̂

(k)
n′

/∑N
n′′=1 sn′′ f̂

(k)
n′′

=

= snf̂
(k)
n

J∑

j=1

pr(Â(j) | n)
∑N

n′=1 pr(Â(j) | n′)sn′ f̂
(k)
n′

.

When we set the partial derivatives in (4.9) to zero to find f̂
(k+1)
n and use the fact

that sn 6= 0, we get [258,264–268]:

f̂ (k+1)
n =

〈cn〉c|{Â ,τ},f̂(k)

τsn

= f̂ (k)
n

{
1

τ

J∑

j=1

pr(Â(j) | n)
∑N

n′=1 pr(Â(j) | n′)sn′ f̂
(k)
n′

}
. (4.10)
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The expression above represents one step of the LMMLEM algorithm. As for the case

of (3.10), the LMMLEM algorithm (4.10) is a multiplicative algorithm, so it auto-

matically enforces positivity constraints on the estimates f̂ (k). Similarly, it preserves

the quantity
∑N

n=1 snf̂
(k)
n . Indeed:

N∑

n=1

snf̂ (k+1)
n =

1

τ

J∑

j=1

∑N
n=1 pr(Â(j) | n)snf̂

(k)
n

∑N
n′=1 pr(Â(j) | n′)sn′ f̂

(k)
n′

=
J

τ
= constant. (4.11)

Some convergence results for the LMMLEM algorithm are derived in [258]. For

example, under broad conditions, the list-mode likelihood is a strictly concave func-

tion which ensures that estimates f̂
(1)
n , f̂

(2)
n , . . . obtained according to (4.10) converge

to the global maximum of the list-mode likelihood function. Accuracy of reconstruc-

tion has also been studied [269]. As concluding remark, we note that (4.10) is just a

particular instance of the MLEM method, so it enjoys all the properties of the MLEM

algorithm we listed in § 3.2.

4.5 An Introduction to Markov Chain Monte Carlo

4.5.1 Markov Chains

A Markov chain [270–273] is a discrete-time stochastic process X0, X1, . . . that sat-

isfies the Markov property :

Pr(Xn ∈ A | X0, X1, . . . , Xn−1) = Pr(Xn ∈ A | Xn−1),

where A is a subset of the state space S (the set of values each random variable Xn can

take on). The Markov property states that the distribution of the random variable

Xn given all previous ones, only depends on Xn−1. For simplicity, we will start our

discussion with the case of discrete state spaces S; the extension to the general case

of continuous state spaces requires a different notation [273,274] but all the concepts

developed for the case of discrete state spaces carry over to the case of continuous

state spaces, as we will discuss at the end of this section.
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Without loss of generality, we can identify all the elements of the state space with

positive integer numbers, so S = {1, 2, 3, . . . }. A Markov chain is said to be a time-

homogeneous (or stationary) Markov chain if Pr(Xn = j | Xn−1 = i) = Pr(Xn+1 = j |
Xn = i) for all n and all i and j in S. In other words, in a time-homogeneous Markov

chain, the probability of transition from a state i to a state j does not depends on

time n and we can simply use the notation pi→j to mean Pr(Xn = j | Xn−1 = i). If S

is finite and the chain is time-homogeneous, we can graphically represent a Markov

chain with a directed graph in which nodes correspond to states in S and an arc from

node i to node j means pi→j > 0. The arc is further labeled with this probability.

A Markov chain is called irreducible if, for all i and j in S, there exists n > 0

such that Pr(Xn = j | X0 = i) > 0. In other words, a Markov chain is irreducible

if it is possible to reach any state j from any state i in any finite number of steps.

Figure 4.9a shows an example of a Markov chain that is not irreducible (from state 2,

it is not possible to reach state 1, no matter how many steps we take). On the other

hand, the Markov chain in Figure 4.9b is irreducible. Furthermore, an irreducible

Markov chain is said to be recurrent if:
∞∑

n=0

Pr(Xn = j | X0 = i) = ∞.

Given a recurrent irreducible Markov chain, we say that it is positive recurrent if it

admits a stationary probability distribution π = {πi > 0, i ∈ S}:
∑

j∈S

πjPr(Xn = j | X0 = i) = πi,

for all i ∈ S and n > 0. Finally, an irreducible Markov chain is said to be aperiodic

if, for all i ∈ S,

gcd{n > 0 such that Pr(Xn = i | X0 = i) > 0} = 1,

where gcd{. . .} denotes the greatest common divisor of a set of numbers. As an

example, the Markov chain shown in Figure 4.9c is periodic because, starting from a
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(a) Example of a non-irreducible Markov chain
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(b) Example of an irreducible Markov chain
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(c) Example of a periodic Markov chain
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(d) Example of an aperiodic Markov chain

Figure 4.9. Some examples of time-homogeneous Markov chains
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state, we can only return to the same state by performing a number of steps that is a

multiple of 3. On the other hand, the Markov chain shown in Figure 4.9d is aperiodic.

For a time-homogeneous Markov chain, the Markov property and repeated appli-

cations of Bayes’ theorem give

Pr(X2 = j | X0 = i) =
∑

k∈S

Pr(X2 = j | X1 = k) Pr(X1 = k | X0 = i) =

=
∑

k∈S

pk→jpi→k =
∑

k∈S

pi→kpk→j =
[
P2

]
i,j

.

where we have recognized the expression for the (i, j)th element of the square of the

transition matrix P, where [P]i,j = pi→j. Generalizing:

Pr(Xn = j | X0 = i) =
[
Pn

]
i,j

.

Given an irreducible, positive recurrent, aperiodic, time-homogeneous Markov chain,

we can prove that the stationary distribution is unique and satisfy

∑

i∈S

πi = 1, π = πP.

The reason why π is called the “stationary” distribution has now become clear: once

the Markov chain reaches it, this distribution does not change as the chain evolves

over time. The system of linear equations above can be solved for π to find the

stationary distribution given the transition matrix P. A stronger condition on π

which automatically ensures its stationarity is the detailed balance condition:

πipi→j = πjpj→i. (4.12)

Indeed

πi = πi

∑

j∈S

pi→j

︸ ︷︷ ︸
=1

=
∑

j∈S

πipi→j =
∑

j∈S

πjpj→i,

which, for all i ∈ S, gives π = πP.
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All the expressions given here for the case of a discrete state space S easily general-

ize to the of a continuous state space. For example, instead of a stationary probability

distribution πi > 0 indexed by i ∈ S, we will have a stationary probability density

function π(θ) > 0, where θ ∈ S. Similarly, the conditions given above for a stationary

distribution become
∫

S

π(θ) dθ = 1, π(θ) =

∫

S

π(θ′)[P ](θ′, θ) dθ′,

where [P ](θ′, θ) = pr(θ | θ′) = pθ′→θ is the integral kernel of the operator P . For the

continuous state space, the operator P plays the same role as the matrix P in the

discrete state space.

4.5.2 Markov-Chain Monte Carlo Integration

In a nutshell, Markov-chain Monte Carlo (MCMC) integration can be defined as

Monte Carlo calculation of integrals of the form:

〈f(θ)〉θ =

∫

S

f(θ)pr(θ) dθ

via Monte Carlo methods

〈f(θ)〉θ ≈ 1

N

N∑

n=1

f
(
θ(n)

)
, (4.13)

where samples θ(1), . . . ,θ(N) are generated using a Markov chain whose stationary

distribution is π(θ) = pr(θ). We refer to N as the length of the chain. The necessity

of Markov chain Monte Carlo integration arises every time we have to calculate an

expectation involving a high-dimensional complicated probability density function or

when the expectation does not admit an analytic closed form.

In the previous section, we have considered the problem of finding the station-

ary probability distribution (or the stationary probability density function) given a

Markov chain. Now, the problem consists in doing the opposite: given a desired
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probability density function, we want to construct a Markov chain that has such

probability density function as its (unique) stationary probability density function.

We will present here the algorithm proposed in [168, 275], which is known in the

literature as the Metropolis-Hastings algorithm [276]. This iterative algorithm starts

from some initial state θ(n−1) for n = 1 and produces a candidate state θ′ ∈ S by

drawing a sample according to a proposal distribution q(θ′ | θ(n−1)). The candidate

state θ′ is accepted with probability

Pacc(θ
′, θ(n−1)) = min

{
1,

π(θ′)q(θ(n−1) | θ′)

π(θ(n−1))q(θ′ | θ(n−1))

}
. (4.14)

Given Pacc(θ
′, θ(n−1)), the standard way to accept θ′ with such probability is to gener-

ate a realization u of the uniformly distributed random variable U ∼ U([0, 1]) and to

compare Pacc(θ
′, θ(n−1)) with u: if u < Pacc(θ

′, θ(n−1)), then θ′ is accepted and we set

θ(n) = θ′. If u > Pacc(θ
′, θ(n−1)), the candidate is rejected and we set θ(n) = θ(n−1).

The value of n is subsequently incremented and the algorithm repeats, as shown in

Figure 4.10. Pseudocode of the Metropolis-Hastings algorithm is reported below [4]:

Initialize θ(0)

n = 0
loop

Sample θ′ from q(θ′ | θ(n−1))
Pacc = min{1, π(θ′)q(θ(n−1) | θ′)/π(θ(n−1))q(θ′ | θ(n−1))}
Sample u from U ∼ U([0, 1])
if u < Pacc then

θ(n) = θ′

else

θ(n) = θ(n−1)

end if

n = n + 1
end loop

In this way, a sequence θ(1), θ(2), . . . is produced, and such a sequence of samples

is used in (4.13) to calculate 〈f(θ)〉θ. The attentive reader must have surely noticed

that the procedure of Figure 4.10 does not generate samples that are statistically
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Initialize θ(0)

n = 1

Sample θ′

from q(θ′ | θ(n−1))

Calculate
Pacc(θ

′, θ(n−1))

Draw u from
U ∼ U([0, 1])

u < Pacc(θ
′,θ(n−1))?

Y N

θ(n) = θ′ θ(n) = θ(n−1)

n = n + 1n = n + 1

Figure 4.10. Flux diagram of the Metropolis-Hastings algorithm
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independent. On the contrary, and because we are defining a Markov chain, the

statistics of θ(n) depend on θ(n−1). However, independence of the samples in the

θ(1), θ(2), . . . sequence is not a requirement; all we need is a method to draw samples

throughout the support of pr(θ) in the correct proportions.

To show that the Markov chain just defined has π(θ) = pr(θ) as stationary dis-

tribution, we start by calculating the probability density function pr(θ(n) | θ(n−1)):

pr(θ(n) | θ(n−1)) = pθ(n−1)→θ(n) = q(θ(n) | θ(n−1))Pacc(θ
(n),θ(n−1)) +

+ I
(
θ(n) = θ(n−1)

) [
1 −

∫

S

q(θ | θ(n−1))Pacc(θ, θ(n−1)) dθ

]
, (4.15)

where

I
(
θ(n) = θ(n−1)

)
=

{
1 if θ(n) = θ(n−1),
0 otherwise.

To continue the proof, we need to distinguish two cases. If Pacc(θ
(n), θ(n−1)) = 1, then

π(θ(n))q(θ(n−1) | θ(n)) > π(θ(n−1))q(θ(n) | θ(n−1)),

which implies

Pacc(θ
(n−1),θ(n)) =

π(θ(n−1))q(θ(n) | θ(n−1))

π(θ(n))q(θ(n−1) | θ(n))
6 1.

Thus

π(θ(n−1))q(θ(n) | θ(n−1))Pacc(θ
(n), θ(n−1)) = π(θ(n))q(θ(n−1) | θ(n))Pacc(θ

(n−1),θ(n)).

Vice-versa, if

Pacc(θ
(n),θ(n−1)) =

π(θ(n))q(θ(n−1) | θ(n))

π(θ(n−1))q(θ(n) | θ(n−1))

then

π(θ(n))q(θ(n−1) | θ(n)) 6 π(θ(n−1))q(θ(n) | θ(n−1)),

which leads to Pacc(θ
(n−1), θ(n)) = 1. As before:

π(θ(n−1))q(θ(n) | θ(n−1))Pacc(θ
(n), θ(n−1)) = π(θ(n))q(θ(n−1) | θ(n))Pacc(θ

(n−1),θ(n)).
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If we multiply both sides of (4.15) by π(θ(n−1)) and use the result above, we get

π(θ(n−1))pθ(n−1)→θ(n) = π(θ(n))pθ(n)→θ(n−1) ,

which is the continuous equivalent of the detailed balance condition of (4.12). Because

π(θ) satisfies the detailed balance condition, π(θ) is the stationary distribution of the

Markov chain. One point to note is that we did not make any assumption on the form

of the proposal distribution q(θ′ | θ(n−1)). From a theoretical point of view, it can

be chosen freely, and the stationary distribution will still be the same. In general, a

density q(θ′ | θ(n−1)) from which it is easy to draw samples is desirable. Furthermore,

we can restrict our attention to densities that satisfy q(θ′ | θ(n−1)) = q(θ′(n−1) | θ′),

so that

Pacc(θ
′,θ(n−1)) = min

{
1,

π(θ′)

π(θ(n−1))

}
.

The choice of q(θ′ | θ(n−1)) is critical to ensure fast convergence of the sum in (4.13)

to the quantity to estimate. Practical aspects are discussed, for example, in [277,278].

Instead of providing a formal mathematical treatment of the convergence properties

of Markov chain Monte Carlo integration, we will use some examples to discuss what

a “good” proposal distribution q(θ′ | θ(n−1)) should look like. Intuitively, the spread

of q(θ′ | θ(n−1)) should neither be too small, nor too large. Indeed, if q(θ′ | θ(n−1))

is narrow, large jumps of θ′ will have low probability and the Markov chain will not

be able to sample the whole support of π(θ) in a convenient number of steps (see

Figure 4.11a). On the other hand, if q(θ′ | θ(n−1)) is broad, very large jumps will be

allowed, leading to small acceptance probabilities for the samples θ′. Small acceptance

probabilities show up as horizontal segments in Figure 4.11b. A good choice of q(θ′ |
θ(n−1)) may be one that gives plots similar to the one of Figure 4.11c. The plots in

Figure 4.11 also lend themselves to discussing burn-in time in the context of Markov

chain Monte Carlo integration. In order to obtain samples distributed according

to the target distribution π(θ) and that do not depend on the choice of θ(0) (see
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(a) Case of σ = 0.025
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(c) Case of σ = 0.50

Figure 4.11. Plots of 1000 samples obtained via Markov chain Monte Carlo. For
all cases, the stationary distribution π(θ) is the probability density function of a
univariate normally-distributed random variable with mean 0 and standard deviation
1. The proposal distribution q(θ′ | θ(n−1)) was chosen to be the probability density
function of a univariate normally-distributed random variable with mean µ = θ(n−1)

and standard deviation σ, for three different values of σ (adapted from [4])
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Figure 4.10), some of the first samples might need be discarded and excluded from

the sum in (4.13).

4.6 Task Performance with List-Mode Data

In this section, we analyze one of the main topics of the dissertation, namely how

the framework of list-mode data is used to study task performance. In some cases

and for a simple imaging system, analytical results are possible. Whenever analytical

results cannot be found, we turned to simulation codes and Markov chain Monte

Carlo integration, which were briefly introduced in the previous section. In all the

cases analyzed below, we will assume that the signal we want to detect is known in

location and shape. We will refer to this hypothesis as “signal known exactly,” or

SKE for short. The background (defined as everything but the signal to detect) will

either be assumed known exactly (“background known exactly,” or BKE) or random,

but its statistical characterization known (“background known statistically,” or BKS).

4.6.1 Information Content of a Photon: SKE/BKE Case

In this section, we turn our attention to an objective way to measure how much

“information” a detected photon conveys for the case of the estimation of a generic

P ×1 parameter vector θ = (θ1, . . . , θP )T from noisy list-mode data Â . We have said

numerous times that, because of measurement noise, the data Â that are used to

perform an estimation are random, and so is any non-constant quantity determinis-

tically calculated from Â . Generally speaking, the performance of an estimator can

be quantified by calculating bias and variance (or covariance matrix) of the estimates

θ̂ it produces. The bias at θ for the random vector θ̂ is written as

b(θ) =
〈
θ̂ − θ

〉
θ̂|θ

=
〈
θ̂
〉

θ̂|θ
− θ.
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An estimator for θ is said to be unbiased if, for such estimator, b(θ) = 0 for all

θ. More important, however, is knowledge of the P × P covariance matrix of the

estimates θ̂ at θ:

Kθ̂|θ =

〈[
θ̂ − 〈θ̂〉θ̂|θ

] [
θ̂ − 〈θ̂〉θ̂|θ

]T
〉

θ̂|θ
.

The concept of “information” contained in the list Â is numerically quantified

via the Fisher information matrix (FIM) Fθ [69, 279, 280] which, for an unbiased

estimator, assumes the form

[Fθ]p,q =

〈[
∂

∂θp

ln pr(Â | fθ, τ)

] [
∂

∂θq

ln pr(Â | fθ, τ)

]〉

Â |fθ ,τ

=

=

∫

∞

[
∂

∂θp

ln pr(Â | fθ, τ)

] [
∂

∂θq

ln pr(Â | fθ, τ)

]
pr(Â | fθ, τ) dÂ , (4.16)

in which pr(Â | fθ, τ) denotes the likelihood of Â , and we have explicitly included

the dependence of the object fθ on the parameter vector θ. In this section, we will

assume that the vector θ fully characterizes the object fθ. To clarify any possible

confusion that might arise from the expression above, with ∂
∂θp

ln pr(Â | fθ, τ) we

mean the partial derivative of ln pr(Â | fθ, τ) with respect to the pth component of

θ. The resulting function is then evaluated at θ, giving an expression that depends

on the random list Â only. Finally, the quantity in 〈. . .〉 above is averaged over Â ,

statistically conditioned on fθ and τ . The Fisher information matrix Fθ is also the

covariance matrix of ∇θ ln pr(Â | fθ, τ), which is often called score, provided that

we can show that the mean of the score is zero:
〈

∂

∂θp

ln pr(Â | fθ, τ)

〉

Â |fθ ,τ

=

∫

∞

∂
∂θp

pr(Â | fθ, τ)

pr(Â | fθ, τ)
pr(Â | fθ, τ) dÂ =

=
∂

∂θp

∫

∞
pr(Â | fθ, τ) dÂ

︸ ︷︷ ︸
=1

= 0.

The result above also allows us to calculate the Fisher information matrix in a different

way. Indeed, from
∂

∂θp

〈
∂

∂θq

ln pr(Â | fθ, τ)

〉

Â |fθ ,τ

= 0,
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we obtain [280,281]

0 =
∂

∂θp

∫

∞

[
∂

∂θq

ln pr(Â | fθ, τ)

]
pr(Â | fθ, τ) dÂ =

=

∫

∞

[
∂2

∂θp∂θq

ln pr(Â | fθ, τ)

]
pr(Â | fθ, τ) dÂ +

+

∫

∞

[
∂

∂θq

ln pr(Â | fθ, τ)

] [
∂

∂θp

pr(Â | fθ, τ)

]
dÂ =

=

∫

∞

[
∂2

∂θp∂θq

ln pr(Â | fθ, τ)

]
pr(Â | fθ, τ) dÂ +

+

∫

∞

[
∂

∂θp

ln pr(Â | fθ, τ)

] [
∂

∂θq

ln pr(Â | fθ, τ)

]
pr(Â | fθ, τ) dÂ .

Upon rearrangement and using (4.16), we get

[Fθ]p,q = −
〈

∂2

∂θp∂θq

ln pr(Â | fθ, τ)

〉

Â |fθ,τ

.

For an unbiased estimator and if Fθ is non-singular, the relationship between the

covariance matrix Kθ̂|θ and the Fisher information matrix Fθ can be summarized as

Kθ̂|θ > F−1
θ ,

which has to be understood as an alternative way to say that Kθ̂|θ−F−1
θ is a positive-

semidefinite matrix. A consequence of Kθ̂|θ −F−1
θ being positive-semidefinite is that

the variances σ2
θ̂p

of the components of any unbiased estimator of θ satisfy [114,282]
[
Kθ̂|θ

]
p,p

= σ2
θ̂p

>
[
F−1

θ

]
p,p

.

The inequality above, which is known in the literature as the Cramér-Rao lower

bound [144, 145], provides an upper bound on the performance of any estimator, in

the sense that no unbiased estimator can produce estimates with a variance lower than
[
F−1

θ

]
p,p

. Hence, the Fisher information matrix quantifies how statistically accurate

an estimate of θ can be.

If we want to calculate the Fisher information matrix for the estimation of θ from

the list-mode data Â , we first need an expression for the likelihood [5]:

pr(Â | fθ, τ) = Pr(J | fθ, τ)
J∏

j=1

pr(Â(j) | fθ) =
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=
τJ

J !
exp

(
−τ

∫

FOV

fθ(r)s(r) dr

) J∏

j=1

∫

FOV

pr(Â(j) | r)fθ(r)s(r) dr,

in which we have used the fact that J conditioned on fθ and τ is a Poisson random

variable and the following results:

J(fθ, τ) = τ

∫

FOV

fθ(r)s(r) dr, (4.17)

and

pr(Â(j) | fθ) =

∫
FOV

pr(Â(j) | r)fθ(r)s(r) dr∫
FOV

fθ(r)s(r) dr
.

Taking the derivative of the logarithm of pr(Â | fθ, τ) gives

∂

∂θp

ln pr(Â | fθ, τ) = −τ

∫

FOV

∂

∂θp

fθ(r)s(r) dr +

+
J∑

j=1

∫
FOV

pr(Â(j) | fθ)
∂

∂θp
fθ(r)s(r) dr

∫
FOV

pr(Â(j) | fθ)fθ(r)s(r) dr
.

From the fact that
〈

∂
∂θp

ln pr(Â | fθ, τ)
〉

Â |fθ ,τ
= 0 and using the result above, we

immediately have
〈

J∑

j=1

∫
FOV

pr(Â(j) | fθ)
∂

∂θp
fθ(r)s(r) dr

∫
FOV

pr(Â(j) | fθ)fθ(r)s(r) dr

〉

Â |fθ ,τ

= τ

∫

FOV

∂

∂θp

fθ(r)s(r) dr. (4.18)

Because the entries in Â are independent and, on average, there are J(fθ, τ) of them

in Â , we can also write

J(fθ, τ)

〈∫
FOV

pr(Â | fθ)
∂

∂θp
fθ(r)s(r) dr

∫
FOV

pr(Â | fθ)fθ(r)s(r) dr

〉

Â|fθ

=
∂

∂θp

J(fθ, τ).

We now have all the ingredients to calculate the Fisher information matrix corre-

sponding to the estimation of the parameter θ given the list Â :

[Fθ]p,q =

〈[
∂

∂θp

ln pr(Â | fθ, τ)

] [
∂

∂θq

ln pr(Â | fθ, τ)

]〉

Â |fθ ,τ

=

=

〈[
J∑

j=1

∫
FOV

pr(Â(j) | fθ)
∂

∂θp
fθ(r)s(r) dr

∫
FOV

pr(Â(j) | fθ)fθ(r)s(r) dr
− τ

∫

FOV

∂

∂θp

fθ(r)s(r) dr

]
×
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×
[

J∑

j=1

∫
FOV

pr(Â(j) | fθ)
∂

∂θq
fθ(r)s(r) dr

∫
FOV

pr(Â(j) | fθ)fθ(r)s(r) dr
− τ

∫

FOV

∂

∂θq

fθ(r)s(r) dr

]〉

Â |fθ ,τ

=

=

〈[
J∑

j=1

∫
FOV

pr(Â(j) | fθ)
∂

∂θp
fθ(r)s(r) dr

∫
FOV

pr(Â(j) | fθ)fθ(r)s(r) dr

]
×

×
[

J∑

j′=1

∫
FOV

pr(Â(j′) | fθ)
∂

∂θq
fθ(r)s(r) dr

∫
FOV

pr(Â(j′) | fθ)fθ(r)s(r) dr

]〉

Â |fθ ,τ

+

− τ 2

[∫

FOV

∂

∂θp

fθ(r)s(r) dr

] [∫

FOV

∂

∂θq

fθ(r)s(r) dr

]
,

in which the last form follows from (4.18). By carrying out the calculations, we can

easily recognize that the product of the two summations above gives rise to J2 − J

terms in which j 6= j′ and J terms for the case j = j′. Furthermore, we can make use

of the independence assumption of the elements in Â to write

[Fθ]p,q = 〈J2 − J〉J |fθ ,τ ×

×
〈∫

FOV
pr(Â | fθ)

∂
∂θp

fθ(r)s(r) dr
∫

FOV
pr(Â | fθ)fθ(r)s(r) dr

〉

Â|fθ

〈∫
FOV

pr(Â | fθ)
∂

∂θq
fθ(r)s(r) dr

∫
FOV

pr(Â | fθ)fθ(r)s(r) dr

〉

Â|fθ

+

+〈J〉J |fθ ,τ

〈∫
FOV

pr(Â | fθ)
∂

∂θp
fθ(r)s(r) dr

∫
FOV

pr(Â | fθ)fθ(r)s(r) dr
·
∫

FOV
pr(Â | fθ)

∂
∂θq

fθ(r)s(r) dr
∫
FOV

pr(Â | fθ)fθ(r)s(r) dr

〉

Â|fθ

+

− τ 2

[∫

FOV

∂

∂θp

fθ(r)s(r) dr

] [∫

FOV

∂

∂θq

fθ(r)s(r) dr

]
.

If we use the properties [127, 128] of the Poisson random variable J (conditioned on

fθ and τ) we can easily show

〈J2 − J〉J |fθ
= σ2

J |fθ
+ 〈J〉2J |fθ

− 〈J〉J |fθ
=

= 〈J〉J |fθ
+ 〈J〉2J |fθ

− 〈J〉J |fθ
=

[
J(fθ, τ)

]2
.

When we use the identity above, many cancellations occur, and the expression for

[Fθ]p,q reduces to

[Fθ]p,q = τ

[∫

FOV

fθ(r)s(r) dr

]
×



118

×
〈∫

FOV
pr(Â | fθ)

[
∂

∂θp
fθ(r)

]
s(r) dr

∫
FOV

pr(Â | fθ)fθ(r)s(r) dr
·
∫

FOV
pr(Â | fθ)

[
∂

∂θq
fθ(r)

]
s(r) dr

∫
FOV

pr(Â | fθ)fθ(r)s(r) dr

〉

Â|fθ

,

in which we have used (4.17). The expression above shows that Fθ is proportional

to the exposure time τ . Furthermore, using (4.17), we can numerically quantify the

average contribution to the Fisher information matrix for each element of the list Â

as the expectation above.

4.6.2 Hotelling Observer’s Task Performance: SKE/BKS Case

In this section we want to evaluate the performance of the Hotelling observer for the

case of list-mode data and as the exposure time is varied. From the list-mode data

Â , we can construct a Poisson point process [5, 283]

u(Â | Â ) =
∑

Â(j)∈Â

δDir

(
Â − Â(j)

)
, (4.19)

where the attribute vectors Â(1), . . . , Â(J) form the list of attributes Â collected

during the fixed exposure time τ , and δDir(. . .) denotes the Dirac delta function [284].

It is important to note that the Poisson point process u(Â | Â ) contains all the

information of the list Â and it allows us to calculate means over realizations of

Â [5]:

u(Â | f , τ) =
∞∑

J=0

JPr(J | f , τ)

∫

∞
pr(Â′ | f)δDir(Â − Â′) dÂ′ =

= J(f , τ)pr(Â | f).

In the expression above, the quantity J(f , τ) denotes the mean number of attributes

in the list Â when the object being imaged is f(r), and the exposure time is τ .

For simplicity, we will assume that f(r) is a 2D object, but our treatment can be

extended to more general cases. The function f(r) represents the mean number of

photons emitted by the object per unit time and per unit area. Thus, f(r) has units
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of s−1m−2. If we introduce the sensitivity function s(r) as the probability that an

event (such as a positron-electron annihilation for the case of PET imaging) occurring

at location r in the field of view (FOV) gives rise to an attribute Â(j) being recorded

in the list Â , then

J(f , τ) = τ

∫

FOV

s(r)f(r) d2r. (4.20)

If we rewrite pr(Â | f) as

pr(Â | f) =

∫

FOV

pr(Â | r)pr(r | f) d2r (4.21)

and use the equivalent of (4.5) but for the continuous case

pr(r | f) =
s(r)f(r)∫

FOV
s(r′)f(r′) d2r′ , (4.22)

we get

u(Â | f , τ) = τ

∫

FOV

pr(Â | r)s(r)f(r) d2r.

The form above allows us to introduce the operator L acting on the object f and

producing a function defined in attribute space

(Lf)(Â) =

∫

FOV

pr(Â | r)s(r)f(r) d2r,

where pr(Â | r) is the probability density function for the estimated attribute Â

given the 2D location of interaction r. Because we want to study how the SNR2 for

the Hotelling observer changes with the exposure time τ , we have not concealed τ by

including it in the definition of the operator L. The integral kernel of L is [5]

[L](Â, r) = pr(Â | r)s(r),

where we used the notation [L](. . .) to explicity refer to the integral kernel of L.

hence, if we apply L to f , we get

u(Â | f , τ) = (τLf)(Â). (4.23)
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Any decision algorithm that operates on list-mode data, receives as input the

list Â or, equivalently, the Poisson point process u constructed from the list Â .

Therefore, by (2.11), the expression of SNR2 takes the form [5]

SNR2
Hot(τ) = ∆u†K−1

u ∆u,

in which the symbol “†” denotes the adjoint of a process or operator, Ku = 1
2
[Ku|H0 +

Ku|H1 ] is the mean covariance operator of the process u, and

∆u(Â) = u1(Â) − u0(Â) =
(
τLf 1

)
(Â) −

(
τLf 0

)
(Â) =

= τ

∫

FOV

pr(Â | r)s(r)
[
f1(r) − f 0(r)

]
d2r = (τL∆f)(Â),

where f k denotes the mean of f under the hypothesis Hk: fk = 〈f〉f|Hk
. The double

bars appearing in the expression above denote double averages: average over list-

mode data first and then over object. By writing SNR2
Hot(τ) we have made it clear

that the SNR2 for the Hotelling observer is a function of the exposure time τ . To

calculate Ku, we start by calculating Ku|Hk
. By definition:

[Ku|Hk
](Â, Â′) =

〈〈[
u(Â | Â ) − uk(Â)

] [
u(Â′ | Â ) − uk(Â

′)
]〉

Â |f

〉

f|Hk

.

If we add and subtract the quantities u(Â | f) and u(Â′ | f) inside the first and

second pair of square brackets of the right hand side of the expression above [66, 69,

124], we obtain

[Ku|Hk
](Â, Â′) =

〈〈 [
u(Â | Â ) − u(Â | f) + u(Â | f) − uk(Â)

]
×

×
[
u(Â′ | Â ) − u(Â′ | f) + u(Â′ | f) − uk(Â

′)
] 〉

Â |f

〉

f|Hk

.

When we carry out the products, we get

[Ku|Hk
](Â, Â′) =

〈〈 [
u(Â | Â ) − u(Â | f)

] [
u(Â′ | Â ) − u(Â′ | f)

]
×

×
[
u(Â | f) − uk(Â)

] [
u(Â′ | Â ) − u(Â′ | f)

]
×



121

×
[
u(Â | Â ) − u(Â | f)

] [
u(Â′ | f) − uk(Â

′)
]
×

×
[
u(Â | f) − uk(Â)

] [
u(Â′ | f) − uk(Â

′)
] 〉

Â |f

〉

f|Hk

.

Notice that
〈〈[

u(Â | f) − uk(Â)
] [

u(Â′ | Â ) − u(Â′ | f)
]〉

Â |f

〉

f|Hk

= 0,

〈〈[
u(Â | Â ) − u(Â | f)

] [
u(Â′ | f) − uk(Â

′)
]〉

Â |f

〉

f|Hk

= 0,

which allow us to rewrite [Ku|Hk
](Â, Â′) as

[Ku|Hk
](Â, Â′) =

〈
[Ku|f ](Â, Â′)

〉
f|Hk

+

+
〈[

(τLf)(Â) − (τLfk)(Â)
] [

(τLf)(Â′) − (τLfk)(Â
′)
]〉

f|Hk

=

=
〈
[Ku|f ](Â, Â′)

〉
f|Hk

+ τ 2[L〈(f − fk)(f − fk)
†〉f|Hk

L†](Â, Â′) =

=
〈
[Ku|f ](Â, Â′)

〉
f|Hk

+ τ 2[LKf|Hk
L†](Â, Â′).

The quantity [Ku|f ](Â, Â′) is the covariance at (Â, Â′) of the stochastic process u

conditioned on the knowledge of f [69]

[Ku|f ](Â, Â′) = δDir(Â − Â′) u(Â | f),

where, as before, δDir(. . .) denotes the Dirac [284] delta function. If we take the

expectation of [Ku|f ](Â, Â′) we get

〈
[Ku|f ](Â, Â′)

〉
f|Hk

= δDir(Â − Â′)
〈
u(Â | f)

〉
f|Hk

= τδDir(Â − Â′)(Lfk)(Â),

which leads to

[Ku](Â, Â′) =
1

2

{
[Ku|H0 ](Â, Â′) + [Ku|H1 ](Â, Â′)

}
=

=
1

2

{
τδDir(Â − Â′)(Lf 0)(Â) + τ 2[LKf|H0L†](Â, Â′) +

+ τδDir(Â − Â′)(Lf 1)(Â) + τ 2[LKf|H1L†](Â, Â′)
}

=
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= τδDir(Â − Â′)L
{(

f 0 + f 1

)
/2

}
(Â) + τ 2[LKfL†](Â, Â′),

where we used the fact that, for the SKE case, Kf|H0 = Kf|H1 . Finally [5]

Ku = τ(Lf)IÂ + τ 2LKfL†.

In the expression above, f(r) = 1
2
[f 0(r)+ f 1(r)], Kf = Kf|H0 = Kf|H1 , and IÂ is the

identity operator defined by the integral kernel

[IÂ](Â, Â′) = δDir(Â − Â′).

We remark that (Lf)IÂ has to be interpreted as the operator whose kernel is

[(Lf)IÂ](Â, Â′) = δDir(Â − Â′)

∫

FOV

pr(Â | r)s(r)f(r) d2r.

Using the quantities calculated above, we can write [5]

SNR2
Hot(τ) = ∆u†K−1

u ∆u = τ 2(L∆f)†K−1
u (L∆f) =

= τ(L∆f)†
{

(Lf)IÂ + τLKfL†
}−1

(L∆f).

Application to a Simple Imaging System

To make this discussion more practical and, at the same time, to make calculations

tractable, we will consider the simple case of a 2D object f(r) imaged onto a 2D

detector by a simple imaging system, as shown in Figure 4.12. The attribute vectors

Â(j) will be taken as the 2D location at which photons emitted from the object and

propagating through the imaging system impinges on the detector. For this reason,

we will use the more familiar notation R̂(j) to mean Â(j).

We will assume that the signal we want to detect is known and buried in a random

lumpy background [285,286]. The lumps, whose expression is

`(r) =
b0

2πr2
b

exp

(
−|r|2

2r2
b

)
, (4.24)

are located at r1, . . . , rK , in which K is a Poisson random variable with mean K.

Points r1, . . . , rK are 2D points uniformly distributed over some area [−W/2,W/2]×
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2D object 2D detector
Imaging
system

Figure 4.12. Schematic diagram of a 2D object imaged onto a 2D detector

[−W/2, W/2]. From the definition of `(r), we see that each lump has an amplitude

given by b0 and width given by rb. The quantity b0 represents the mean number of

photons emitted by a single lump per unit time. Therefore, the units of b0 are s−1.

With this notation, the lumpy background can be written as [285,286]

bθ(r) =

[
K∑

k=1

δDir(r − rk)

]
∗ `(r) =

K∑

k=1

`(r − rk) = b0

K∑

k=1

1

2πr2
b

exp

(
−|r − rk|2

2r2
b

)
,

(4.25)

where the vector θ completely characterizes the background: θ = {r1, . . . , rK} and

the symbol “∗” denotes convolution. We could optionally include the integer number

K in θ, but that number can always be found by counting the number of elements

rk in θ. We finally define the spatial (mean) lump density as p = K/W 2. Some

realizations of the 2D lumpy background bθ(r) are shown in Figure 4.13. For all

these images, W = 0.064 m, p = 2 · 104 m−2, rb = 0.005 m, and b0 = 1000 s−1.

To make calculations easier, we will assume W À rb. Under this assumption, we

can show that the background is a wide-sense stationary random process with mean

and covariance given by [285,286]

〈bθ(r)〉θ = pb0,

and

Kbθ
(r, r′) = Kbθ

(r − r′,0) =
pb2

0

4πr2
b

exp

(
−|r − r′|2

4r2
b

)
.
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Figure 4.13. Examples of 2D lumpy backgrounds obtained for W = 0.064 m,
p = 2 · 104 m−2, rb = 0.005 m, and b0 = 1000 s−1

Because the signal is known, the covariance of the object f(r) is the same under the

hypotheses signal present and signal absent

Kf|H0 = Kf|H1 = Kf ,

and the integral kernel for the object covariance operator Kf is simply [285,286]

[Kf ](r, r′) = Kbθ
(r, r′) =

pb2
0

4πr2
b

exp

(
−|r − r′|2

4r2
b

)
.

We will further assume

pr(Â | r) = pr(R̂ | r) =
1

2πσ2
exp

(
−|R̂ − r|2

2σ2

)
, (4.26)

for some σ2 characterizing the imaging system and the detector, and we will set

s(r) = 1 for all r in the field of view. Using this and the expression for Kf derived

above, it follows [5]

[LKfL†](R̂, R̂′) =
pb2

0

4π(r2
b + σ2)

exp

(
− |R̂ − R̂′|2

4(r2
b + σ2)

)
.

The result above, which was made possible by the fact that pr(R̂ | r) only depends

on R̂ − r and s(r) = 1,proves that LKfL† is stationary. Therefore

[LKfL†](R̂, R̂′) = [LKfL†](R̂ − R̂′,0).
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Concerning the signal ∆f , we will assume that it has a Gaussian shape and that it is

centered at the origin:

∆f(r) =
bs

2πr2
s

exp

(
−|r|2

2r2
s

)
. (4.27)

Similarly to b0, bs is the mean number of photons emitted by the signal per unit time.

Thus, the units of bs are s−1. With this choice for the signal ∆f

∆u(R̂) = (τL∆f)(R̂) =
bsτ

2π(r2
s + σ2)

exp

(
− |R̂|2

2(r2
s + σ2)

)
,

and

(Lf)(R̂) = pb0 +
1

2

bs

2π(r2
s + σ2)

exp

(
− |R̂|2

2(r2
s + σ2)

)
.

If we define the operator B with integral kernel

[B](R̂, R̂′) = δDir(R̂ − R̂′)

[
pb0 +

1

2

bs

2π(r2
s + σ2)

exp

(
− |R̂|2

2(r2
s + σ2)

)]
.

we can write [5]

K−1
u =

{
τB + τ 2LKfL†}−1

=
{
τ

[
B + τLKfL†]}−1

=

=
{
τB

[
IR̂ + τB−1LKfL†]}−1

=
1

τ

[
IR̂ + τB−1LKfL†]−1 B−1.

Recall that, at least formally [69]

[I − X ]−1 =
∞∑

n=0

X n.

We can use the identity above to calculate K−1
u provided that we set X = −τB−1LKfL†

K−1
u =

1

τ

[ ∞∑

n=0

(−τ)n(B−1LKfL†)n

]
B−1. (4.28)

Conditions under which the summation above converges are related to the eigenvalues

λρ of the operator X = −τB−1LKfL†. Using the definition of B, we get

[B−1LKfL†](R̂, R̂′) =

∫

∞
[B−1](R̂, R̂′′)[LKfL†](R̂′′, R̂′) d2R̂′′ =
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=

pb2
0

4π(r2
b + σ2)

exp

(
− |R̂ − R̂′|2

4(r2
b + σ2)

)

pb0 +
1

2

bs

2π(r2
s + σ2)

exp

(
− |R̂|2

2(r2
s + σ2)

) . (4.29)

In order to proceed, it is convenient to make the following assumption on the signal

strength with respect to the background mean

1

2

bs

2π(r2
s + σ2)

¿ pb0,

or, equivalently
bs

4πpb0(r2
s + σ2)

¿ 1. (4.30)

It is worth noting that similar assumptions, which have been used in other circum-

stances in the literature [107, 124, 286], have usually been referred to as “weak-signal

approximations” to mean that the signal intensity is much smaller than the back-

ground intensity. We will still refer to (4.30) as the weak-signal approximation even

though that condition depends on other quantities—such as p, rs, and σ—as well.

Similarly to [107,124,286], the weak-signal approximation is used to make the covari-

ance matrix of the data (understood here as the Poisson point process u) the same

under both hypotheses. When this happens, we talk about homoscedasticity, as we

first pointed out in § 2.4. For the case at hand [5]

Ku|Hk
= τ

(
Lfk

)
IR̂ + τ 2LKf|Hk

L†,

where

f 0(r) = 〈bθ(r)〉θ = pb0,

f 1(r) = 〈bθ(r)〉θ + ∆f(r) = pb0 +
bs

2πr2
s

exp

(
−|r|2

2r2
s

)
.

Therefore

[Ku](R̂, R̂′) =
1

2

[
Ku|H0 + Ku|H1

]
(R̂, R̂′) =
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= τpb0

[
1 +

bs

4πpb0(r2
s + σ2)

exp

(
− |R̂|2

2(r2
s + σ2)

)]
δDir(R̂ − R̂′) +

+ τ 2 pb2
0

4π(r2
b + σ2)

exp

(
− |R̂ − R̂′|2

4(r2
b + σ2)

)
.

With the weak-signal approximation:

[Ku](R̂, R̂′) ≈ τpb0

[
δDir(R̂ − R̂′) +

τb0

4π(r2
s + σ2)

exp

(
− |R̂ − R̂′|2

4(r2
b + σ2)

)]
.

The assumption in (4.30) allows us to write B−1 ≈ (pb0)
−1IR̂. Using this and (4.29),

we obtain

[B−1LKfL†](R̂, R̂′) ≈ b0

4π(r2
b + σ2)

exp

(
− |R̂ − R̂′|2

4(r2
b + σ2)

)
.

With this approximation, we can easily calculate the eigenvalues of −τB−1LKfL† by

Fourier transform diagonalization:

λρ = −b0τe−4π2(r2
b+σ2)|ρ|2 .

Thus, for the weak-signal case, the series
∑∞

n=0(−τ)n(B−1LKfL†)n converges if and

only if |λρ| < 1, which requires b0τ < 1. Notice that this condition is dimensionally

correct because the units of b0 are s−1 and so b0τ is unitless. To calculate powers of

B−1LKfL†, we notice that the integral kernel of such operator is well approximated

by b0 times the probability density function of a normally distributed random vector,

evaluated at R̂ − R̂′. Using

N∗
n=1

1

2πσ2
n

exp

(
−|R̂|2

2σ2
n

)
=

1

2π
∑N

n=1 σ2
n

exp

(
− |R̂|2

2
∑N

n=1 σ2
n

)
,

we immediately get

[(B−1LKfL†)n](R̂, R̂′) ≈ bn
0

4πn(r2
b + σ2)

exp

(
− |R̂ − R̂′|2

4n(r2
b + σ2)

)
.

With the results found above, we can write

SNR2
Hot(τ) =

1

τ

∞∑

n=0

(−τ)n∆u†(B−1LKfL†)nB−1∆u,
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where

(B−1∆u)(R̂) =
bsτ

2π(r2
s + σ2)

exp

(
− |R̂|2

2(r2
s + σ2)

)
×

×
[
pb0 +

1

2

bs

2π(r2
s + σ2)

exp

(
− |R̂|2

2(r2
s + σ2)

)]−1

≈

≈ bsτ

pb0

1

2π(r2
s + σ2)

exp

(
− |R̂|2

2(r2
s + σ2)

)
,

in which we used B−1 ≈ (pb0)
−1IR̂. Notice that

(
∆u†(B−1LKfL†)n

)
(R̂) =

∫

∞
∆u(R̂′)[(B−1LKfL†)n](R̂′, R̂) d2R̂′ =

=
bsb

n
0τ

2π[r2
s + σ2 + 2n(r2

b + σ2)]
exp

(
− |R̂|2

2[r2
s + σ2 + 2n(r2

b + σ2)]

)
.

Thus

∆u†(B−1LKfL†)nB−1∆u =
b2
sb

n−1
0 τ 2

p

1

4π[nr2
b + r2

s + (n + 1)σ2]
.

Finally

SNR2
Hot(τ) =

b2
sτ

4πpb0

∞∑

n=0

(−1)n (b0τ)n

nr2
b + r2

s + (n + 1)σ2
.

Because the series above is of the form
∑∞

n=0(−1)nan with an > 0, we have that

it converges if and only if an+1 < an and limn→∞ an = 0. Not surprisingly, that

happens when b0τ < 1, which is the same conditions we had on the eigenvalues λρ

of X = −τB−1LKfL†. We also notice that this expression for SNR2
Hot(τ) cannot be

used to study what happens when the acquisition time τ increases. Indeed, we would

eventually get b0τ > 1.

To fix the problem, we will follow another approach. Recall that [5]

SNR2
Hot(τ) ≈ τ(L∆f)†

{
IR̂ + τB−1LKfL†}−1 B−1(L∆f),

where

[B−1LKfL†](R̂, R̂′) ≈ b0

4π(r2
b + σ2)

exp

(
− |R̂ − R̂′|2

4(r2
b + σ2)

)
,
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(L∆f)(R̂) =
bs

2π(r2
s + σ2)

exp

(
− |R̂|2

2(r2
s + σ2)

)
.

Because B−1LKfL† is shift invariant, we can write

B−1LKfL† = UDU †, (4.31)

provided that

[U ](R̂, ρ) = ei2πR̂·ρ,

[D](ρ,ρ′) = b0δDir(ρ − ρ′)e−4π2(r2
b+σ2)|ρ|2 .

The form above can be verified by substituting and performing the integrals. Then

{
IR̂ + τB−1LKfL†}−1

=
{
IR̂ + τUDU †}−1

=
{
UU † + τUDU †}−1

=

=
{
U [Iρ + τD]U †}−1

= U [Iρ + τD]−1 U †,

in which we have used the fact that U is unitary (U †U = UU † = I). Notice that

Iρ + τD is diagonal, thus its inverse is readily available. We have obtained [5]

SNR2
Hot(τ) ≈ τ(L∆f)†U {Iρ + τD}−1 U †B−1(L∆f),

where

(
(L∆f)†U

)
(ρ) = bse

−2π2(r2
s+σ2)|ρ|2 ,

(U †B−1L∆f)(ρ) =
bs

pb0

e−2π2(r2
s+σ2)|ρ|2 .

Therefore

SNR2
Hot(τ) ≈ b2

s

pb2
0

∫

∞

b0τe−4π2(r2
s+σ2)|ρ|2

1 + b0τe−4π2(r2
b+σ2)|ρ|2 d2ρ. (4.32)

A dimensional analysis of the quantity on the right hand side shows that SNR2
Hot(τ)

is dimensionless, as it should be. For the integral above,
∫

∞

αe−a|ρ|2

1 + αe−b|ρ|2 d2ρ = 2π

∫ ∞

0

αxe−ax2

1 + αe−bx2 dx,
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with α = b0τ > 0, a = 4π2(r2
s + σ2) > 0, and b = 4π2(r2

b + σ2) > 0. Assume first

a 6= b. Then [287–290]

2π

∫ ∞

0

αxe−ax2

1 + αe−bx2 dx = π

∫ ∞

0

e−au

1
α

+ e−bu
du =

π

b

∫ 1

0

y
a
b
−1

1
α

+ y
dy =

=
πα

a
2F1

(
1,

a

b
; 1 +

a

b
;−α

)
=

=
π

a

α

1 + α
2F1

(
1, 1; 1 +

a

b
;

α

1 + α

)
,

in which 2F1(α, β; γ; z) is the hypergeometric function defined as the analytic contin-

uation to the whole complex plane of the hypergeometric series [287]:

2F1(α, β; γ; z) =
∞∑

n=0

(α)n(β)n

(γ)n

zn

n!
,

where we defined

(α)n =

{
α(α + 1)(α + 2) . . . (α + n − 1) if n > 1,
1 if n = 0.

Notice that the integrals above converge when a
b

> 0, which is the case as both a and

b are positive. Hence, we can rewrite SNR2
Hot(τ) as [5]

SNR2
Hot(τ) ≈ b2

s

pb2
0

1

4π(r2
s + σ2)

b0τ

1 + b0τ
2F1

(
1, 1; 1 +

r2
s + σ2

r2
b + σ2

;
b0τ

1 + b0τ

)
. (4.33)

Figure 4.14 shows plots of SNR2
Hot(τ) as a function of time τ for three different

cases, namely rs < rb, rs > rb, and rs = rb. Other parameters we have used are:

bs = 100 s−1, b0 = 1000 s−1, p = 20000 m−2, σ = 0.001 m, rb = 0.005 m, and

τ ∈ [0, 0.20]. Being the ratio bs/4πpb0(r
2
s + σ2) < 0.02, the bs/4πpb0(r

2
s + σ2) ¿ 1

condition of (4.30) is satisfied for all the three cases considered.

As a special case, if rs = rb, the integral in (4.32) can be solved with elementary

methods, resulting in

SNR2
Hot(τ) ≈ b2

s

pb2
0

1

4π(r2
s + σ2)

ln(1 + b0τ).
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Figure 4.14. Plots of SNR2
Hot(τ) for three different cases. For all plots, bs = 100 s−1,

b0 = 1000 s−1, p = 20000 m−2, σ = 0.001 m, rb = 0.005 m, and τ ∈ [0, 0.20]. For the
red curve, rs = 0.0045 m; for the blue curve rs = 0.0055 m; and, finally, for the black
curve rs = rb = 0.005 m (adapted from [5])
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We want to study now the asymptotic behavior of SNR2
Hot(τ) as τ → 0 and

τ → ∞. For the τ → 0 case, we use a result found above and the definition of

hypergeometric series to write

2π

∫ ∞

0

αxe−ax2

1 + αe−bx2 dx =
πα

a
2F1

(
1,

a

b
; 1 +

a

b
;−α

)
= π

∞∑

k=0

(−1)k αk+1

a + kb
,

which is the Taylor series expansion at α = 0. The series converges when |α| < 1.

Thus, for small values of τ , we can retain the first term of the Taylor expansion and

get

SNR2
Hot(τ)

τ¿1≈ b2
s

pb2
0

b0τ

4π(r2
s + σ2)

.

For the τ → ∞ case, let us first set m = 1 − a
b

and assume that m is not an integer.

We can perform a Taylor series expansion to the second order of

α

1 + α
2F1

(
1, 1; 1 +

a

b
;

α

1 + α

)
=

α

1 + α
2F1

(
1, 1; 2 − m;

α

1 + α

)

for 1/α → 0+:

2π

∫ ∞

0

αxe−ax2

1 + αe−bx2 dx = csc(πm)
π2

a

{
αm

[
ν1 + o

(
α−2

)]
−

[
ν2 + ν3α

−1 + o
(
α−2

)] }
,

(4.34)

where csc(x) = 1
sin(x)

and

ν1 = 1 − m, ν2 =
ν1

Γ(1 − m)Γ(1 + m)
, ν3 = − m

m + 1
ν2.

In the expressions above, the Gamma function Γ(x) is the function defined as

Γ(x) =

∫ ∞

0

tx−1e−t dt.

Further manipulation of the expressions found above is possible. Indeed, by using

Γ(x + 1) = xΓ(x) and Γ(1 − x)Γ(x) = π csc(πx) = π
sin(πx)

(for a proof, see, for

example, [291,292]), we get that, for α À 1, (4.34) above can be rewritten as

2π

∫ ∞

0

αxe−ax2

1 + αe−bx2 dx ≈ csc
(
π

a

b

) π2

b
α1−a

b +
π

a − b

[
1 − b − a

2b − a
α−1

]
.
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If m = 1 − a
b

is an integer, the result above is not valid, because sin(π a
b
) = 0 and

so csc(π a
b
) would not be defined. However [288]:

2π

∫ ∞

0

αxe−ax2

1 + αe−bx2 dx =
π

b

∫ 1

0

y
a
b
−1

1
α

+ y
dy =

π

b

∫ 1

0

yn

1
α

+ y
dy =

=
π

b

{
n−1∑

k=0

(
− 1

α

)k
1

n − k
+

(
− 1

α

)n

ln(1 + α)

}
,

in which n = −m = a
b
− 1 > 0 and integer. Equivalently, we can require a > b

with a
b

integer. Thus, for large values of α and a
b

integer, the quantity above behaves

according to

2π

∫ ∞

0

αxe−ax2

1 + αe−bx2 dx
αÀ1≈





π

b
ln(1 + α) if a = b,
π

a − b
if a

b
∈ N \ {1},

where N = {1, 2, 3, . . . } is the set of positive integer numbers, and N \ {1} denotes

the set N with the element 1 removed. To summarize, we have [5]

2π

∫ ∞

0

αxe−ax2

1 + αe−bx2 dx
αÀ1≈





π

b
ln(1 + α) if a = b,
π

a − b
if a

b
∈ N \ {1},

csc
(
π

a

b

) π2

b
α1−a

b +

+
π

a − b

[
1 − b − a

2b − a
α−1

]
if a

b
6∈ N \ {1}.

Substituting the definitions of a, b, and α gives [5]

SNR2
Hot(τ)

τÀ1≈ b2
s

pb2
0





1

4π(r2
s + σ2)

ln(1 + b0τ) if rs = rb,

1

4π(r2
s − r2

b )
if r2

s+σ2

r2
b+σ2 ∈ N \ {1},

csc

(
π

r2
s + σ2

r2
b + σ2

)
1

4(r2
b + σ2)

(
b0τ

)1− r2
s+σ2

r2
b
+σ2

+

+
1

4π(r2
s − r2

b )

[
1 − r2

b − r2
s

2r2
b − r2

s + σ2

1

b0τ

]
if r2

s+σ2

r2
b+σ2 6∈ N \ {1}.

(4.35)

Although complicated, the expression above covers all possible cases. Indeed, if rs =

rb, the first case gives the asymptotic behavior for SNR2
Hot(τ) for large values of τ .
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If rs < rb, then r2
s+σ2

r2
b+σ2 must necessarily be a real number in the open interval (0, 1).

In such a case, the third case would apply. Finally, if rs > rb, then r2
s+σ2

r2
b+σ2 is strictly

greater than 1 and either the second or the third case would apply.

We will now study what happens to the value of SNR2
Hot(τ) as τ → ∞. From the

previous equation and for the case rs = rb,

lim
τ→∞

SNR2
Hot(τ) = lim

τ→∞

b2
s

pb2
0

1

4π(r2
b + σ2)

ln(1 + b0τ) = ∞.

Similarly, for rs < rb,

lim
τ→∞

(
b0τ

)1− r2
s+σ2

r2
b
+σ2

= ∞,

because 1 − r2
s+σ2

r2
b+σ2 > 0. Therefore, if rs < rb,

lim
τ→∞

SNR2
Hot(τ) = ∞.

If rs > rb and r2
s+σ2

r2
b+σ2 is an integer, then, trivially,

lim
τ→∞

SNR2
Hot(τ) =

b2
s

pb2
0

1

4π(r2
s − r2

b )
.

If, rs > rb but now r2
s+σ2

r2
b+σ2 is not an integer, we have

lim
τ→∞

(
b0τ

)1− r2
s+σ2

r2
b
+σ2

= 0,

which leads to

lim
τ→∞

SNR2
Hot(τ) =

b2
s

pb2
0

1

4π(r2
s − r2

b )
.

Thus, we can summarize our findings as follows [5]

lim
τ→∞

SNR2
Hot(τ) =





∞ if rs 6 rb,
b2
s

pb2
0

1

4π(r2
s − r2

b )
if rs > rb.

The result above and the plots in Figure 4.14 show that the SNR2
Hot(τ) keeps grow-

ing as the exposure time increases only for the rs 6 rb case. Otherwise, SNR2
Hot(τ) is
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limited. In the latter case, it grows as the signal intensity grows, and it decreases if

the background intensity and/or the lump density increases. The peculiar behavior

we have in the rs > rb case can be intuitively explained by noting that the signal has

a Gaussian shape, so do the lumps in the background. If the signal is wider that the

lumps, it is possible to have a false positive when a few lumps cluster at the signal

location in such a way that they actually look like the signal we are looking for. On

the other hand, when the signal is narrower that the lumps (rs < rb), false positives

are reduced because no lump arrangement will look like the signal we want to detect.

The rs = rb case deserves a different discussion. One could argue that because

rs = rb, a background lump placed at r = (0, 0) could mistakenly be interpreted as

the signal ∆f we want to detect, which in our case is indeed centered at (0, 0) and it is

a scaled version of the lump function `(r). Thus, the SNR2
Hot(τ) should be bounded

when rs = rb. However, if we recall that the lump centers r1, . . . , rK are 2D points

uniformly distributed over [−W/2,W/2]× [−W/2, W/2], we immediately realize that

the probability of having a lump centered at (0, 0) is zero. Thus, with probability 1,

a lump centered at (0, 0) must be understood as the signal ∆f .

We can show that the two expressions we have found for SNR2
Hot(τ) are the same

for the case b0τ < 1 and rs = rb. Using the singular value decomposition (4.31) and

for finite time

SNR2
Hot(τ) =

b2
s

pb2
0

ln(1 + b0τ)

4π(r2
s + σ2)

.

Using the Neumann series expansion of (4.28), we can write

SNR2
Hot(τ) =

b2
sτ

4πpb0

∞∑

n=0

(−1)n (b0τ)n

(n + 1)(r2
s + σ2)

=
b2
s

pb2
0

∑∞
n=0(−1)n (b0τ)n+1

n+1

4π(r2
s + σ2)

=

=
b2
s

pb2
0

∑∞
n=1(−1)n+1 (b0τ)n

n

4π(r2
s + σ2)

=
b2
s

pb2
0

ln(1 + b0τ)

4π(r2
s + σ2)

,

in which we have recognized the Taylor series expansion of ln(1 + b0τ).
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Study of Detective Quantum Efficiency

The development of a performance figure of merit for detection performance—such

as the SNR2
Hot(τ) in (4.33)—lends itself to a way to assess the detector and system’s

performance by introducing the detective quantum efficiency or DQE [293–295]

DQE =
SNR2

SNR2
ideal system

. (4.36)

In other words, the DQE describes the degree to which the SNR2 has been degraded

by the system, in terms of observer performance [69]. The DQE was first introduced

in [296] to study the efficiency of the human eye as a photoreceptor. In recent years,

the concept of DQE has also been extended to observer models, as a way to measure

the relative performance of two model observers on the same task [69] or to compare

the performance of the human observer relative to the ideal observer [297]. In our

treatment, we use the definition in (4.36) to evaluate the DQE as a function of

exposure time τ using (4.33) as figure of merit for the detection task

DQEHot(τ) =
SNR2

Hot(τ)

SNR2
Hot, ideal system(τ)

,

in which SNR2
Hot, ideal system(τ) is calculated by assuming σ → 0 in (4.26) and by

carrying out the same derivation that led to (4.33). It is interesting to analyze how

DQEHot(τ) is affected by the exposure time τ and for the same cases that were

considered in Figure 4.14; plots of DQEHot(τ) are reported in Figure 4.15.

We do not have have a justification for the different behaviors of DQEHot(τ) as

τ → ∞ that Figure 4.15 suggests. Intuitively, and as τ increases, DQEHot(τ) should

not decrease because the longer the exposure time, the more (on average) events are

collected and so the more “information” about the object will be available, hence

“compensating” for the detector’s non-ideal behavior (modeled by σ > 0). However,

as Figure 4.15 shows, this does not happen for the rs < rb case, which leads us

to suspect that the Hotelling observer for a list-mode SKE/BKS detection problem



137

5 10 15 20
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

τ [s]

D
Q

E
H

o
t
(τ

)

 

 

r
s
 < r

b

r
s
 = r

b

r
s
 > r

b

Figure 4.15. Plots of DQEHot(τ) for three different cases. For all plots, bs = 100 s−1,
b0 = 1000 s−1, p = 20000 m−2, σ = 0.001 m, rb = 0.005 m, and τ ∈ [0, 20]. For the
red curve, rs = 0.0045 m; for the blue curve rs = 0.0055 m; and, finally, for the black
curve rs = rb = 0.005 m
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should not be used to assess system performance, as it does not always behave as

common sense would suggest.

4.6.3 Ideal Observer’s Task Performance: SKE/BKS Case

We begin this section by describing a way to calculate SNR2
λ(τ) where λ(Â ) =

ln Λ(Â ) is the list-mode log-likelihood ratio:

λ(Â ) = ln

[
pr(Â | H1)

pr(Â | H0)

]

and τ is the exposure time. The main goal of this section is to compare the perfor-

mance of the list-mode log-likelihood ratio—quantified via the SNR2
λ(τ)—with the

performance of the list-mode Hotelling observer, for which analytical results were

derived in § 4.6.2.

Even for the simple imaging system of Figure 4.12, an expression for the SNR2
λ(τ)

was not found. Therefore, we turned to Markov chain Monte Carlo (MCMC) integra-

tion to calculate expectations and, ultimately, the SNR2
λ(τ). A basic introduction to

MCMC was given in § 4.5.2. We also remark that our procedure for the calculation

of SNR2
λ(τ) is based on the one detailed in [298], with the necessary adaptations.

As in [298], we characterize the background with the matrix Φ defined as

Φ =




r1 β1
...

...
rKmax βKmax


 , (4.37)

where r1, . . . , rKmax are 2D points independently and uniformly distributed over the

whole field of view [−W/2, W/2] × [−W/2, W/2], and the dimensionless quantities

β1, . . . , βKmax are independent Bernoulli random variables [127, 128] with parameter

P : Pr(βk = 1) = P and pr(βk = 0) = 1 − P . Later in this section we will assume

Kmax → ∞ and we will modify the expressions accordingly. The interpretation of Φ

is that if βk = 1, then there is an “active” lump at location rk. If, on the other hand,
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βk = 0, then no lump is present at rk. Thus we can write

bΦ(r) =
Kmax∑

k=1

βk`(r − rk),

where `(r) is the lump function given in (4.24). Notice that the number of active

lumps (i.e., βk = 1) in Φ is K1 =
∑Kmax

k=1 βk and it follows a binomial distribution [127,

128] with parameters Kmax and P . Imposing that the mean number of active lumps

K = KmaxP equates pW 2 (where p is the mean spatial lump density; see § 4.6.2)

yields

P =
K

Kmax

=
pW 2

Kmax

. (4.38)

Following [298],

Λ(Â ) =

∫

∞

pr(Â ,Φ | H1)

pr(Â | H0)
dΦ =

∫

∞

pr(Â | Φ, H1) pr(Φ) Pr(H1)

Pr(H1) pr(Â | H0)
dΦ =

=

∫

∞

[
pr(Â | Φ, H1)

pr(Â | Φ, H0)

]

︸ ︷︷ ︸
ΛBKE(Â |Φ)

pr(Â ,Φ, H0)

pr(Φ, H0)

pr(Φ)Pr(H0)

pr(Â , H0)
dΦ =

=

∫

∞
ΛBKE(Â | Φ) pr(Φ | Â , H0) dΦ, (4.39)

where we used pr(Φ, H0) = pr(Φ) Pr(H0) and we introduced the background-known-

exactly (BKE) likelihood ratio ΛBKE(Â | Φ). The expression above is used to esti-

mate Λ(Â ) as follows

Λ̂(Â ) =
1

N

N∑

n=1

ΛBKE(Â | Φ(n)),

where Φ(1), . . . ,Φ(N) are samples distributed according to pr(Φ | Â , H0) and they

are obtained via MCMC methods.

The implementation of MCMC integration requires the calculation of the accep-

tance probability for a candidate background matrix Φ′ given the current background
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matrix Φ (here, Φ is one of the Φ(1), . . . ,Φ(N)). Using (4.14), the acceptance proba-

bility for the problem at hand, is written as

Pacc(Φ
′,Φ; Â , H0) = min

{
1,

pr(Φ′ | Â , H0)q(Φ | Φ′)

pr(Φ | Â , H0)q(Φ′ | Φ)

}
. (4.40)

By application of the definition of conditional density,

pr(Φ | Â , H0) =
pr(Â | Φ, H0) pr(Φ)

pr(A )
.

The factor pr(A ) cancels when the fraction in (4.40) is evaluated, leading to

pr(Φ′ | Â , H0)

pr(Φ | Â , H0)
=

pr(Â | Φ′, H0)

pr(Â | Φ, H0)

pr(Φ′)

pr(Φ)
.

Writing an expression for q(Φ′ | Φ) first requires deciding how a proposal matrix

Φ′ is generated from the current matrix Φ. Recall that Φ and Φ′ have the form

given in (4.37) and, in particular, the random variables β1, . . . , βKmax indicate the

presence or absence of lumps at locations r1, . . . , rKmax , respectively. Equivalently,

we will say that if βk = 1, there is an “active” lump centered at rk; if βk = 0, the

lump at rk is “inactive.” Generating Φ′ from Φ is implemented by perturbing one

of the active lump centers in Φ and by randomly flipping the active/inactive flags of

the remaining lump centers. Conditions we want to ensure when generating Φ′ from

Φ are the following:

• exactly one lump that is active in both Φ and Φ′ has been “perturbed” in Φ′;

• on average, the number of flips from active lumps to inactive lumps (“1 → 0”) is

the same as the number of flips from inactive lumps to active lumps (“0 → 1”).

To enforce the first condition, we randomly select an active lump center rk in Φ, we

perturb it to get r′
k, and set it as an active lump center in Φ′. More specifically,

r′
k is obtained from rk as r′

k = rk + ∆r where ∆r = (∆x, ∆y) follows a 2D normal

distribution:

pr(∆r) =
1

2πσ2
pert.

exp

(
−(∆x)2 + (∆y)2

2σ2
pert.

)
.
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For the second condition, we introduce the probability η0→1 of an inactive-to-active

flip and the probability η1→0 of an active-to-inactive lump flip. Let K0 =
∑Kmax

k=1 (1−
βk) denote the number of inactive lumps in Φ and recall that K1 =

∑Kmax

k=1 βk is the

number of active lumps in Φ. Clearly, K0 + K1 = Kmax. The number of inactive-to-

active flips follows a binomial distribution with parameters K0 and η0→1, while the

number of active-to-inactive flips follows a binomial distribution but with parameters

K1−1 and η1→0. The reason why we have K1−1 instead of K1 is because at least one

active lumps must remain active (more precisely, the one we force to remain active

is the one we slightly perturb). Thus the expected number of inactive-to-active flips

is K0η0→1 and the expected number of active-to-inactive flips is (K1 − 1)η1→0. We

want these two number to be equal (so that, for any k, the probability of increasing

the number of lumps by k is the same as the probability of decreasing the number of

lumps by k). Hence, the expected total number of flips is K0η0→1 + (K1 − 1)η1→0. If

we force the expected total number of flips be equal to (K0 + K1)η = Kmaxη, where

η is defined as the probability of a flip, we obtain

η0→1 =
Kmaxη

2K0

, η1→0 =
Kmaxη

2(K1 − 1)
,

where we also imposed K0η0→1 = (K1 − 1)η1→0. We can now write

q(Φ′ | Φ) = (η0→1)
f0→1(1 − η0→1)

K0−f0→1(η1→0)
f1→0(1 − η1→0)

K1−1−f1→0 ×

× 1

K1

Kmax∑

k=1

βkβ
′
k




Kmax∏

k′′=1
k′′ 6=k

δDir(rk′′ − r′
k′′)




1

2πσ2
pert.

exp

(
−|rk − r′

k|2
2σ2

pert.

)
,

where f0→1 and f1→0 denote the number of inactive-to-active and active-to-inactive

flips, respectively:

f0→1 =
∣∣{k such that βk = 0 and β′

k = 1
}∣∣ ,

f1→0 =
∣∣{k such that βk = 1 and β′

k = 0
}∣∣ ,



142

and |S| stands for the number elements (cardinality) of a set S. The factor ηf0→1

0→1 (1−
η0→1)

K0−f0→1 in the expression of q(Φ′ | Φ) refers to the probability of turning f0→1 of

the K0 inactive lumps of Φ into active lumps in Φ′. Similarly, ηf1→0

1→0 (1−η1→0)
K1−1−f1→0

is the probability of deactivating f1→0 lumps that were active in Φ, and we have

excluded one of the active lumps of Φ. Finally, the second line in the expression

for q(Φ′ | Φ) accounts for the probability density function of the perturbed lump.

Because only one active lump is perturbed, we have used the Dirac delta function [284]

to write the probability density function that expresses this fact. In other words, the

integral over r′
1, . . . , r

′
Kmax

of the expression in [. . .] evaluates to 1 only when rk was

the lump center in Φ that was perturbed to get r′
k in Φ′, otherwise it evaluates to 0.

If we exchange Φ and Φ′ and use

K ′
0 = K0 + f1→0 − f0→1, K ′

1 = K1 + f0→1 − f1→0,

f ′
0→1 = f1→0, f ′

1→0 = f0→1,

we obtain

q(Φ | Φ′) = (η′
0→1)

f1→0(1 − η′
0→1)

K0−f0→1(η′
1→0)

f0→1(1 − η′
1→0)

K1−1−f1→0 ×

× 1

K1 + f0→1 − f1→0

Kmax∑

k=1

βkβ
′
k




Kmax∏

k′′=1
k′′ 6=k

δDir(rk′′ − r′
k′′)




1

2πσ2
pert.

exp

(
−|rk − r′

k|2
2σ2

pert.

)
.

The ratio q(Φ | Φ′)/q(Φ′ | Φ) thus is

q(Φ | Φ′)

q(Φ′ | Φ)
=

K1

K1 + f0→1 − f1→0

[
η′

1→0

η0→1

]f0→1
[
η′

0→1

η1→0

]f1→0

×

×
[
1 − η′

0→1

1 − η0→1

]K0−f0→1
[
1 − η′

1→0

1 − η1→0

]K1−1−f1→0

,

where

η′
1→0

η0→1

=
K0

K ′
1 − 1

,

η′
0→1

η1→0

=
K1 − 1

K ′
0

,
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1 − η′
0→1

1 − η0→1

=
2K ′

0 − Kmaxη

2K0 − Kmaxη
· K0

K ′
0

,

1 − η′
1→0

1 − η1→0

=
2(K ′

1 − 1) − Kmaxη

2(K1 − 1) − Kmaxη
· K1 − 1

K ′
1 − 1

.

Finally, the density pr(Φ) is

pr(Φ) =
PK1(1 − P )Kmax−K1

K1! (Kmax − K1)!

(
1

W 2

)Kmax

,

where the factorial terms in the denominator account for the fact that we can permute

the sets of active and inactive lump centers, whereas P is the probability that any

given lump is active. The ratio pr(Φ′)/pr(Φ) thus is

pr(Φ′)

pr(Φ)
=

PK′
1(1 − P )K′

max−K′
1

K ′
1! (Kmax − K ′

1)!

PK1(1 − P )Kmax−K1

K1! (Kmax − K1)!

=

(
Kmax

K ′
1

)(
pW 2

Kmax

)K′
1
(

1 − pW 2

Kmax

)Kmax−K′
1

(
Kmax

K1

)(
pW 2

Kmax

)K1
(

1 − pW 2

Kmax

)Kmax−K1
,

where we used (4.38) to rewrite P in terms of other quantities and we multiplied

both the numerator and the denominator by Kmax! so that binomial coefficients can

be introduced. As Kmax become large:

lim
Kmax→∞

(
Kmax

K1

)(
pW 2

Kmax

)K1
(

1 − pW 2

Kmax

)Kmax−K1

=
(pW 2)

K1

K1!
e−pW 2

> 0.

By the theorem in Appendix C:

lim
Kmax→∞

pr(Φ′)

pr(Φ)
=

lim
Kmax→∞

(
Kmax

K ′
1

)(
pW 2

Kmax

)K′
1
(

1 − pW 2

Kmax

)Kmax−K′
1

lim
Kmax→∞

(
Kmax

K1

)(
pW 2

Kmax

)K1
(

1 − pW 2

Kmax

)Kmax−K1
=

=
K1!

K ′
1!

(
pW 2

)K′
1−K1 .

To complete the calculation of Pacc(Φ
′,Φ; Â , H0), we need an expression for pr(Â |

Φ, H0). We will assume that the number of attribute vectors J in the list Â is not

set in advance. Therefore, conditioned on Φ and H0, J follows Poisson statistics:

Pr(J | Φ, H0) =
1

J !

[
τ

∫

FOV

bΦ(r)s(r) dr

]J

exp

(
−τ

∫

FOV

bΦ(r)s(r) dr

)
,
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where τ is the exposure time. We can now write

pr(Â | Φ, H0) = Pr(J | Φ, H0)
J∏

j=1

pr(Â(j) | Φ, H0),

where

pr(Â(j) | Φ, H0) =

∫

FOV

pr(Â(j) | r)pr(r | Φ, H0) dr =

=
1∫

FOV
bΦ(r)s(r) dr

∫

FOV

pr(Â(j) | r)bΦ(r)s(r) dr.

Thus

pr(Â | Φ, H0) =
τJ

J !
exp

(
−τ

∫

FOV

bΦ(r)s(r) dr

)
×

×
J∏

j=1

∫

FOV

pr(Â(j) | r)bΦ(r)s(r) dr.
(4.41)

In a similar fashion

pr(Â | Φ, H1) = Pr(J | Φ, H1)
J∏

j=1

pr(Â(j) | Φ, H1),

where

Pr(J | Φ, H1) =
1

J !

[
τ

∫

FOV

{
bΦ(r) + ∆f(r)

}
s(r) dr

]J

×

× exp

(
−τ

∫

FOV

{
bΦ(r) + ∆f(r)

}
s(r) dr

)
,

and

pr(Â(j) | Φ, H1) =
1∫

FOV
{bΦ(r) + ∆f(r)}s(r) dr

×

×
∫

FOV

pr(Â(j) | r)
{

bΦ(r) + ∆f(r)
}

s(r) dr.

The expressions above allow us to write

pr(Â | Φ, H1) =
τJ

J !
exp

(
−τ

∫

FOV

{
bΦ(r) + ∆f(r)

}
s(r) dr

)
×

×
J∏

j=1

∫

FOV

pr(Â(j) | r)
{

bΦ(r) + ∆f(r)
}

s(r) dr.
(4.42)
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Using (4.41) and (4.42), we can write an expression for ΛBKE(Â | Φ):

ΛBKE(Â | Φ) =
pr(Â | Φ, H1)

pr(Â | Φ, H0)
= exp

(
−τ

∫

FOV

∆f(r)s(r) dr

)
×

×
J∏

j=1

[
1 +

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫

FOV
pr(Â(j) | r)bΦ(r)s(r) dr

]
.

Application to a Simple Imaging System

As a concrete example, we consider again the imaging system of Figure 4.12 along

with the same assumptions we made in § 4.6.2, which we repeat below for convenience

pr(Â | r) = pr(R̂ | r) =
1

2πσ2
exp

(
−|R̂ − r|2

2σ2

)
,

bΦ(r) =
b0

2πr2
b

Kmax∑

k=1

βk exp

(
−|r − rk|2

2r2
b

)
,

∆f(r) =
bs

2πr2
s

exp

(
−|r|2

2r2
s

)
,

and s(r) = 1. We will further assume that the field of view is FOV = [a, b] × [c, d],

for a = c = −W/2 and b = d = W/2. For the problem at hand:

pr(Φ′ | Â , H0)

pr(Φ | Â , H0)
=

(pW 2)
K′

1

K ′
1!

exp

{
− b0τ

4

Kmax∑

k=1

β′
k

[
erf

(
b − x′

k√
2rb

)
− erf

(
a − x′

k√
2rb

)]
×

×
[
erf

(
d − y′

k√
2rb

)
− erf

(
c − y′

k√
2rb

)]}
J∏

j=1

Kmax∑

k=1

β′
k exp

(
−|R̂(j) − r′

k|2
2(σ2 + r2

b )

)
×

×
[

(pW 2)
K1

K1!

]−1

exp

{
b0τ

4

Kmax∑

k=1

βk

[
erf

(
b − xk√

2rb

)
− erf

(
a − xk√

2rb

)]
×

×
[
erf

(
d − yk√

2rb

)
− erf

(
c − yk√

2rb

)]} [
J∏

j=1

Kmax∑

k=1

βk exp

(
−|R̂(j) − rk|2

2(σ2 + r2
b )

)]−1

,

while the background-known-exactly (BKE) likelihood ratio takes the form

ΛBKE(Â | Φ) =
J∏

j=1




1 +

bs

2π(σ2 + r2
s)

exp

(
− |R̂(j)|2

2(σ2 + r2
s)

)

b0

2π(σ2 + r2
b )

Kmax∑

k=1

βk exp

(
−|R̂(j) − rk|2

2(σ2 + r2
b )

)



×
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× exp

{
−bsτ

4

[
erf

(
b√
2rs

)
− erf

(
a√
2rs

)][
erf

(
d√
2rs

)
− erf

(
c√
2rs

)]}
,

where we assumed a signal of the form given in (4.27).

Pseudocode for the generation of T samples Λ
(1)
|H0

, . . . , Λ
(T )
|H0

of Λ(Â ) for different

realizations of Â under the hypothesis H0 and for the MCMC estimation of Λ̂(Â ) is

summarized below:

t = 1
for r = 1 to R do

Generate Φ
(r)
true

for s = 1 to S do

Generate Â (r,s) from f = b
Φ

(r)
true

Initialize Φ(0)

for n = 1 to N do

Sample Φ′ from q(Φ′ | Φ(n))
Pacc = min{1, pr(Φ′ | Â (r,s),H0)q(Φ | Φ′)/pr(Φ | Â (r,s),H0)q(Φ

′ | Φ)}
Sample u from U ∼ U([0, 1])
if u < Pacc then

Φ(n) = Φ′

else

Φ(n) = Φ(n−1)

end if

end for

Λ
(t)
|H0

= 1
N

∑N
n=1 ΛBKE(Â (r,s) | Φ(n))

t = t + 1
end for

end for

In the pseudocode above, R random lumpy backgrounds b
Φ

(1)
true

, . . . , b
Φ

(R)
true

are gen-

erated by generating Φ
(1)
true, . . . ,Φ

(R)
true. For each b

Φ
(r)
true

, S samples Â (r,1), . . . , Â (r,S)

of Â are generated. From each Â (r,s), a Markov chain is constructed and samples

Φ(1), . . . ,Φ(N) are used to calculate Λ
(t)
|H0

according to (4.39). Index t goes from 1 to

T , where T = RS. Hence, the pseudocode above implements

〈Λ(Â )〉
Â |H0

≈ 1

T

T∑

t=1

Λ
(t)
|H0

≈ 1

RS

R∑

r=1

S∑

s=1

[
1

N

N∑

n=1

ΛBKE(Â (r,s) | Φ(n))

]

︸ ︷︷ ︸
use MCMC

.
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Realizations of Λ(Â ) under the hypothesis H1 could, in theory, be calculated

using (4.39) and the same code with the only difference that, this time, list-mode

data Â (r,s) would be generated assuming f = b
Φ

(r)
true

+ ∆f , in which ∆f is the signal

to detect. However, it has been remarked [299] that numerical inaccuracies might

arise if the same MCMC code we provided above is used to generate realizations of

Λ(Â ) under the hypothesis H1. Indeed, in the code above, acceptance probabilities

are calculated using conditional densities of the form pr(Φ | Â (r,s), H0) and, if the

same code is used to generate realizations of Λ(Â ) under the hypothesis H1, such

densities will be evaluated for list-mode data Â (r,s) calculate assuming the signal

present. A more numerically accurate algorithm will use pr(Φ | Â (r,s), H1) instead,

along with the necessary modifications to the code above.

By the same process that led to (4.39), we can show that [299]

1

Λ(Â )
=

∫

∞

1

ΛBKE(Â | Φ)
pr(Φ | Â , H1) dΦ, (4.43)

so that

Λ̂(Â ) =

[
1

N

N∑

n=1

1

ΛBKE(Â | Φ(n))

]−1

,

where Φ(1), . . . ,Φ(N) are samples distributed according to pr(Φ | Â , H1) and they are

obtained via MCMC methods. The acceptance probability now assumes the form:

Pacc(Φ
′,Φ; Â , H1) = min

{
1,

pr(Φ′ | Â , H1)q(Φ | Φ′)

pr(Φ | Â , H1)q(Φ′ | Φ)

}
, (4.44)

where, for the case of the signal given in (4.27):

pr(Φ′ | Â , H1)

pr(Φ | Â , H1)
=

(pW 2)
K′

1

K ′
1!

[
(pW 2)

K1

K1!

]−1

×

×exp

{
−b0τ

4

Kmax∑

k=1

β′
k

[
erf

(
b − x′

k√
2rb

)
− erf

(
a − x′

k√
2rb

)][
erf

(
d − y′

k√
2rb

)
− erf

(
c − y′

k√
2rb

)] }
×

×
J∏

j=1

[
b0

σ2 + r2
b

Kmax∑

k=1

β′
k exp

(
−|R̂(j) − r′

k|2
2(σ2 + r2

b )

)
+

bs

σ2 + r2
s

exp

(
|R̂(j)|2

2(σ2 + r2
s)

)]
×
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×exp

{
b0τ

4

Kmax∑

k=1

βk

[
erf

(
b − xk√

2rb

)
− erf

(
a − xk√

2rb

)][
erf

(
d − yk√

2rb

)
− erf

(
c − yk√

2rb

)]}
×

×
{

J∏

j=1

[
b0

σ2 + r2
b

Kmax∑

k=1

βk exp

(
−|R̂(j) − rk|2

2(σ2 + r2
b )

)
+

bs

σ2 + r2
s

exp

(
− |R̂(j)|2

2(σ2 + r2
s)

)]}−1

.

Consistency Checks of MCMC Simulation

The particular mathematical form of the likelihood ratio Λ(Â ) makes it possible

to derive many relevant theoretical results in the form of equalities and inequalities.

These results, in turn, can be used to test any algorithm for the generation of samples

of Λ(Â ). We begin by defining moments Mk(β) of the random variable Λ(Â ) under

the hypothesis Hk [65]

Mk(β) = 〈eλβ〉Hk
= 〈Λβ〉Hk

=

∫

∞
Λβ(Â )pr(Â | Hk) dÂ , (4.45)

in which β can also be a complex number [65]. By recalling that

Λ(Â ) =
pr(Â | H1)

pr(Â | H0)
, (4.46)

we can easily relate moments of λ(Â ) under H0 to its moments under H1 [65]

M0(β + 1) =

∫

∞
Λβ+1(Â )pr(Â | H0) dÂ =

=

∫

∞
Λβ(Â )pr(Â | H1) dÂ = 〈Λβ〉H1 = M1(β).

Special cases are obtained for β = 0 and β = −1 [65, 300]:

1 = 〈Λ0〉H1 = M1(0) = M0(1) = 〈Λ〉H0 , (4.47a)

1 = 〈Λ0〉H0 = M0(0) = M1(−1) = 〈 1
Λ
〉H1 . (4.47b)

The two identities above already give two consistency checks on samples Λ
(1)
|H0

, . . . , Λ
(T )
|H0

and Λ
(1)
|H1

, . . . , Λ
(T )
|H1

1

T

T∑

t=1

Λ
(t)
|H0

≈ 1,
1

T

T∑

t=1

1

Λ
(t)
|H1

≈ 1.
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Two more consistency checks are obtained by taking the second derivative of M0(β)

and M1(β) [300]
d2Mk(β)

dβ2
= 〈λ2Λβ〉Hk

> 0.

Moments Mk(β) can be written in terms of the so-called “likelihood generating

function” G(β) [65]:

〈Λβ〉H0 = M0(β) = exp
[
β(β − 1)G

(
β − 1

2

)]
,

〈Λβ〉H1 = M1(β) = exp
[
β(β + 1)G

(
β + 1

2

)]
,

(4.48)

where [65]

G(β) =
ln M0

(
β + 1

2

)
(
β − 1

2

) (
β + 1

2

) =
ln M1

(
β − 1

2

)
(
β − 1

2

) (
β + 1

2

) , β 6= ±1
2
.

The expression above does not allow to calculate G(±1
2
). However, we can consider

lim
β→ 1

2

G(β) = lim
β→0

G
(
β + 1

2

)
= lim

β→0

ln M1(β)

β(β + 1)
,

and

lim
β→− 1

2

G(β) = lim
β→0

G
(
β − 1

2

)
= lim

β→0

ln M0(β)

β(β − 1)
.

By application of l’Hôpital’s rule:

lim
β→ 1

2

G(β) = lim
β→0

∫
∞ λ(Â )Λβ(Â )pr(Â | H1) dÂ

2β + 1
= 〈λ〉H1 ,

and

lim
β→− 1

2

G(β) = lim
β→0

∫
∞ λ(Â )Λβ(Â )pr(Â | H0) dÂ

2β − 1
= −〈λ〉H0 ,

respectively. We can thus extend G(β) to a continuous function defined on the real

line by setting [65]

G
(
−1

2

)
= −〈λ〉H0 , G

(
1
2

)
= 〈λ〉H1 . (4.49)

In a similar way

G′ (−1
2

)
= −1

2
σ2

λ|H0
− 〈λ〉H0 , G′ (1

2

)
= 1

2
σ2

λ|H1
− 〈λ〉H1 ,
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where G′(β) denotes the first derivative of the function G(β). We have now all the

ingredients needed to write an exact expression for SNR2
λ in terms of G(β). By (2.4):

SNR2
λ =

[
G

(
1
2

)
+ G

(
−1

2

) ]2

G
(

1
2

)
+ G

(
−1

2

)
+ G′

(
1
2

)
− G′

(
−1

2

) .

If G′(1
2
) ≈ G′(−1

2
) (or if G′(1

2
) and G′(−1

2
) are both very small when compared to

G(1
2
) and G(−1

2
)), an excellent approximation is [65,301]

SNR2
λ ≈ 2G(0) = −8 ln M0

(
1
2

)
= −8 ln

〈√
Λ

〉
H0

. (4.50)

By Jensen’s inequality [185] applied to (4.48) and using (4.49):

(
β − 1

2

)
G(β) > −G

(
−1

2

)
, β > −1

2
,

(
β + 1

2

)
G(β) > G

(
1
2

)
, β > 1

2
.

Similarly [65] and from (4.45):

ln Mk(β) > β〈λ〉Hk
, β > 0.

As special cases

〈λ〉H0 6 ln M0(1) = ln 1 = 0, (4.51a)

〈λ〉H1 6 ln M1(1) = ln e2G(3/2) = 2G
(

3
2

)
. (4.51b)

Calculation of the AUC from realizations of Λ(Â ) (or λ(Â )) under hypotheses

H0 and H1 can be performed in a variety of different ways. We will use Roman

numeral subscripts to denote values of the AUC calculate via different relationship,

as in AUCI, . . . , AUCVI.

By definition, the AUC is given by the area under the ROC curve [65,69,74,85]

AUCI =

∫ 1

0

TPF(FPF) dFPF,

where

TPF(Λ) =

∫ ∞

Λ

pr(Λ′ | H1) dΛ′,
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FPF(Λ) =

∫ ∞

Λ

pr(Λ′ | H0) dΛ′.

Quantities TPF(Λ) and FPF(Λ) above are estimated from the sets of realizations

Λ
(1)
|H0

, . . . , Λ
(T )
|H0

and Λ
(1)
|H1

, . . . , Λ
(T )
|H1

. An alternative method for the calculation of AUC

uses the fact that, for the likelihood ratio [69, 301,302]

AUCII = 1 − 1

2

∫ ∞

0

[
FPF(Λ)

]2
dΛ.

Further elaboration on the identity above gives an expression for the AUC in terms

of M0(β) [65, 300]:

AUCIII = 1 − 1

2π

∫ ∞

0

∣∣∣M0

(
1
2

+ iα
) ∣∣∣

2 1

α2 + 1
4

dα. (4.52)

The integrand in the expression above goes to zero as α → ∞ [300]. The identity

above can also be used to derive a lower bound on the AUC [65]

∣∣M0

(
1
2

+ iα
) ∣∣ =

∣∣〈Λ1/2Λiα〉H0

∣∣ 6 〈|Λ1/2Λiα|〉H0 = 〈Λ1/2|Λiα|〉H0 =

= 〈Λ1/2〉H0 = M0

(
1
2

)
= exp

[
−1

4
G(0)

]
,

which implies [65]

AUC > 1 − 1
2
exp

[
−1

2
G(0)

]
.

The AUC can also be calculated via a two-alternative forced-choice (2AFC) study [65,

74, 92, 114]. Indeed, by recalling that the AUC is also the probability of correct

classification in a 2AFC experiment [74,92]

AUC = Pr
(
Λ|H1 > Λ|H0

)
,

and so we can estimate the AUC from realizations Λ
(1)
|H0

, . . . , Λ
(T )
|H0

and Λ
(1)
|H1

, . . . , Λ
(T )
|H1

as [303,304]

AUCIV =

∣∣{(t0, t1) such that Λ
(t0)
|H0

6 Λ
(t1)
|H1

for t0 = 1, . . . , T and t1 = 1, . . . , T}
∣∣

T 2
=



152

=
1

T 2

T∑

t0=1

T∑

t1=1

step
(
Λ

(t1)
|H1

− Λ
(t0)
|H0

)
,

where

step(x) =

{
1 if x > 0,
0 otherwise.

Finally, we can use SNR2
λ ≈ 2G(0) and (2.5) to write [65]

AUCV =
1

2
+

1

2
erf

(√
2G(0)

2

)
,

of which a more accurate version is [65]

AUCVI =
1

2
+

1

2
erf

(√
2G(0)

2

)
− G′′(0)

16
√

2π
exp

(
−G(0)

2

) [
G(0)

]−3/2,

in which G′′(0) is the second derivative of G(β) evaluated at β = 0:

G′′(0) = 4




(
〈λ
√

Λ〉H0

M0

(
1
2

)
)2

− 〈λ2
√

Λ〉H0

M0

(
1
2

) + 2G(0)


 , (4.53)

In theory, quantities AUCI, . . . , AUCIV all represent the same numerical value [65],

as they all are exact expressions for the same quantity—namely, the AUC for the

likelihood ratio test statistic—but calculated in different ways. On the other hand,

AUCV and AUCVI represent approximate quantities, and become exact expression

for the case of normally distributed log-likelihoods [65].

A few bounds on the AUC, which we will list without providing any proof, can

be summarized as [302]:

1 − 1
2
exp

[
−1

2
G(0)

]
6 AUC 6 1 − 1

2
exp

[
−1

2
G(0) −

√
G(0) − 1

8
G′′(0)

]
, (4.54a)

1− 1
2
exp

[
−1

4
G(0)

]
6 AUC 6 1− 1

2
exp

[
−1

2
G(0) −

√
2G(0) + 1

16

[
G′(0)

]2 − 1
4
G′′(0)

]
,

(4.54b)

and [305]

1 − Pe 6 AUC 6 1 − 2P 2
e , (4.54c)
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where Pe is the minimum error probability for equally likely hypotheses [302,305]:

Pe = 1
2
min
Λ>0

{
FPF(Λ) + FNF(Λ)

}
=

= 1
2
min
Λ>0

{
1 + FPF(Λ) − TPF(Λ)

}
=

= 1
2

[
1 + FPF(1) − TPF(1)

]
.

With some simple but tedious calculations, the argument of the square root in (4.54a)

turns out to be

G(0) − 1
8
G′′(0) = 1

2

[
〈λ2〉H1/2

−
(
〈λ〉H1/2

)2
]

= 1
2
σ2

λ|H1/2
,

where we have denoted as 〈. . .〉Hβ
the expectation with respect the probability density

function [306,307]

pr(Â | Hβ) =
pr1−β(Â | H0) prβ(Â | H1)

M0(β)
.

We remark that pr(Â | Hβ) above is indeed a probability density function because

it is a continuous and non-negative function and it satisfies
∫
∞ pr(Â | Hβ) dÂ = 1:

∫

∞
pr(Â | Hβ) dÂ =

1

M0(β)

∫

∞
pr1−β(Â | H0) prβ(Â | H1) dÂ =

=

∫
∞ pr1−β(Â | H0) prβ(Â | H1) dÂ

∫
∞ pr1−β(Â | H0) prβ(Â | H1) dÂ

= 1,

where we have used (4.45) and (4.46) to get

M0(β) =

∫

∞

[
pr(Â | H1)

pr(Â | H0)

]β

pr(Â | H0) dÂ =

=

∫

∞
pr1−β(Â | H0) prβ(Â | H1) dÂ .

The argument of the square root in (4.54b) simplifies to

2G(0) + 1
16

[
G′(0)

]2 − 1
4
G′′(0) = 〈λ2〉H1/2

.
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Simulation Results

Armed with the theoretical background we just developed, we wrote and ran simula-

tion code to calculate realizations Λ
(1)
|H0

, . . . , Λ
(T )
|H0

and Λ
(1)
|H1

, . . . , Λ
(T )
|H1

of the likelihood

ratio via MCMC sampling (§ 4.5.2). We considered the same cases we had in the

calculation of SNR2
Hot (see § 4.6.2 and Figure 4.14). In other words, we run our code

three times but with rs = 4.50 mm, rs = 5.00 mm, and rs = 5.50 mm, respectively.

Other relevant parameters are listed in Table 4.2.

For each value of rs, the exposure time τ was varied between 0.002 s to 0.040 s.

Exposure time and mean total number J(f , τ) of attributes in the list Â are propor-

tionally related with each other as follows:

J(f , τ) = τ

∫

FOV

f(r)s(r) dr,

where f(r) is the object being imaged. Hence, the average size of the list Â increases

linearly with the exposure time τ . Simulation parameters were tweaked in a way that

the mean acceptance probability Pacc as calculated during execution of the MCMC

code was neither too small not too large. Indeed, a small value of the acceptance

probability means that the chain is not exploring much of the space and that just a

few points will represent much of the integration space. Conversely, a large value of the

acceptance probability can imply that the proposals were made too close to the current

value, so that the ratio of densities in the acceptance function is close to 1 (see (4.40)

and (4.44)). In practice, the expected total number of flips Kmaxη performed to

calculate Φ′ from Φ was adjusted so that the mean acceptance probability was around

35 %, as shown in Table 4.3.

Samples Λ
(1)
|H0

, . . . , Λ
(T )
|H0

and Λ
(1)
|H1

, . . . , Λ
(T )
|H1

can be checked for consistency using

some of the results derived above. In particular, Table 4.4 shows the results of con-

sistency checks (4.47) and (4.51) for the rs = 4.50 mm case. Similarly, Table 4.5

corresponds to the rs = 5.00 mm case and Table 4.6 to the rs = 5.50 mm case. In

these tables, a checkmark symbol (“X”) indicates whether the consistency check was
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Parameter Value

Number of lumpy background images (R) 100

Number of lists Â per image (S) 50
Chain length (N) 10000
Signal width (rs) 4.50, 5.00, or 5.50 mm
Signal amplitude (bs) 1000 s−1

Lump width (rb) 5.00 mm
Lump amplitude (b0) 1000 s−1

Mean lump density (p) 20000 m−2

Mean number of lumps (pW 2) 81.92
Maximum number of lumps (Kmax) 1000
FOV size (W × W ) 64 mm × 64 mm

Uncertainty in estimating R̂ (σ) 1.00 mm
Acquisition time (τ) See Table 4.3
Expected number of flips (Kmaxη) See Table 4.3
Perturbation standard deviation (σpert.) 2.50 mm
Number of bootstrap estimates for the cal-
culation of AUC

512

Number of bootstrap estimates for the cal-
culation of SNR2

λ

8192

Table 4.2. Parameters used in the MCMC simulations
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rs = 4.50 mm rs = 5.00 mm rs = 5.50 mm
τ [s] Kmaxη %H0

%H1
%H0

%H1
%H0

%H1

0.002 22.00 34.24 34.25 34.24 34.29 34.24 34.33
0.004 11.00 35.33 35.54 35.33 35.56 35.33 35.57
0.006 7.80 34.76 34.99 34.76 35.01 34.76 35.02
0.008 5.95 35.35 35.61 35.29 35.53 35.29 35.54
0.010 5.10 34.40 34.67 34.40 34.66 34.40 34.67
0.012 4.20 35.63 35.86 35.63 35.87 35.63 35.88
0.014 3.90 34.40 34.64 34.40 34.65 34.40 34.65
0.016 3.40 35.35 35.57 35.35 35.57 35.35 35.57
0.018 3.05 35.90 36.14 35.90 36.13 35.90 36.12
0.020 2.89 35.44 35.64 35.35 35.54 35.35 35.55
0.022 2.70 35.36 35.58 35.36 35.57 35.36 35.57
0.024 2.50 35.80 36.00 35.80 36.01 35.80 36.00
0.026 2.38 35.66 35.84 35.66 35.85 35.66 35.86
0.028 2.28 35.60 35.78 35.50 35.69 35.50 35.69
0.030 2.19 35.37 35.54 35.37 35.54 35.37 35.54
0.032 2.11 35.33 35.50 35.24 35.42 35.24 35.42
0.034 2.04 35.21 35.37 35.12 35.27 35.12 35.28
0.036 1.95 35.44 35.61 35.34 35.50 35.34 35.50
0.038 1.87 35.55 35.72 35.55 35.71 35.55 35.71
0.040 1.81 35.57 35.73 35.57 35.72 35.57 35.74

Table 4.3. Exposure times (τ), expected number of flips (Kmaxη) and acceptance
probabilities (%H0 , %H1) for our MCMC simulation code for the rs = 4.50 mm,
rs = 5.00 mm, and rs = 5.50 mm cases
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passed, whereas an “✗ ” mark denotes that the data failed the test. For consistency

checks (4.47), we assumed a ±0.05 tolerance within the expected value. A tolerance

of a few hundredths was also used in [300]. For consistency checks (4.51), we re-

quired the data to satisfy the inequality exactly. Some plots of M0(β) are reported in

Figure 4.16. In general, we see that our MCMC code fails consistency checks (4.47)

for small values of the signal width rs and for calculation of samples of Λ under hy-

pothesis H1. The reason for this is likely to rely on the estimation of Λ(Â ) via the

harmonic mean relation in (4.43).

Values of SNR2
λ can be calculated from the samples of the likelihood ratio, as (4.50)

shows. Results for the rs = 4.50 mm, rs = 5.00 mm, and rs = 5.50 mm cases are

reported in Table 4.7, along with the values of the standard deviations estimated

using a bootstrapping procedure (see Appendix B). Later in this section, we will

comment on the behavior of SNR2
λ as a function of the exposure time τ .

Samples Λ
(1)
|H0

, . . . , Λ
(T )
|H0

and Λ
(1)
|H1

, . . . , Λ
(T )
|H1

also allow to estimate the AUC for the

signal detection task. We have discussed above six different ways, AUCI, . . . , AUCVI,

to calculate the AUC from the samples of Λ under hypotheses H0 and H1. Table 4.8

reports the values of the AUC for the rs = 4.50 mm case, Table 4.9 for the rs =

5.00 mm case, and Table 4.10 for the rs = 5.50 mm case. Some plots of ROC

curves (which were used to calculate AUCI) are shown in Figure 4.17, while plots

of the integrand that appears in (4.52) are reported in Figure 4.18. The plots in

Figure 4.18 show that, indeed, the quantity |M0(
1
2

+ iα)|2 1
α2+ 1

4

goes to zero very

rapidly as α → ∞ and that numerical integration for α ∈ [0, 5]—instead of the

whole set of positive real numbers—would give an excellent approximation for the

calculation of AUCIII in (4.52).

Consistency checks on the values of AUCI, . . . , AUCVI have been performed as

well. For the rs = 4.50 mm case, Table 4.11 reports consistency results for the

bounds in (4.54a); Table 4.12 for the bounds in (4.54b), and Table 4.13 for the bounds

in (4.54c). Similarly, Table 4.14 through Table 4.16 refer to the rs = 5.00 mm case
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and Table 4.17 through Table 4.19 to the rs = 5.50 mm case. As before, appropriate

marks (“X” or “✗ ”) indicates whether or not bounds are satisfied. In general, we

see that the estimated values of the AUC almost always satisfy theoretical bounds.

Exceptions are for AUCII (calculation of AUC as integral of the ROC curve) and for

AUCVI (higher order asymptotic expansion of AUC). The latter is probably due to

numerical inaccuracies in estimation G′′(0) as in (4.53).

Similarly to SNR2
λ, AUCI, . . . , AUCIV are estimated from realizations of the like-

lihood, so they are random quantities. Therefore, it makes sense to pair such es-

timates with their standard deviations. Standard deviations sAUCI
, . . . , sAUCIV

for

AUCI, . . . , AUCIV have been calculated as byproduct of the bootstrapping procedure

used to calculate the AUCs (see Appendix B), and have been reported in Table 4.20

for the rs = 4.50 mm case, in Table 4.21 for the rs = 5.00 mm case, and in Table 4.22

for the rs = 5.50 mm case. An approximate theoretical expression for the variance of

the AUC estimated via a 2AFC experiment has been reported in [92,308]

σ2
2AFC =

=
1

T0T1

{
Az(1 − Az) + (T1 − 1)Az

[
1

2 − Az

− Az

]
+ (T1 − 1)A2

z

[
2

1 + Az

− 1

]}
,

in which T0 and T1 denotes, respectively, the number of samples of Λ under the

hypotheses H0 and H1, and we set Az = AUCIV for convenience. In our case, T0 =

T1 = T = RS = 5000, as reported in Table 4.2. The value of σ2
2AFC does depend on

the underlining distribution of Λ under H0 and H1, but it has been found that σ2
2AFC

is almost entirely determined by Az [92]. The values of σ2AFC we reported in the last

column of Table 4.20 through Table 4.22 are comparable to the corresponding values

of sAUCIV
.

Other methods for the calculation of the standard deviation of AUC have been

derived. For example, in [309, 310], the authors use the multiple-reader, multiple-

case (MRMC) paradigm [311] and the Wilcoxon statistic [303,304] as an unbiased es-
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timator of AUCIV, to derive an exact expression for the standard deviation of AUCIV:

σ2
AUCIV

=
α1

T0

+
α2

T1

+
α3

T0T1

+
α4

Tr

+
α5

TrT0

+
α6

TrT1

+
α7

TrT0T1

,

in which Tr denotes the number of different “readers” (a reader could be, for example,

one of the radiologists examining images). Expressions for α1, . . . , α7 are derived

in [309] and practical techniques for their evaluation are discussed in [310,312].

Finally, values of d2
A have been calculated from AUCI, . . . , AUCVI according to (2.6).

The inverse x = erf−1(y) of the erf(x) function that appears in (2.6) was first approx-

imated according to [313]

x̃ = sgn(y)

√√√√
√(

2

πa
+

ln(1 − y2)

2

)2

− ln(1 − y2)

a
−

(
2

πa
+

ln(1 − y2)

2

)
,

where

a =
8(π − 3)

3π(4 − π)
≈ 0.14001228,

and

sgn(y) =





+1 if y > 0,
0 if y = 0,
−1 if y < 0.

The solution x̃ to erf(x) = y was further refined by performing one iteration of the

Newton’s method [154]:

x = x̃ − erf (x̃) − y
2√
π

exp (−x̃2)
.

Table 4.23 reports values of d2
A for the rs = 4.50 mm case, Table 4.24 for the rs =

5.00 mm case and, finally, Table 4.25 for the rs = 5.50 mm case. Values in these

tables are found to be in accordance with those reported in Table 4.7.
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τ [s] 〈Λ〉H0
= 1? 〈 1

Λ
〉H1

= 1? 〈λ〉H0
666 0? 〈λ〉H1

666 2G
(

3
2

)
?

0.002 0.9930 ≈ 1 X 0.9803 ≈ 1 X −0.1227 6 0 X 0.1777 6 0.2050 X

0.004 0.9961 ≈ 1 X 0.9836 ≈ 1 X −0.1955 6 0 X 0.2258 6 0.3311 X

0.006 1.0026 ≈ 1 X 0.9565 ≈ 1 X −0.2487 6 0 X 0.2965 6 0.4287 X

0.008 1.0195 ≈ 1 X 1.0217 ≈ 1 X −0.3080 6 0 X 0.2909 6 0.5621 X

0.010 1.0133 ≈ 1 X 0.9760 ≈ 1 X −0.3290 6 0 X 0.2970 6 0.5804 X

0.012 1.0190 ≈ 1 X 0.9697 ≈ 1 X −0.3714 6 0 X 0.3277 6 0.6916 X

0.014 1.0127 ≈ 1 X 0.9668 ≈ 1 X −0.4187 6 0 X 0.3493 6 0.7557 X

0.016 1.0018 ≈ 1 X 0.9960 ≈ 1 X −0.4727 6 0 X 0.3781 6 0.7706 X

0.018 1.0100 ≈ 1 X 1.0149 ≈ 1 X −0.5068 6 0 X 0.4066 6 0.8297 X

0.020 1.0187 ≈ 1 X 1.0689 ≈ 1 ✗ −0.6285 6 0 X 0.3816 6 1.5845 X

0.022 1.0117 ≈ 1 X 0.9672 ≈ 1 X −0.5940 6 0 X 0.4407 6 1.0606 X

0.024 1.0194 ≈ 1 X 0.9675 ≈ 1 X −0.6540 6 0 X 0.4735 6 1.4835 X

0.026 1.0160 ≈ 1 X 0.9744 ≈ 1 X −0.6929 6 0 X 0.4922 6 1.6111 X

0.028 0.9983 ≈ 1 X 1.1215 ≈ 1 ✗ −0.8660 6 0 X 0.4565 6 1.4346 X

0.030 1.0046 ≈ 1 X 0.9634 ≈ 1 X −0.8098 6 0 X 0.5530 6 1.2537 X

0.032 0.9894 ≈ 1 X 1.1090 ≈ 1 ✗ −0.9923 6 0 X 0.5151 6 1.7561 X

0.034 1.0085 ≈ 1 X 1.0460 ≈ 1 X −1.0441 6 0 X 0.5514 6 1.9427 X

0.036 0.9853 ≈ 1 X 1.1979 ≈ 1 ✗ −1.1292 6 0 X 0.5635 6 2.1728 X

0.038 0.9763 ≈ 1 X 0.9708 ≈ 1 X −1.0629 6 0 X 0.6786 6 1.6042 X

0.040 0.9645 ≈ 1 X 1.0007 ≈ 1 X −1.1203 6 0 X 0.7023 6 1.7292 X

Table 4.4. Results of consistency checks for the rs = 4.50 mm case
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τ [s] 〈Λ〉H0
= 1? 〈 1

Λ
〉H1

= 1? 〈λ〉H0
666 0? 〈λ〉H1

666 2G
(

3
2

)
?

0.002 0.9940 ≈ 1 X 0.9782 ≈ 1 X −0.0975 6 0 X 0.1435 6 0.1595 X

0.004 0.9958 ≈ 1 X 0.9844 ≈ 1 X −0.1502 6 0 X 0.1710 6 0.2480 X

0.006 1.0007 ≈ 1 X 0.9595 ≈ 1 X −0.1864 6 0 X 0.2239 6 0.3172 X

0.008 1.0036 ≈ 1 X 0.9473 ≈ 1 ✗ −0.2115 6 0 X 0.2547 6 0.3636 X

0.010 1.0106 ≈ 1 X 0.9799 ≈ 1 X −0.2362 6 0 X 0.2216 6 0.4230 X

0.012 1.0149 ≈ 1 X 0.9776 ≈ 1 X −0.2630 6 0 X 0.2385 6 0.4891 X

0.014 1.0101 ≈ 1 X 0.9709 ≈ 1 X −0.2947 6 0 X 0.2584 6 0.5284 X

0.016 1.0017 ≈ 1 X 1.0007 ≈ 1 X −0.3315 6 0 X 0.2657 6 0.5391 X

0.018 1.0082 ≈ 1 X 1.0175 ≈ 1 X −0.3526 6 0 X 0.2818 6 0.5859 X

0.020 1.0293 ≈ 1 X 0.9969 ≈ 1 X −0.3753 6 0 X 0.3035 6 0.7948 X

0.022 1.0101 ≈ 1 X 0.9862 ≈ 1 X −0.4080 6 0 X 0.3115 6 0.7054 X

0.024 1.0128 ≈ 1 X 0.9702 ≈ 1 X −0.4504 6 0 X 0.3382 6 0.9276 X

0.026 1.0178 ≈ 1 X 0.9870 ≈ 1 X −0.4740 6 0 X 0.3456 6 1.1615 X

0.028 1.0135 ≈ 1 X 1.0072 ≈ 1 X −0.5117 6 0 X 0.3677 6 0.9724 X

0.030 1.0069 ≈ 1 X 0.9509 ≈ 1 X −0.5558 6 0 X 0.3923 6 0.8719 X

0.032 1.0093 ≈ 1 X 0.9759 ≈ 1 X −0.5986 6 0 X 0.4067 6 1.5004 X

0.034 1.0098 ≈ 1 X 0.9949 ≈ 1 X −0.6473 6 0 X 0.4078 6 1.5367 X

0.036 1.0373 ≈ 1 X 0.9570 ≈ 1 X −0.6732 6 0 X 0.4591 6 1.6601 X

0.038 0.9898 ≈ 1 X 0.9924 ≈ 1 X −0.7347 6 0 X 0.4574 6 1.1558 X

0.040 0.9854 ≈ 1 X 1.0331 ≈ 1 X −0.7742 6 0 X 0.4784 6 1.3200 X

Table 4.5. Results of consistency checks for the rs = 5.00 mm case
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τ [s] 〈Λ〉H0
= 1? 〈 1

Λ
〉H1

= 1? 〈λ〉H0
666 0? 〈λ〉H1

666 2G
(

3
2

)
?

0.002 0.9949 ≈ 1 X 0.9773 ≈ 1 X −0.0787 6 0 X 0.1180 6 0.1270 X

0.004 0.9959 ≈ 1 X 0.9822 ≈ 1 X −0.1176 6 0 X 0.1371 6 0.1916 X

0.006 0.9997 ≈ 1 X 0.9596 ≈ 1 X −0.1427 6 0 X 0.1799 6 0.2413 X

0.008 1.0024 ≈ 1 X 0.9532 ≈ 1 X −0.1583 6 0 X 0.1975 6 0.2731 X

0.010 1.0086 ≈ 1 X 0.9863 ≈ 1 X −0.1736 6 0 X 0.1633 6 0.3167 X

0.012 1.0119 ≈ 1 X 0.9861 ≈ 1 X −0.1907 6 0 X 0.1748 6 0.3573 X

0.014 1.0078 ≈ 1 X 0.9776 ≈ 1 X −0.2125 6 0 X 0.1904 6 0.3754 X

0.016 1.0014 ≈ 1 X 0.9940 ≈ 1 X −0.2380 6 0 X 0.1977 6 0.3861 X

0.018 1.0063 ≈ 1 X 1.0070 ≈ 1 X −0.2511 6 0 X 0.2125 6 0.4222 X

0.020 1.0236 ≈ 1 X 0.9770 ≈ 1 X −0.2647 6 0 X 0.2257 6 0.5949 X

0.022 1.0095 ≈ 1 X 0.9753 ≈ 1 X −0.2865 6 0 X 0.2329 6 0.4942 X

0.024 1.0095 ≈ 1 X 0.9666 ≈ 1 X −0.3167 6 0 X 0.2479 6 0.6020 X

0.026 1.0158 ≈ 1 X 0.9855 ≈ 1 X −0.3309 6 0 X 0.2499 6 0.7846 X

0.028 1.0126 ≈ 1 X 0.9978 ≈ 1 X −0.3570 6 0 X 0.2713 6 0.6657 X

0.030 1.0083 ≈ 1 X 0.9835 ≈ 1 X −0.3891 6 0 X 0.2765 6 0.6207 X

0.032 1.0086 ≈ 1 X 0.9599 ≈ 1 X −0.4188 6 0 X 0.2982 6 1.0560 X

0.034 1.0086 ≈ 1 X 0.9768 ≈ 1 X −0.4524 6 0 X 0.3043 6 1.0216 X

0.036 1.0337 ≈ 1 X 0.9625 ≈ 1 X −0.4695 6 0 X 0.3203 6 1.2080 X

0.038 0.9972 ≈ 1 X 0.9797 ≈ 1 X −0.5168 6 0 X 0.3363 6 0.8380 X

0.040 0.9962 ≈ 1 X 0.9731 ≈ 1 X −0.5440 6 0 X 0.3535 6 0.9869 X

Table 4.6. Results of consistency checks for the rs = 5.50 mm case
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Figure 4.16. Plots of M0(β) for different values of τ . Theoretical results show that these plots should pass through
points (0, 1) and (1, 1)
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rs = 4.50 mm rs = 5.00 mm rs = 5.50 mm
τ [s] SNR2

λ sSNR2

λ
SNR2

λ sSNR2

λ
SNR2

λ sSNR2

λ

0.002 0.2563 0.0276 0.2040 0.0244 0.1651 0.0218
0.004 0.3856 0.0354 0.2984 0.0308 0.2354 0.0270
0.006 0.4673 0.0405 0.3529 0.0347 0.2727 0.0302
0.008 0.5320 0.0454 0.3910 0.0372 0.2943 0.0321
0.010 0.5848 0.0471 0.4188 0.0396 0.3078 0.0339
0.012 0.6486 0.0509 0.4568 0.0424 0.3303 0.0359
0.014 0.7422 0.0533 0.5214 0.0441 0.3765 0.0372
0.016 0.8535 0.0560 0.6004 0.0462 0.4335 0.0389
0.018 0.8965 0.0587 0.6244 0.0482 0.4467 0.0403
0.020 1.1110 0.0660 0.6231 0.0512 0.4372 0.0428
0.022 1.0492 0.0639 0.7165 0.0519 0.5005 0.0431
0.024 1.1588 0.0673 0.7946 0.0542 0.5568 0.0447
0.026 1.2377 0.0702 0.8348 0.0571 0.5760 0.0472
0.028 1.5309 0.0760 0.8934 0.0584 0.6179 0.0483
0.030 1.4156 0.0741 0.9648 0.0599 0.6707 0.0495
0.032 1.7633 0.0827 1.0771 0.0640 0.7487 0.0524
0.034 1.8381 0.0866 1.1702 0.0681 0.8134 0.0554
0.036 2.0474 0.0900 1.1558 0.0697 0.7912 0.0572
0.038 1.9219 0.0866 1.3213 0.0700 0.9251 0.0577
0.040 2.0524 0.0888 1.4081 0.0719 0.9824 0.0592

Table 4.7. Values of SNR2
λ calculated according to (4.50) and their estimated stan-

dard deviations for the rs = 4.50 mm, rs = 5.00 mm, and rs = 5.50 mm cases and
for different values of the exposure time τ
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τ [s] AUCI AUCII AUCIII AUCIV AUCV AUCVI

0.002 0.6424 0.7189 0.6348 0.6426 0.6401 0.5879
0.004 0.6722 0.7016 0.6667 0.6724 0.6702 0.6550
0.006 0.6987 0.6988 0.6853 0.6988 0.6861 0.6944
0.008 0.6991 0.7054 0.7015 0.6991 0.6963 0.7491
0.010 0.7119 0.7111 0.7077 0.7120 0.7064 0.7325
0.012 0.7225 0.7193 0.7177 0.7226 0.7162 0.7465
0.014 0.7310 0.7292 0.7284 0.7313 0.7294 0.7431
0.016 0.7422 0.7405 0.7399 0.7423 0.7438 0.7412
0.018 0.7490 0.7476 0.7473 0.7491 0.7489 0.7553
0.020 0.7459 0.7679 0.7681 0.7460 0.7714 0.7781
0.022 0.7618 0.7633 0.7629 0.7620 0.7659 0.7702
0.024 0.7741 0.7738 0.7736 0.7741 0.7772 0.7823
0.026 0.7795 0.7811 0.7809 0.7795 0.7847 0.7864
0.028 0.7739 0.8028 0.8032 0.7741 0.8084 0.8035
0.030 0.7949 0.7971 0.7969 0.7949 0.8003 0.7978
0.032 0.7914 0.8189 0.8191 0.7915 0.8260 0.8167
0.034 0.8005 0.8257 0.8261 0.8007 0.8307 0.8279
0.036 0.8090 0.8360 0.8364 0.8095 0.8435 0.8352
0.038 0.8276 0.8306 0.8304 0.8277 0.8369 0.8265
0.040 0.8325 0.8376 0.8373 0.8324 0.8449 0.8323

Table 4.8. Values of AUCI, . . . , AUCVI for the rs = 4.50 mm case
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τ [s] AUCI AUCII AUCIII AUCIV AUCV AUCVI

0.002 0.6298 0.7117 0.6200 0.6301 0.6256 0.5621
0.004 0.6530 0.6903 0.6466 0.6532 0.6508 0.6261
0.006 0.6772 0.6803 0.6616 0.6772 0.6634 0.6676
0.008 0.6919 0.6821 0.6703 0.6919 0.6715 0.6849
0.010 0.6836 0.6853 0.6785 0.6836 0.6772 0.7144
0.012 0.6898 0.6897 0.6863 0.6901 0.6844 0.7288
0.014 0.6998 0.6968 0.6950 0.7001 0.6958 0.7176
0.016 0.7056 0.7060 0.7048 0.7057 0.7088 0.7075
0.018 0.7109 0.7115 0.7108 0.7110 0.7124 0.7237
0.020 0.7159 0.7162 0.7154 0.7162 0.7123 0.7614
0.022 0.7221 0.7240 0.7233 0.7224 0.7257 0.7359
0.024 0.7359 0.7332 0.7328 0.7359 0.7363 0.7448
0.026 0.7377 0.7391 0.7387 0.7378 0.7414 0.7527
0.028 0.7463 0.7462 0.7460 0.7464 0.7482 0.7571
0.030 0.7534 0.7537 0.7535 0.7535 0.7568 0.7571
0.032 0.7637 0.7631 0.7630 0.7641 0.7688 0.7666
0.034 0.7674 0.7719 0.7718 0.7677 0.7780 0.7764
0.036 0.7773 0.7747 0.7745 0.7776 0.7766 0.7929
0.038 0.7802 0.7858 0.7855 0.7803 0.7923 0.7813
0.040 0.7893 0.7922 0.7919 0.7892 0.7998 0.7867

Table 4.9. Values of AUCI, . . . , AUCVI for the rs = 5.00 mm case



167

τ [s] AUCI AUCII AUCIII AUCIV AUCV AUCVI

0.002 0.6199 0.7084 0.6077 0.6202 0.6134 0.5391
0.004 0.6392 0.6837 0.6300 0.6394 0.6348 0.6005
0.006 0.6627 0.6674 0.6421 0.6627 0.6447 0.6440
0.008 0.6710 0.6657 0.6486 0.6709 0.6501 0.6650
0.010 0.6582 0.6673 0.6548 0.6584 0.6534 0.7045
0.012 0.6622 0.6675 0.6609 0.6625 0.6586 0.7212
0.014 0.6719 0.6716 0.6679 0.6723 0.6685 0.6995
0.016 0.6768 0.6786 0.6760 0.6770 0.6799 0.6807
0.018 0.6840 0.6823 0.6807 0.6842 0.6823 0.6993
0.020 0.6872 0.6860 0.6843 0.6875 0.6806 0.7545
0.022 0.6916 0.6924 0.6906 0.6918 0.6921 0.7135
0.024 0.7023 0.6995 0.6987 0.7024 0.7017 0.7165
0.026 0.7030 0.7041 0.7034 0.7030 0.7049 0.7296
0.028 0.7127 0.7099 0.7096 0.7129 0.7110 0.7301
0.030 0.7149 0.7168 0.7164 0.7152 0.7192 0.7265
0.032 0.7280 0.7249 0.7247 0.7283 0.7300 0.7321
0.034 0.7333 0.7330 0.7328 0.7338 0.7383 0.7412
0.036 0.7362 0.7351 0.7349 0.7363 0.7355 0.7692
0.038 0.7448 0.7460 0.7457 0.7448 0.7523 0.7426
0.040 0.7553 0.7517 0.7513 0.7551 0.7589 0.7475

Table 4.10. Values of AUCI, . . . , AUCVI for the rs = 5.50 mm case
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Figure 4.17. Plots of ROC curves for different values of τ and rs
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τ [s] AUC Check AUCI? AUCII? AUCIII? AUCIV? AUCV? AUCVI?

0.002 0.5312 6 AUC 6 0.6656 X ✗ X X X X

0.004 0.5463 6 AUC 6 0.7048 X X X X X X

0.006 0.5555 6 AUC 6 0.7271 X X X X X X

0.008 0.5619 6 AUC 6 0.7471 X X X X X ✗

0.010 0.5686 6 AUC 6 0.7541 X X X X X X

0.012 0.5754 6 AUC 6 0.7664 X X X X X X

0.014 0.5852 6 AUC 6 0.7777 X X X X X X

0.016 0.5967 6 AUC 6 0.7893 X X X X X X

0.018 0.6009 6 AUC 6 0.7974 X X X X X X

0.020 0.6208 6 AUC 6 0.8214 X X X X X X

0.022 0.6158 6 AUC 6 0.8149 X X X X X X

0.024 0.6263 6 AUC 6 0.8270 X X X X X X

0.026 0.6336 6 AUC 6 0.8336 X X X X X X

0.028 0.6582 6 AUC 6 0.8548 X X X X X X

0.030 0.6495 6 AUC 6 0.8478 X X X X X X

0.032 0.6782 6 AUC 6 0.8696 X X X X X X

0.034 0.6837 6 AUC 6 0.8770 X X X X X X

0.036 0.6995 6 AUC 6 0.8861 X X X X X X

0.038 0.6912 6 AUC 6 0.8792 X X X X X X

0.040 0.7013 6 AUC 6 0.8853 X X X X X X

Table 4.11. AUC checks for the rs = 4.50 mm case and bounds in (4.54a)
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τ [s] AUC Check AUCI? AUCII? AUCIII? AUCIV? AUCV? AUCVI?

0.002 0.5159 6 AUC 6 0.7093 X ✗ X X X X

0.004 0.5237 6 AUC 6 0.7529 X X X X X X

0.006 0.5286 6 AUC 6 0.7771 X X X X X X

0.008 0.5320 6 AUC 6 0.7987 X X X X X X

0.010 0.5356 6 AUC 6 0.8053 X X X X X X

0.012 0.5393 6 AUC 6 0.8177 X X X X X X

0.014 0.5446 6 AUC 6 0.8284 X X X X X X

0.016 0.5509 6 AUC 6 0.8391 X X X X X X

0.018 0.5533 6 AUC 6 0.8470 X X X X X X

0.020 0.5646 6 AUC 6 0.8693 X X X X X X

0.022 0.5617 6 AUC 6 0.8633 X X X X X X

0.024 0.5677 6 AUC 6 0.8743 X X X X X X

0.026 0.5720 6 AUC 6 0.8800 X X X X X X

0.028 0.5866 6 AUC 6 0.8982 X X X X X X

0.030 0.5814 6 AUC 6 0.8924 X X X X X X

0.032 0.5989 6 AUC 6 0.9103 X X X X X X

0.034 0.6023 6 AUC 6 0.9169 X X X X X X

0.036 0.6124 6 AUC 6 0.9238 X X X X X X

0.038 0.6071 6 AUC 6 0.9181 X X X X X X

0.040 0.6136 6 AUC 6 0.9228 X X X X X X

Table 4.12. AUC checks for the rs = 4.50 mm case and bounds in (4.54b)
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τ [s] AUC Check AUCI? AUCII? AUCIII? AUCIV? AUCV? AUCVI?

0.002 0.6022 6 AUC 6 0.6834 X ✗ X X X ✗

0.004 0.6219 6 AUC 6 0.7141 X X X X X X

0.006 0.6439 6 AUC 6 0.7463 X X X X X X

0.008 0.6459 6 AUC 6 0.7491 X X X X X X

0.010 0.6552 6 AUC 6 0.7623 X X X X X X

0.012 0.6682 6 AUC 6 0.7798 X X X X X X

0.014 0.6741 6 AUC 6 0.7876 X X X X X X

0.016 0.6763 6 AUC 6 0.7904 X X X X X X

0.018 0.6898 6 AUC 6 0.8075 X X X X X X

0.020 0.6800 6 AUC 6 0.7951 X X X X X X

0.022 0.6938 6 AUC 6 0.8124 X X X X X X

0.024 0.7065 6 AUC 6 0.8277 X X X X X X

0.026 0.7108 6 AUC 6 0.8327 X X X X X X

0.028 0.6990 6 AUC 6 0.8188 X X X X X X

0.030 0.7262 6 AUC 6 0.8501 X X X X X X

0.032 0.7184 6 AUC 6 0.8414 X X X X X X

0.034 0.7259 6 AUC 6 0.8497 X X X X X X

0.036 0.7372 6 AUC 6 0.8619 X X X X X X

0.038 0.7531 6 AUC 6 0.8781 X X X X X X

0.040 0.7580 6 AUC 6 0.8828 X X X X X X

Table 4.13. AUC checks for the rs = 4.50 mm case and bounds in (4.54c)
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τ [s] AUC Check AUCI? AUCII? AUCIII? AUCIV? AUCV? AUCVI?

0.002 0.5251 6 AUC 6 0.6481 X ✗ X X X X

0.004 0.5363 6 AUC 6 0.6812 X ✗ X X X X

0.006 0.5426 6 AUC 6 0.6998 X X X X X X

0.008 0.5471 6 AUC 6 0.7109 X X X X X X

0.010 0.5503 6 AUC 6 0.7212 X X X X X X

0.012 0.5545 6 AUC 6 0.7312 X X X X X X

0.014 0.5616 6 AUC 6 0.7409 X X X X X X

0.016 0.5702 6 AUC 6 0.7511 X X X X X X

0.018 0.5727 6 AUC 6 0.7580 X X X X X X

0.020 0.5727 6 AUC 6 0.7657 X X X X X X

0.022 0.5825 6 AUC 6 0.7728 X X X X X X

0.024 0.5906 6 AUC 6 0.7841 X X X X X X

0.026 0.5947 6 AUC 6 0.7905 X X X X X X

0.028 0.6003 6 AUC 6 0.7972 X X X X X X

0.030 0.6077 6 AUC 6 0.8041 X X X X X X

0.032 0.6184 6 AUC 6 0.8158 X X X X X X

0.034 0.6270 6 AUC 6 0.8255 X X X X X X

0.036 0.6258 6 AUC 6 0.8299 X X X X X X

0.038 0.6412 6 AUC 6 0.8366 X X X X X X

0.040 0.6490 6 AUC 6 0.8431 X X X X X X

Table 4.14. AUC checks for the rs = 5.00 mm case and bounds in (4.54a)
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τ [s] AUC Check AUCI? AUCII? AUCIII? AUCIV? AUCV? AUCVI?

0.002 0.5127 6 AUC 6 0.6893 X ✗ X X X X

0.004 0.5185 6 AUC 6 0.7271 X X X X X X

0.006 0.5218 6 AUC 6 0.7479 X X X X X X

0.008 0.5241 6 AUC 6 0.7599 X X X X X X

0.010 0.5258 6 AUC 6 0.7714 X X X X X X

0.012 0.5281 6 AUC 6 0.7820 X X X X X X

0.014 0.5318 6 AUC 6 0.7916 X X X X X X

0.016 0.5364 6 AUC 6 0.8016 X X X X X X

0.018 0.5378 6 AUC 6 0.8088 X X X X X X

0.020 0.5378 6 AUC 6 0.8175 X X X X X X

0.022 0.5431 6 AUC 6 0.8235 X X X X X X

0.024 0.5476 6 AUC 6 0.8344 X X X X X X

0.026 0.5499 6 AUC 6 0.8406 X X X X X X

0.028 0.5530 6 AUC 6 0.8470 X X X X X X

0.030 0.5571 6 AUC 6 0.8531 X X X X X X

0.032 0.5632 6 AUC 6 0.8638 X X X X X X

0.034 0.5682 6 AUC 6 0.8726 X X X X X X

0.036 0.5675 6 AUC 6 0.8775 X X X X X X

0.038 0.5764 6 AUC 6 0.8821 X X X X X X

0.040 0.5811 6 AUC 6 0.8876 X X X X X X

Table 4.15. AUC checks for the rs = 5.00 mm case and bounds in (4.54b)
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τ [s] AUC Check AUCI? AUCII? AUCIII? AUCIV? AUCV? AUCVI?

0.002 0.5922 6 AUC 6 0.6673 X ✗ X X X ✗

0.004 0.6063 6 AUC 6 0.6901 X ✗ X X X X

0.006 0.6259 6 AUC 6 0.7200 X X X X X X

0.008 0.6381 6 AUC 6 0.7380 X X X X X X

0.010 0.6358 6 AUC 6 0.7347 X X X X X X

0.012 0.6440 6 AUC 6 0.7465 X X X X X X

0.014 0.6517 6 AUC 6 0.7573 X X X X X X

0.016 0.6501 6 AUC 6 0.7551 X X X X X X

0.018 0.6602 6 AUC 6 0.7690 X X X X X X

0.020 0.6625 6 AUC 6 0.7722 X X X X X X

0.022 0.6633 6 AUC 6 0.7733 X X X X X X

0.024 0.6790 6 AUC 6 0.7939 X X X X X X

0.026 0.6774 6 AUC 6 0.7919 X X X X X X

0.028 0.6865 6 AUC 6 0.8034 X X X X X X

0.030 0.6916 6 AUC 6 0.8098 X X X X X X

0.032 0.6989 6 AUC 6 0.8187 X X X X X X

0.034 0.7011 6 AUC 6 0.8213 X X X X X X

0.036 0.7127 6 AUC 6 0.8349 X X X X X X

0.038 0.7123 6 AUC 6 0.8344 X X X X X X

0.040 0.7217 6 AUC 6 0.8451 X X X X X X

Table 4.16. AUC checks for the rs = 5.00 mm case and bounds in (4.54c)
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τ [s] AUC Check AUCI? AUCII? AUCIII? AUCIV? AUCV? AUCVI?

0.002 0.5204 6 AUC 6 0.6334 X ✗ X X X X

0.004 0.5289 6 AUC 6 0.6616 X ✗ X X X X

0.006 0.5334 6 AUC 6 0.6770 X X X X X X

0.008 0.5359 6 AUC 6 0.6854 X X X X X X

0.010 0.5375 6 AUC 6 0.6938 X X X X X ✗

0.012 0.5401 6 AUC 6 0.7017 X X X X X ✗

0.014 0.5454 6 AUC 6 0.7097 X X X X X X

0.016 0.5518 6 AUC 6 0.7185 X X X X X X

0.018 0.5533 6 AUC 6 0.7242 X X X X X X

0.020 0.5523 6 AUC 6 0.7311 X X X X X ✗

0.022 0.5593 6 AUC 6 0.7365 X X X X X X

0.024 0.5654 6 AUC 6 0.7464 X X X X X X

0.026 0.5676 6 AUC 6 0.7520 X X X X X X

0.028 0.5718 6 AUC 6 0.7580 X X X X X X

0.030 0.5777 6 AUC 6 0.7648 X X X X X X

0.032 0.5857 6 AUC 6 0.7755 X X X X X X

0.034 0.5922 6 AUC 6 0.7848 X X X X X X

0.036 0.5900 6 AUC 6 0.7893 X X X X X X

0.038 0.6037 6 AUC 6 0.7963 X X X X X X

0.040 0.6095 6 AUC 6 0.8026 X X X X X X

Table 4.17. AUC checks for the rs = 5.50 mm case and bounds in (4.54a)
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τ [s] AUC Check AUCI? AUCII? AUCIII? AUCIV? AUCV? AUCVI?

0.002 0.5103 6 AUC 6 0.6721 X ✗ X X X X

0.004 0.5147 6 AUC 6 0.7049 X X X X X X

0.006 0.5170 6 AUC 6 0.7226 X X X X X X

0.008 0.5183 6 AUC 6 0.7322 X X X X X X

0.010 0.5191 6 AUC 6 0.7419 X X X X X X

0.012 0.5205 6 AUC 6 0.7507 X X X X X X

0.014 0.5232 6 AUC 6 0.7590 X X X X X X

0.016 0.5266 6 AUC 6 0.7679 X X X X X X

0.018 0.5274 6 AUC 6 0.7742 X X X X X X

0.020 0.5269 6 AUC 6 0.7824 X X X X X X

0.022 0.5306 6 AUC 6 0.7871 X X X X X X

0.024 0.5339 6 AUC 6 0.7972 X X X X X X

0.026 0.5350 6 AUC 6 0.8031 X X X X X X

0.028 0.5373 6 AUC 6 0.8091 X X X X X X

0.030 0.5405 6 AUC 6 0.8155 X X X X X X

0.032 0.5449 6 AUC 6 0.8258 X X X X X X

0.034 0.5485 6 AUC 6 0.8349 X X X X X X

0.036 0.5472 6 AUC 6 0.8402 X X X X X X

0.038 0.5549 6 AUC 6 0.8454 X X X X X X

0.040 0.5582 6 AUC 6 0.8512 X X X X X X

Table 4.18. AUC checks for the rs = 5.50 mm case and bounds in (4.54b)
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τ [s] AUC Check AUCI? AUCII? AUCIII? AUCIV? AUCV? AUCVI?

0.002 0.5852 6 AUC 6 0.6558 X ✗ X X X ✗

0.004 0.5974 6 AUC 6 0.6759 X ✗ X X X X

0.006 0.6156 6 AUC 6 0.7044 X X X X X X

0.008 0.6220 6 AUC 6 0.7143 X X X X X X

0.010 0.6164 6 AUC 6 0.7057 X X X X X X

0.012 0.6210 6 AUC 6 0.7126 X X X X X ✗

0.014 0.6310 6 AUC 6 0.7277 X X X X X X

0.016 0.6309 6 AUC 6 0.7274 X X X X X X

0.018 0.6384 6 AUC 6 0.7385 X X X X X X

0.020 0.6442 6 AUC 6 0.7467 X X X X X ✗

0.022 0.6422 6 AUC 6 0.7439 X X X X X X

0.024 0.6535 6 AUC 6 0.7598 X X X X X X

0.026 0.6551 6 AUC 6 0.7620 X X X X X X

0.028 0.6575 6 AUC 6 0.7654 X X X X X X

0.030 0.6599 6 AUC 6 0.7686 X X X X X X

0.032 0.6742 6 AUC 6 0.7876 X X X X X X

0.034 0.6762 6 AUC 6 0.7903 X X X X X X

0.036 0.6783 6 AUC 6 0.7930 X X X X X X

0.038 0.6849 6 AUC 6 0.8014 X X X X X X

0.040 0.6981 6 AUC 6 0.8177 X X X X X X

Table 4.19. AUC checks for the rs = 5.50 mm case and bounds in (4.54c)
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τ [s] sAUCI
sAUCII

sAUCIII
sAUCIV

sAUCV
sAUCVI

σ2AFC

0.002 0.0027 0.0040 0.0002 0.0039 0.0070 0.0424 0.0055
0.004 0.0025 0.0041 0.0002 0.0036 0.0073 0.0306 0.0053
0.006 0.0026 0.0050 0.0002 0.0037 0.0074 0.0274 0.0052
0.008 0.0026 0.0038 0.0003 0.0036 0.0078 0.0303 0.0052
0.010 0.0027 0.0036 0.0003 0.0038 0.0075 0.0241 0.0051
0.012 0.0027 0.0037 0.0003 0.0039 0.0076 0.0222 0.0051
0.014 0.0028 0.0037 0.0003 0.0039 0.0073 0.0176 0.0050
0.016 0.0029 0.0038 0.0003 0.0039 0.0070 0.0117 0.0049
0.018 0.0029 0.0037 0.0003 0.0037 0.0069 0.0114 0.0049
0.020 0.0029 0.0038 0.0003 0.0037 0.0068 0.0155 0.0049
0.022 0.0031 0.0039 0.0003 0.0037 0.0069 0.0104 0.0048
0.024 0.0030 0.0037 0.0003 0.0036 0.0065 0.0122 0.0047
0.026 0.0032 0.0037 0.0003 0.0036 0.0064 0.0114 0.0046
0.028 0.0030 0.0038 0.0003 0.0036 0.0061 0.0056 0.0047
0.030 0.0032 0.0039 0.0003 0.0035 0.0063 0.0052 0.0045
0.032 0.0033 0.0037 0.0003 0.0034 0.0060 0.0051 0.0045
0.034 0.0033 0.0034 0.0003 0.0036 0.0055 0.0057 0.0044
0.036 0.0033 0.0033 0.0003 0.0034 0.0053 0.0057 0.0043
0.038 0.0031 0.0034 0.0003 0.0032 0.0052 0.0037 0.0041
0.040 0.0032 0.0034 0.0003 0.0032 0.0054 0.0036 0.0041

Table 4.20. Values of AUC standard deviations for the rs = 4.50 mm case
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τ [s] sAUCI
sAUCII

sAUCIII
sAUCIV

sAUCV
sAUCVI

σ2AFC

0.002 0.0026 0.0057 0.0002 0.0039 0.0070 0.0539 0.0055
0.004 0.0024 0.0068 0.0002 0.0037 0.0074 0.0401 0.0054
0.006 0.0026 0.0061 0.0002 0.0038 0.0076 0.0381 0.0053
0.008 0.0026 0.0035 0.0002 0.0038 0.0074 0.0342 0.0052
0.010 0.0026 0.0034 0.0002 0.0039 0.0078 0.0383 0.0053
0.012 0.0025 0.0036 0.0003 0.0040 0.0079 0.0357 0.0053
0.014 0.0026 0.0035 0.0003 0.0040 0.0076 0.0285 0.0052
0.016 0.0027 0.0036 0.0003 0.0040 0.0074 0.0195 0.0052
0.018 0.0029 0.0036 0.0003 0.0039 0.0072 0.0195 0.0051
0.020 0.0031 0.0037 0.0003 0.0040 0.0075 0.0275 0.0051
0.022 0.0030 0.0038 0.0003 0.0038 0.0073 0.0173 0.0051
0.024 0.0031 0.0036 0.0003 0.0039 0.0069 0.0170 0.0050
0.026 0.0031 0.0037 0.0003 0.0038 0.0070 0.0190 0.0049
0.028 0.0034 0.0037 0.0003 0.0040 0.0071 0.0143 0.0049
0.030 0.0034 0.0039 0.0003 0.0038 0.0069 0.0096 0.0048
0.032 0.0033 0.0036 0.0003 0.0036 0.0065 0.0139 0.0047
0.034 0.0035 0.0037 0.0003 0.0037 0.0067 0.0123 0.0047
0.036 0.0034 0.0038 0.0003 0.0036 0.0070 0.0141 0.0046
0.038 0.0035 0.0036 0.0003 0.0036 0.0059 0.0056 0.0046
0.040 0.0034 0.0036 0.0003 0.0036 0.0062 0.0062 0.0045

Table 4.21. Values of AUC standard deviations for the rs = 5.00 mm case
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τ [s] sAUCI
sAUCII

sAUCIII
sAUCIV

sAUCV
sAUCVI

σ2AFC

0.002 0.0025 0.0079 0.0001 0.0039 0.0070 0.0676 0.0056
0.004 0.0024 0.0093 0.0002 0.0037 0.0074 0.0518 0.0055
0.006 0.0025 0.0070 0.0002 0.0038 0.0076 0.0514 0.0054
0.008 0.0025 0.0045 0.0002 0.0038 0.0075 0.0483 0.0054
0.010 0.0024 0.0033 0.0002 0.0039 0.0080 0.0578 0.0054
0.012 0.0024 0.0035 0.0002 0.0040 0.0081 0.0553 0.0054
0.014 0.0026 0.0035 0.0002 0.0041 0.0078 0.0434 0.0053
0.016 0.0027 0.0034 0.0002 0.0041 0.0076 0.0303 0.0053
0.018 0.0028 0.0033 0.0002 0.0040 0.0075 0.0307 0.0053
0.020 0.0030 0.0035 0.0003 0.0041 0.0078 0.0443 0.0053
0.022 0.0030 0.0036 0.0003 0.0039 0.0077 0.0286 0.0052
0.024 0.0031 0.0034 0.0003 0.0041 0.0072 0.0248 0.0052
0.026 0.0032 0.0035 0.0003 0.0040 0.0074 0.0295 0.0052
0.028 0.0035 0.0036 0.0003 0.0042 0.0075 0.0233 0.0051
0.030 0.0036 0.0038 0.0003 0.0040 0.0074 0.0175 0.0051
0.032 0.0035 0.0036 0.0003 0.0038 0.0070 0.0208 0.0050
0.034 0.0036 0.0037 0.0003 0.0039 0.0072 0.0178 0.0050
0.036 0.0035 0.0038 0.0003 0.0038 0.0077 0.0245 0.0050
0.038 0.0036 0.0035 0.0003 0.0038 0.0064 0.0095 0.0049
0.040 0.0037 0.0036 0.0003 0.0038 0.0068 0.0109 0.0048

Table 4.22. Values of AUC standard deviations for the rs = 5.50 mm case
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τ [s] d2
A,I d2

A,II d2
A,III d2

A,IV d2
A,V d2

A,VI

0.002 0.2662 0.6722 0.2373 0.2670 0.2573 0.0988
0.004 0.3979 0.5596 0.3714 0.3988 0.3878 0.3183
0.006 0.5424 0.5426 0.4656 0.5425 0.4701 0.5169
0.008 0.5446 0.5831 0.5589 0.5446 0.5278 0.9022
0.010 0.6248 0.6195 0.5974 0.6255 0.5893 0.7700
0.012 0.6966 0.6747 0.6634 0.6979 0.6533 0.8804
0.014 0.7587 0.7453 0.7394 0.7608 0.7467 0.8526
0.016 0.8454 0.8317 0.8274 0.8464 0.8584 0.8370
0.018 0.9010 0.8899 0.8869 0.9023 0.9003 0.9555
0.020 0.8752 1.0719 1.0731 0.8765 1.1054 1.1730
0.022 1.0143 1.0278 1.0247 1.0164 1.0527 1.0934
0.024 1.1325 1.1297 1.1276 1.1320 1.1636 1.2171
0.026 1.1870 1.2042 1.2017 1.1871 1.2429 1.2605
0.028 1.1301 1.4505 1.4558 1.1322 1.5210 1.4599
0.030 1.3562 1.3820 1.3797 1.3567 1.4203 1.3904
0.032 1.3159 1.6609 1.6639 1.3179 1.7611 1.6298
0.034 1.4223 1.7577 1.7626 1.4252 1.8307 1.7891
0.036 1.5290 1.9130 1.9199 1.5350 2.0361 1.9004
0.038 1.7850 1.8292 1.8263 1.7868 1.9271 1.7690
0.040 1.8595 1.9383 1.9344 1.8579 2.0596 1.8564

Table 4.23. Values of d2
A,I, . . . , d

2
A,VI for the rs = 4.50 mm case
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τ [s] d2
A,I d2

A,II d2
A,III d2

A,IV d2
A,V d2

A,VI

0.002 0.2197 0.6236 0.1865 0.2205 0.2050 0.0489
0.004 0.3095 0.4934 0.2830 0.3104 0.3005 0.2068
0.006 0.4229 0.4392 0.3475 0.4231 0.3557 0.3757
0.008 0.5025 0.4486 0.3886 0.5024 0.3945 0.4635
0.010 0.4563 0.4656 0.4296 0.4567 0.4228 0.6413
0.012 0.4906 0.4900 0.4711 0.4921 0.4609 0.7423
0.014 0.5485 0.5308 0.5206 0.5504 0.5252 0.6627
0.016 0.5842 0.5870 0.5797 0.5854 0.6044 0.5963
0.018 0.6181 0.6222 0.6174 0.6191 0.6278 0.7056
0.020 0.6513 0.6533 0.6480 0.6535 0.6274 1.0109
0.022 0.6941 0.7074 0.7024 0.6962 0.7199 0.7956
0.024 0.7957 0.7752 0.7724 0.7958 0.7986 0.8664
0.026 0.8096 0.8205 0.8178 0.8106 0.8393 0.9334
0.028 0.8786 0.8780 0.8767 0.8793 0.8945 0.9714
0.030 0.9390 0.9419 0.9397 0.9402 0.9689 0.9721
0.032 1.0320 1.0262 1.0248 1.0352 1.0803 1.0589
0.034 1.0663 1.1107 1.1096 1.0697 1.1715 1.1559
0.036 1.1646 1.1385 1.1366 1.1673 1.1579 1.3337
0.038 1.1945 1.2539 1.2510 1.1953 1.3262 1.2057
0.040 1.2930 1.3260 1.3225 1.2918 1.4147 1.2639

Table 4.24. Values of d2
A,I, . . . , d

2
A,VI for the rs = 5.00 mm case
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τ [s] d2
A,I d2

A,II d2
A,III d2

A,IV d2
A,V d2

A,VI

0.002 0.1864 0.6023 0.1494 0.1873 0.1660 0.0193
0.004 0.2539 0.4571 0.2203 0.2546 0.2374 0.1298
0.006 0.3523 0.3747 0.2653 0.3526 0.2753 0.2725
0.008 0.3920 0.3665 0.2909 0.3915 0.2975 0.3634
0.010 0.3322 0.3739 0.3174 0.3331 0.3113 0.5777
0.012 0.3504 0.3750 0.3441 0.3516 0.3338 0.6877
0.014 0.3965 0.3948 0.3769 0.3985 0.3796 0.5471
0.016 0.4207 0.4300 0.4171 0.4222 0.4368 0.4409
0.018 0.4586 0.4498 0.4409 0.4596 0.4497 0.5460
0.020 0.4764 0.4693 0.4603 0.4779 0.4408 0.9488
0.022 0.5006 0.5052 0.4952 0.5017 0.5036 0.6356
0.024 0.5642 0.5470 0.5424 0.5643 0.5600 0.6552
0.026 0.5681 0.5749 0.5708 0.5684 0.5798 0.7481
0.028 0.6303 0.6117 0.6098 0.6316 0.6192 0.7521
0.030 0.6447 0.6575 0.6551 0.6465 0.6742 0.7256
0.032 0.7361 0.7140 0.7125 0.7385 0.7514 0.7666
0.034 0.7761 0.7735 0.7721 0.7794 0.8145 0.8372
0.036 0.7976 0.7895 0.7880 0.7988 0.7928 1.0841
0.038 0.8663 0.8766 0.8739 0.8666 0.9294 0.8489
0.040 0.9556 0.9241 0.9212 0.9539 0.9882 0.8890

Table 4.25. Values of d2
A,I, . . . , d

2
A,VI for the rs = 5.50 mm case
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Theoretical Explanation of SNR2
λ Behavior

It is now time to discuss the behavior of SNR2
λ as the exposure time τ is changed.

We will start this treatment by deriving an approximate expression that justifies our

simulation results for large values of τ . For smaller values of τ , our approximate

expression breaks down and we will rely on simulation studies to draw conclusions.

Consider first the SKE/BKE case, for which both the signal and the background

are known. We will denote with f0 the object under the signal-absent hypothesis

H0 and with f1 = f0 + ∆f the object under the signal-present hypothesis H1. The

SKE/BKE log-likelihood ratio can thus be written as [5]

λBKE(Â | f0) = ln

[
pr(Â | f0 + ∆f)

pr(Â | f0)

]
=

= ln

[
τJ

J !
exp

[
−τ

∫
FOV

(
f0 + ∆f

)
(r)s(r) dr

]

τJ

J !
exp

[
−τ

∫
FOV

f0(r)s(r) dr
]

]
+

+ ln

[
J∏

j=1

∫
FOV

pr(Â(j) | r)
(
f0 + ∆f

)
(r)s(r) dr

∫
FOV

pr(Â(j) | r)f0(r)s(r) dr

]
=

= −
∫

FOV

∆f(r)s(r) dr +
J∑

j=1

ln

[
1 +

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫
FOV

pr(Â(j) | r)f0(r)s(r) dr

]
.

The last line in the expression above emphasizes the fact that λBKE(Â | f0) is the

sum of a large number of independent and identically distributed random variables.

Therefore, by the central limit theorem [126–128], the statistics of λBKE(Â | f0)

approximate those of normally-distributed random variables.

Normally distributed log-likelihoods enjoy many interesting properties [65], one of

which can be summarized as

σ2
λBKE|f0

= σ2
λBKE|f1

= 2
〈
λBKE(Â | f0)

〉
Â |f1

= −2
〈
λBKE(Â | f0)

〉
Â |f0

.

To clarify our notation, recall first that Â statistically conditioned on the known

object fk, is random. Hence, the function λBKE(Â | f0) applied to random Â is

a random variable, and we can calculate its mean and variance. In other words,
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with σ2
λBKE|fk

we denote the standard deviation of λBKE(Â | f0) for Â statistically

conditioned on the object fk. Similarly,
〈
λBKE(Â | f0)

〉
Â |fk

denotes the mean of

λBKE(Â | f0) for Â conditioned on object fk. The result above shows that all we

need to calculate SNR2
λBKE(Â |f0)

according to (2.4) is
〈
λBKE(Â | f0)

〉
Â |f0

:

SNR2
λBKE(Â |f0)

=

[〈
λBKE(Â | f0)

〉
Â |f1

−
〈
λBKE(Â | f0)

〉
Â |f0

]2

1
2

(
σ2

λBKE|f1
+ σ2

λBKE|f0

) =

= −2
〈
λBKE(Â | f0)

〉
Â |f0

.

We now want to modify the result above and calculate the SNR2
λ for the SKE/BKS

case. The key difference is that the background randomness introduces statistical

correlations between pairs of elements of the list Â [5]

pr(Â(j), Â(j′) | Hk) =

∫

∞
pr(Â(j) | f)pr(Â(j′) | f)pr(f | Hk) df 6=

6=
[∫

∞
pr(Â(j) | f)pr(f | Hk) df

] [∫

∞
pr(Â(j′) | f)pr(f | Hk) df

]
=

= pr(Â(j) | Hk)pr(Â(j′) | Hk),

so that the SKE/BKS log-likelihood

λ(Â ) = ln

[
pr(Â | H1)

pr(Â | H0)

]
= ln

[∏J
j=1 pr(Â(j) | H1)

∏J
j=1 pr(Â(j) | H0)

]
=

J∑

j=1

ln

[
pr(Â(j) | H1)

pr(Â(j) | H0)

]

is no longer the sum of a large number of independent random quantities. However,

though the central-limit theorem is usually stated for the sum of a large number of

independent random variables, strict independence is not required [126]. In other

words, although the elements of Â are no longer independent, the statistics of λ(Â )

still approximate those of normally-distributed random variables, as shown in Fig-

ure 4.19 through Figure 4.21. Data for these plots were obtained using our MCMC

simulation code we discussed earlier in this section.
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−4 −2 0 2 4

(a) τ = 0.010 s

−4 −2 0 2 4

(b) τ = 0.020 s

−4 −2 0 2 4

(c) τ = 0.030 s

Figure 4.19. Histograms of λ(Â ) superimposed on the probability density function
of normally-distributed random variables for the case rs = 4.50 mm and different
values of τ
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−4 −2 0 2 4

(a) τ = 0.010 s

−4 −2 0 2 4

(b) τ = 0.020 s

−4 −2 0 2 4

(c) τ = 0.030 s

Figure 4.20. Histograms of λ(Â ) superimposed on the probability density function
of normally-distributed random variables for the case rs = 5.00 mm and different
values of τ
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−4 −2 0 2 4

(a) τ = 0.010 s

−4 −2 0 2 4

(b) τ = 0.020 s

−4 −2 0 2 4

(c) τ = 0.030 s

Figure 4.21. Histograms of λ(Â ) superimposed on the probability density function
of normally-distributed random variables for the case rs = 5.50 mm and different
values of τ
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By the approximate normality of the statistics of λ(Â ) under hypothesis Hk, we

can write

σ2
λ(Â )|H0

≈ σ2
λ(Â )|H1

≈ 2
〈
λ(Â )

〉
Â |H1

≈ −2
〈
λ(Â )

〉
Â |H0

,

so that [5]:

SNR2
λ =

[〈
λ(Â )

〉
Â |H1

−
〈
λ(Â )

〉
Â |H0

]2

1
2

(
σ2

λ(Â )|H1
+ σ2

λ(Â )|H0

) ≈ −2
〈
λ(Â )

〉
Â |H0

. (4.55)

To evaluate the expectation above, we first go back to Λ(Â ) for a moment. From the

definition of list-mode likelihood and using pr(Â | Hk) = 〈pr(Â | f)〉f|Hk
, we get [5]

Λ(Â ) =
pr(Â | H1)

pr(Â | H0)
=

〈pr(Â | f + ∆f)〉f|H0

pr(Â | H0)
.

Because the signal ∆f is weak, we can expand Λ(Â ) in Taylor series around f :

pr(Â | f + ∆f) = pr(Â | f) + ∆f †∂pr(Â | f)

∂f
+

1

2
∆f †∂

2pr(Â | f)

∂f∂f † ∆f + . . . ,

in which ∆f † stands for the adjoint of ∆f , and ∂
∂f

denotes the Fréchet derivative [69,

314], commonly used to introduce the concept of functional derivative. If we keep the

terms up to second order in ∆f , we get

〈pr(Â | f + ∆f)〉f|H0 ≈ 〈pr(Â | f)〉f|H0 + ∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0

+

+
1

2
∆f †

〈
∂2pr(Â | f)

∂f∂f †

〉

f|H0

∆f ,

which allows us to write [5]

Λ(Â ) ≈ 1 +
1

pr(Â | H0)
∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0

+

+
1

2

1

pr(Â | H0)
∆f †

〈
∂2pr(Â | f)

∂f∂f †

〉

f|H0

∆f .
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If we take the logarithm of Λ(Â ) and use ln(1 + ε) = ε − 1
2
ε2 + . . . , we get

λ(Â ) =

=
1

pr(Â | H0)


∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0

+
1

2
∆f †

〈
∂2pr(Â | f)

∂f∂f †

〉

f|H0

∆f


 +

−1

2


 1

pr(Â | H0)


∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0

+
1

2
∆f †

〈
∂2pr(Â | f)

∂f∂f †

〉

f|H0

∆f







2

+ . . . ,

which can be further approximated as [5]

λ(Â ) ≈ 1

pr(Â | H0)
∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0

+

+
1

2

1

pr(Â | H0)
∆f †

〈
∂2pr(Â | f)

∂f∂f †

〉

f|H0

∆f +

− 1

2


 1

pr(Â | H0)
∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0




2

. (4.56)

The first two terms, when averaged over pr(Â | H0), evaluate to zero [5]:
〈

1

pr(Â | H0)

〈
∂pr(Â | f)

∂f

〉

f|H0

〉

Â |H0

=

∫

∞

〈
∂pr(Â | f)

∂f

〉

f|H0

dÂ =

=

〈
∂

∂f

∫

∞
pr(Â | f) dÂ

〉

f|H0

= 0,

and
〈

1

pr(Â | H0)

〈
∂2pr(Â | f)

∂f∂f †

〉

f|H0

〉

Â |H0

=

∫

∞

〈
∂2pr(Â | f)

∂f∂f †

〉

f|H0

dÂ =

=

〈
∂2

∂f∂f †

∫

∞
pr(Â | f) dÂ

〉

f|H0

= 0.

Hence, from (4.55),

SNR2
λ =

〈
 1

pr(Â | H0)
∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0




2〉

Â |H0

. (4.57)
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To explicitly evaluate the Fréchet derivative in (4.56), we can make use of (4.20),

(4.21), and (4.22) to write

pr(Â | f) = Pr(J | f)
J∏

j=1

pr(Â(j) | f) =

=
τJ

J !
e−J(f,τ)

J∏

j=1

∫

FOV

pr(Â(j) | r)s(r)f(r) dr,

so that

∆f †∂pr(Â | f)

∂f
= −τpr(Â | f)

∫

FOV

∆f(r)s(r) dr +

+
τJ

J !
e−J(f,τ)

J∑

j=1





∫

FOV

pr(Â(j) | r)∆f(r)s(r) dr

J∏

j′=1
j′ 6=j

∫

FOV

pr(Â(j′) | r)f(r)s(r) dr





.

Taking expectation with respect to f conditioned on H0 yields

∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0

= −τpr(Â | H0)

∫

FOV

∆f(r)s(r) dr +

+
τJ

J !

〈
e−J(f,τ)

J∑

j=1





∫

FOV

pr(Â(j) | r)∆f(r)s(r) dr
J∏

j′=1
j′ 6=j

∫

FOV

pr(Â(j′) | r)f(r)s(r) dr





〉

f|H0

.

If we divide the expression above by pr(Â | H0) and use (4.20) and

pr(Â | f) = Pr(J | f)pr(Â | f , J) =

=
[J(f , τ)]J

J !
e−J(f,τ)

J∏

j=1

∫
FOV

pr(Â(j) | r)f(r)s(r) dr∫
FOV

f(r)s(r) dr
,

we obtain [5]

1

pr(Â | H0)
∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0

= −τ

∫

FOV

∆f(r)s(r) dr +
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+

〈
[J(f , τ)]Je−J(f,τ)

∑J
j=1

R

FOV pr(Â(j)|r)∆f(r)s(r) dr
R

FOV pr(Â(j)|r)f(r)s(r) dr

∏J
j′=1

R

FOV pr(Â(j′)|r)f(r)s(r) dr
R

FOV f(r)s(r) dr

〉

f|H0〈
[J(f , τ)]Je−J(f,τ)

∏J
j=1

R

FOV pr(Â(j)|r)f(r)s(r) dr
R

FOV f(r)s(r) dr

〉
f|H0

=

−τ

∫

FOV

∆f(r)s(r) dr+

〈
[J(f , τ)]Je−J(f,τ)pr(Â | f , J)

∑J
j=1

R

FOV pr(Â(j)|r)∆f(r)s(r) dr
R

FOV pr(Â(j)|r)f(r)s(r) dr

〉

f|H0〈
[J(f , τ)]Je−J(f,τ)pr(Â | f , J)

〉
f|H0

.

(4.58)

At this point, it is worth recalling that pr(Â | f , J) is the probability density function

of the list-mode data Â for the object f and when the number of entries in Â is

J . As J increases, we would expect that such list would convey more and more

“knowledge” about the object f being imaged [315]. If the imaging system does not

have null functions, we can make this concept more formal by writing

pr(Â | f , J) ≈ Cδ
(
f − f̂

Â

)
, |Â | À 1, (4.59)

in which f̂
Â

is the object that maximizes pr(Â | f , J) as a function of f , |Â |
denotes the number of entries in the list Â , and δ(f − f̂

Â
) has to be understood as

1 if f ≡ f̂
Â

, 0 otherwise. In other words, f̂
Â

is the maximum-likelihood estimate

of f given the data Â and the model pr(Â | f , J). The constant C that appears

in (4.59) is given by

C ≈ pr(Â | H0, J)

pr(f̂
Â

| H0)
.

By the properties of the delta function, the expectations that appear in (4.58) are

trivially calculated, and we obtain [5]

1

pr(Â | H0)
∆f †

〈
∂pr(Â | f)

∂f

〉

f|H0

=

= −τ

∫

FOV

∆f(r)s(r) dr +
J∑

j=1

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫
FOV

pr(Â(j) | r)f̂
Â

(r)s(r) dr
.
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By inserting the expression above in (4.57), we get

SNR2
λ =

〈[
−τ

∫

FOV

∆f(r)s(r) dr +
J∑

j=1

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫

FOV
pr(Â(j) | r)f̂

Â
(r)s(r) dr

]2〉

Â |H0

=

=

[
−τ

∫

FOV

∆f(r)s(r) dr

]2

+

− 2τ

∫

FOV

∆f(r)s(r) dr

〈
J∑

j=1

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫
FOV

pr(Â(j) | r)f̂
Â

(r)s(r) dr

〉

Â |H0

+

+

〈
J∑

j=1

J∑

j′=1

[∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫

FOV
pr(Â(j) | r)f̂

Â
(r)s(r) dr

][∫
FOV

pr(Â(j′) | r)∆f(r)s(r) dr
∫
FOV

pr(Â(j′) | r)f̂
Â

(r)s(r) dr

]〉

Â |H0

.

Let us now evaluate the expectations that appear in the expression above:
〈

J∑

j=1

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫
FOV

pr(Â(j) | r)f̂
Â

(r)s(r) dr

〉

Â |H0

=

=

〈〈
J∑

j=1

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫
FOV

pr(Â(j) | r)f̂
Â

(r)s(r) dr

〉

Â(j)|f̂
Â

〉

f̂
Â

|H0

=

=

〈 ∞∑

J=0

Pr(J | f̂
Â

)
J∑

j=1

∫

∞

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫
FOV

pr(Â(j) | r)f̂
Â

(r)s(r) dr
pr(Â(j) | f̂

Â
) dÂ(j)

〉

f̂
Â

|H0

=

=

〈 ∞∑

J=0

Pr(J | f̂
Â

)
J∑

j=1

∫

∞

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫

FOV
pr(Â(j) | r)f̂

Â
(r)s(r) dr

×

×
∫
FOV

pr(Â(j) | r)f̂
Â

(r)s(r) dr
∫

FOV
f̂

Â
(r)s(r) dr

dÂ(j)

〉

f̂
Â

|H0

=

=

〈 ∞∑

J=0

Pr(J | f̂
Â

)
J∑

j=1

∫

∞

∫
FOV

pr(Â(j) | r)∆f(r)s(r) dr
∫
FOV

f̂
Â

(r)s(r) dr
dÂ(j)

〉

f̂
Â

|H0

=

=

〈 ∞∑

J=0

JPr(J | f̂
Â

)

∫
FOV

∆f(r)s(r) dr
∫
FOV

f̂
Â

(r)s(r) dr

〉

f̂
Â

|H0

= τ

∫

FOV

∆f(r)s(r) dr,

in which we used
∫
∞ pr(Â(j) | r) dÂ(j) = 1 and

J(f̂
Â

, τ) =
∞∑

J=0

JPr(J | f̂
Â

) = τ

∫

FOV

f̂
Â

(r)s(r) dr. (4.60)
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Similarly
〈∫

FOV
pr(Â(j) | r)∆f(r)s(r) dr

∫
FOV

pr(Â(j) | r)f̂
Â

(r)s(r) dr

〉

Â |H0

=
τ

∫
FOV

∆f(r)s(r) dr

J(f̂
Â

, τ)
. (4.61)

Using the results found above and the independence of the entries in Â , we can now

rewrite the SNR2
λ as [5]

SNR2
λ = −τ 2

[∫

FOV

∆f(r)s(r) dr

]2

+

+

〈 ∞∑

J=0

Pr(J | f̂
Â

)



(J2 − J)




〈∫
FOV

pr(Â | r)∆f(r)s(r) dr
∫

FOV
pr(Â | r)f̂

Â
(r)s(r) dr

〉

Â|f̂
Â




2

+

+ J

〈[∫
FOV

pr(Â | r)∆f(r)s(r) dr
∫
FOV

pr(Â | r)f̂
Â

(r)s(r) dr

]2〉

Â|f̂
Â





〉

f̂
Â

|H0

,

in which Â is randomly drawn according to pr(Â | f̂
Â

). Because J conditioned on

f̂
Â

is a Poisson random variable [127,128], we obtain

〈J2 − J〉J |f̂
Â

= σ2
J |f̂

Â

+ 〈J〉2
J |f̂

Â

− 〈J〉J |f̂
Â

=

= 〈J〉J |f̂
Â

+ 〈J〉2
J |f̂

Â

− 〈J〉J |f̂
Â

=
[
J(f̂

Â
, τ)

]2

.

Using the result above and with the help of (4.61), the SNR2
λ is rewritten as [5]

SNR2
λ =

〈
J(f̂

Â
, τ)

〈[∫
FOV

pr(Â | r)∆f(r)s(r) dr
∫
FOV

pr(Â | r)f̂
Â

(r)s(r) dr

]2〉

Â|f̂
Â

〉

f̂
Â

|H0

=

= τ

〈[∫

FOV

f̂
Â

(r)s(r) dr

]〈[∫
FOV

pr(Â | r)∆f(r)s(r) dr
∫

FOV
pr(Â | r)f̂

Â
(r)s(r) dr

]2〉

Â|f̂
Â

〉

f̂
Â

|H0

,

(4.62)

in which the last form follows from (4.60). The remarkable result we just obtained

shows that so long as (4.59) is satisfied, SNR2
λ is proportional to the exposure time τ .

The numerical values of SNR2
λ reported in Table 4.7 confirm the theoretical result

of (4.62). Indeed, as we can see from Figure 4.22 and with the exclusion of a few data
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points obtained for small values of τ , the values of SNR2
λ are approximately aligned

along straight lines. More specifically, starting from the values reported in Table 4.7,

we first pruned the data by removing data points that failed the consistency checks

reported in Table 4.4 through Table 4.6. Next, by visually inspecting the plots of

SNR2
λ (red line), we identified the value τ0 such that SNR2

λ ∝ τ for τ > τ0, and

then we performed a least square fit of SNR2
λ with a straight line (blue line) of the

data from Table 4.7. Finally, by conjecturing that for τ < τ0, the SNR2
λ behaves,

approximatively, as SNR2
Hot—see (4.35)—we considered a function of the form (ατ)1−β

and we chose α and β so that, at τ = τ0, the value of the function (ατ)1−β and its

first derivative match the corresponding values obtained for the linear fit. Plots of

(ατ)1−β appear in black in Figure 4.22. The overall fits we obtained match pretty

well the data points obtained via our MCMC simulation code.

After examining the performance of the ideal observer in this subsection and the

one of the Hotelling observer in the previous subsection, we can think about comparing

the two and report them on the same plot. To this point, we need to recall first that

the “weak signal” condition of (4.30) was needed to make plots of Figure 4.14 valid. We

satisfied condition (4.30) by taking bs = 100 s−1 and b0 = 1000 s−1 for the Hotelling

observer performance analysis. On the other hand, the MCMC results of Figure 4.22

required us to use a larger value of bs to make the simulation more numerically stable

by increasing the average number of photons emitted by the signal (hence reducing the

number of cases in which no photon at all is emitted from the signal during the entire

exposure time τ ; this problem is especially pronounced for small values of τ). This

is the reason why, as reported in Table 4.2, we set bs = b0 = 1000 s−1 in our MCMC

code. A direct comparison between Figure 4.14 and Figure 4.22 would, therefore, be

unfair as results for the two observers were obtained under different conditions.

We can however salvage our analysis if we study how SNR2
λ changes as the signal

intensity bs is varied. To do this, we considered once again our MCMC code and ran

it for τ = 0.020 s, rs = 5.00 mm, and bs = 100, 200, 300, . . . , 2000 s−1. The remaining
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Figure 4.22. Plots of values of SNR2
λ (and their fits) calculated using our MCMC simulation code
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parameters were the same as reported in Table 4.2. The values of SNR2
λ for different

values of bs have been plotted in Figure 4.23 and fit with a quadratic function of the

form SNR2
λ ≈ γb2

s for an appropriate value of γ. From Figure 4.23, we see a somewhat

satisfactory fit of the values of SNR2
λ. Further investigation is required.
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Figure 4.23. Plot of SNR2
λ for different values of bs, along with their quadratic

least-square fit

Using the result of Figure 4.23, we adjusted the plots of SNR2
λ in Figure 4.22 to

the case bs = 100 s−1, which is the value we had used for the Hotelling observer task

performance.

Finally, we produced plots in which the “adjusted” SNR2
λ is compared to SNR2

Hot,

as shown in Figure 4.24. As expected, the ideal observer is found to outperform the

Hotelling observer and the gap in performance between the two observers increases as

the exposure time τ increases (equivalently, as the mean number of collected photons

increases).
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We finally note that the plots in Figure 4.24 can be used as an additional test

of consistency for our MCMC code for the calculation of SNR2
λ: although values of

SNR2
Hot were calculated analytically and those for SNR2

λ resulted from simulation

code, the condition SNR2
λ > SNR2

Hot is always satisfied. Plots in Figure 4.24 also

seem to suggest that for small values of τ (low mean counts), the performance of the

ideal and Hotelling observes are comparable.

4.7 Estimability with List-Mode Data

In § 4.6.1 we introduced the concept of information content of a photon and we applied

it to the estimation of numerical parameters from list-mode data. In this section, we

provide a brief theoretical treatment of parameter estimation from list-mode data.

For a more general discussion, the interested reader can consult [69]. An example

relevant to the field of radiology is the estimation of the amount θ of object f within

some region of interest (ROI):

θ = χ†f =

∫

FOV

χ(r)f(r) d3r,

in which the vector χ defines the region of interest. We say that the parameter θ is

estimable if there exists an unbiased linear estimator θ̂(u) of θ [69]:

θ =
〈
θ̂(u)

〉
,

in which u is the Poisson point process we defined in (4.19). Because the estimator

θ̂(u) is assumed linear, it must be of the form θ̂(u) = w†u, for some vector w. If we

take expectation, we get
〈
θ̂(u)

〉
= w†u = w†(τLf

)
=

(
τL†w

)†
f ,

in which L is the linear operator introduced in (4.23). It can be shown [316] that θ

is estimable if and only if there exists a vector w that satisfies

χ = τL†w.
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Figure 4.24. Comparison between SNR2
Hot and SNR2

λ for the same signal detection problem
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If such a vector w exists, then the estimator θ̂(u) is automatically unbiased. Indeed

〈
θ̂(u)

〉
= w†u = w†(τLf

)
=

(
τL†w

)†
f = χ†f = θ.

If, on the other hand, there exists no w that satisfies χ = τL†w, the parameter θ is

not estimable, which implies that any linear estimator of θ must be biased. Further

details on estimability with list-mode data can be found in Chapter 4 of [283].

4.8 LMMLEM Reconstruction of Lumpy Backgrounds

In this section, we confront the problem of reconstructing an emission tomography

image from list-mode data by performing maximum-likelihood estimation of a set of

parameters that characterize the object being imaged. This way of proceeding differs

from what is usually discussed in the literature, in which the object to reconstruct

is often discretized and represented as a set of intensity values over a pixel or voxel

grid.

To make the discussion more concrete, we still use the familiar lumpy background

model of (4.25), in which the lumps are described by the list of K 2D lump centers

rk = (xk, yk):

θ =
{
r1, . . . , rK

}
.

We will also assume the setup of Figure 4.12 in which the imaging system and detector

properties are statistically modeled as in (4.26). Our choice for the reconstruction

algorithm is still the MLEM algorithm, which was derived in abstract form in § 3.4.

Mathematically,

θ̂(p+1) = arg max
θ

{
〈ln pr(x, y | θ)〉x|y,θ̂(p)

}
,

where, using the nomenclature of § 3.1, x is the complete data, y is the incomplete

data, and θ̂(p) is the pth estimate of the parameter θ. We will assume

x =
{(

r(1), k(1)
)
, . . . ,

(
r(J), k(J)

)}
,
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in which J is the total number of points r(j) in the list and the pair
(
r(j), k(j)

)

denotes the 2D object point r(j) =
(
x(j), y(j)

)
at which a photon was emitted, along

with the index k(j) of the lump that was responsible for the jth photon emission. We

will assume that index k(j) is a discrete random variable uniformly distributed over

{1, . . . , K} and that, given the list θ of lump locations r1, . . . , rK and index k(j), the

point r(j) is randomly drawn according to

pr(r(j) | θ, k(j)) =
1

2πr2
b

exp

(
−|r(j) − rk(j)|2

2r2
b

)
. (4.63)

Notice that θ could be estimated from x very easily: we just need to group points r(j)

with the same index k(j), and fit each of the K groups with the model pr(r(j) | θ, k(j))

above to find estimate r̂k of rk, for k = 1, . . . , K. The imaging system, however, does

not allow to discriminate among photons based on which lump they were emitted

from, and points r(j) are further perturbed according to the statistical model in (4.26).

In other words, the data on which the reconstruction algorithm operates are

y = Â =
{
R̂(1), . . . , R̂(J ′)

}
,

in which our notation allows for the possibility that the number J ′ of points R̂(j)

to differ from the number J of points r(j). To find an iterative expression for our

LMMLEM problem, we start by using Bayes’ theorem to write

pr(x,y | θ) = pr(y | x) pr(x | θ).

Expanding pr(x | θ) gives

pr(x | θ) = Pr(J | θ)
J∏

j=1

pr(r(j), k(j) | θ) =

=
[Kb0τ ]J

J !
e−Kb0τ

J∏

j=1

(
K∑

k=1

pr(r(j), k(j) | θ, k) Pr(k)

)
,

where we have assumed

J(bθ, τ) = τ
K∑

k=1

∫

FOV

`(r − rk) dr ≈ Kb0τ .
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Notice that pr(r(j), k(j) | θ, k) = δKron(k − k(j)) pr(r(j) | rk(j)) and recall Pr(k) = 1/K

so that

pr(x | θ) =
e−Kb0τ

J !

[
b0τ

2πr2
b

]J

exp

(
− 1

2r2
b

J∑

j=1

∣∣r(j) − rk(j)

∣∣2
)

,

in which we also used (4.63). On the other had, by (4.26), we can write

pr(y | x) = δKron(J − J ′)

[
1

2πσ2

]J

exp

(
− 1

2σ2

J∑

j=1

∣∣R̂(j) − r(j)
∣∣2

)
,

where we used the factor δKron(J − J ′) to model the fact that each element of x gives

rise to exactly one element of y. When we take the logarithm of pr(x, y | θ) we

obtain

ln pr(x, y | θ) = −J ln(2πσ2) + ln δKron(J − J ′) − 1

2σ2

J∑

j=1

∣∣R̂(j) − r(j)
∣∣2 +

− Kb0τ − ln(J !) + J ln

[
b0τ

2πr2
b

]
− 1

2r2
b

J∑

j=1

∣∣r(j) − rk(j)

∣∣2,

which gives

〈ln pr(x, y | θ)〉x|y,θ̂(p) = −J ln(2πσ2) − Kb0τ − ln(J !) + J ln

[
b0τ

2πr2
b

]
+

− 1

2σ2

J∑

j=1

〈∣∣R̂(j) − r(j)
∣∣2

〉
x|y,θ̂(p)

− 1

2r2
b

J∑

j=1

〈∣∣r(j) − rk(j)

∣∣2
〉

x|y,θ̂(p)
,

and we have used the fact that pr(x | y, θ̂(p)) = 0 if J 6= J ′. In the expression

above, θ̂(p) denotes the estimate of θ at the pth iteration of the LMMLEM algorithm.

Similarly to θ,

θ̂(p) =
{
r̂

(p)
1 , . . . , r̂

(p)

K̂(p)

}
,

and we will start with the case in which K̂(p) stays constant throughout the iterations

of the algorithm. As we did in § 3.4 and § 4.4, we can discard from the expression

above the terms that do not depend on θ and introduce a function Q(θ; y, θ̂(p)) defined

as

Q(θ; y, θ̂(p)) = − 1

2r2
b

J∑

j=1

〈∣∣r(j) − rk(j)

∣∣2
〉

x|y,θ̂(p)
− Kb0τ =
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= − 1

2r2
b

J∑

j=1

{〈(
x(j) − xk(j)

)2
〉

x(j),k(j)|R̂(j),θ̂(p)
+

+
〈(

y(j) − yk(j)

)2
〉

y(j),k(j)|R̂(j),θ̂(p)

}
− Kb0τ ,

in which—we recall—r(j) =
(
x(j), y(j)

)
and rk(j) =

(
xk(j) , yk(j)

)
. To calculate the

terms in the expression above, we first use the definition of expectation to write

〈(
x − xk

)2
〉

x,k|R̂,θ̂
=

K̂∑

k=1

∫ ∞

−∞
(x − xk)

2 pr(x, k | R̂, θ̂) dx,

in which

pr(x, k | R̂, θ̂) = pr(x | k, R̂, θ̂) pr(k | R̂, θ̂).

Using (4.24) and (4.26) and after a few pages of calculations, we obtain

pr(x | k, R̂, θ̂) =

∫ ∞

−∞
pr(x, y | k, R̂, θ̂) dy =

=

1√
2πσ2

exp
(
− (X̂−x)2

2σ2

)
1√
2πr2

b

exp
(
− (x−xk)2

2r2
b

)

1
q

2π(σ2+r2
b)

exp

(
− (X̂−xk)2

2(σ2+r2
b)

) .

For pr(k | R̂, θ̂) we have

pr(k | R̂, θ̂) =
pr(k, R̂, θ̂)

pr(R̂, θ̂)
=

pr(R̂ | k, θ̂) pr(k, θ̂)

pr(R̂, θ̂)
=

=
pr(R̂ | r̂k) pr(k | θ̂)

∑K̂
k′=1 pr(R̂ | r̂k′) pr(k′ | θ̂)

=
pr(R̂ | r̂k)

∑K̂
k′=1 pr(R̂ | r̂k′)

,

which, after all substitutions, gives

pr(x, k | R̂, θ̂) =

√
σ2 + r2

b

2πσ2r2
b

exp
(
− (X̂−x)2

2σ2

)
exp

(
− (x−x̂k)2

2r2
b

)
exp

(
− (Ŷ −ŷk)2

2(σ2+r2
b)

)

∑K̂
k′=1 exp

(
− |R̂−r̂k′ |2

2(σ2+r2
b)

) .

The expectation 〈(x − xk)
2〉x,k|R̂,θ̂ now becomes
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〈(
x − xk

)2
〉

x,k|R̂,θ̂
=

1

(σ2 + r2
b )

2 ×

×

∑K̂
k=1 exp

(
− (X̂−x̂k)2

2(σ2+r2
b)

)
exp

(
− (Ŷ −ŷk)2

2(σ2+r2
b)

) {
σ2r2

b (σ
2 + r2

b ) +
[
σ2(x̂k − xk) + r2

b (X̂ − xk)
]2

}

∑K̂
k′=1 exp

(
− (X̂−x̂k′ )

2

2(σ2+r2
b)

)
exp

(
− (Ŷ −ŷk′ )

2

2(σ2+r2
b)

) .

With this result, the expression for Q(θ; y, θ̂(p)) turns out to be

Q(θ; y, θ̂(p)) =

= − 1

2r2
b

1

(σ2 + r2
b )

2

J∑

j=1

{
1

∑K̂(p)

k′=1 exp

(
− |R̂(j)−r̂

(p)

k′
|2

2(σ2+r2
b)

)
K̂(p)∑

k=1

exp

(
−|R̂(j) − r̂

(p)
k |2

2 (σ2 + r2
b )

)
×

×
[
2σ2r2

b (σ
2 + r2

b ) +
(
σ2(ŷ

(p)
k − yk) + r2

b (Ŷ
(j) − yk)

)2

+
(
σ2(x̂

(p)
k − xk) + r2

b (X̂
(j) − xk)

)2
]}

,

and if we enforce ∇θQ(θ; y, θ̂(p)) = 0, we get

J∑

j=1

α
(p)
j,k

(
σ2x̂

(p)
k + r2

bX̂
(j)

)
=

J∑

j=1

α
(p)
j,k

(
σ2 + r2

b

)
xk, (4.64a)

J∑

j=1

α
(p)
j,k

(
σ2ŷ

(p)
k + r2

b Ŷ
(j)

)
=

J∑

j=1

α
(p)
j,k

(
σ2 + r2

b

)
yk, (4.64b)

where we have set

α
(p)
j,k =

exp

(
−

˛

˛

˛

R̂(j)−r̂
(p)
k

˛

˛

˛

2

2
(

σ2+r2
b

)
)

∑K̂(p)

k′=1 exp

(
−

˛

˛

˛

R̂(j)−r̂
(p)

k′

˛

˛

˛

2

2
(

σ2+r2
b

)
) ,

for k = 1, . . . , K̂(p). If we solve (4.64) for xk and yk, we get

r̂
(p+1)
k =

∑J
j=1 α

(p)
j,k

(
σ2r̂

(p)
k + r2

bR̂
(j)

)

∑J
j=1 α

(p)
j,k (σ2 + r2

b )
=

=
σ2

σ2 + r2
b

r̂
(p)
k +

r2
b

σ2 + r2
b

∑J
j=1 α

(p)
j,kR̂(j)

∑J
j=1 α

(p)
j,k

. (4.65)
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Some insights on the result found above can be obtained if we assume that the

object being imaged consists of only one lump: θ = {r}. The maximum-likelihood

problem can now be formulated as estimating the location r of the lump from the

observed data y = {R̂(1), . . . , R̂(J ′)}. To calculate the likelihood, notice first

pr(R̂ | r) =
1

2π (σ2 + r2
b )

exp

(
− |R̂ − r|2

2 (σ2 + r2
b )

)
,

which allows to write the likelihood as

pr(y | θ) =
e−b0τ

J ′!

[
b0τ

2π (σ2 + r2
b )

]J ′

exp

(
− 1

2 (σ2 + r2
b )

J ′∑

j=1

|R̂(j) − r|2
)

. (4.66)

Maximizing pr(y | θ) is equivalent to minimizing
∑J ′

j=1 |R̂(j) − r|2. It is a simple

exercise to show that this latter quantity is minimized by

r̂ =
1

J ′

J ′∑

j=1

R̂(j),

which is nothing but the ensemble mean of R̂ calculated from R̂(1), . . . , R̂(J ′). Notice

that for the case K = 1, α
(p)
j,1 = 1 and the reader can verify that the point r̂ above is

indeed a fixed point of (4.65).

To handle the general case in which the number of lumps K̂(p+1) in θ̂(p+1) is allowed

to change, we can see if removing one of the lumps from θ̂(p+1) actually increases the

likelihood. Mathematically, we can define

kremove = arg max
k=1,...,K̂(p+1)

[
pr

(
y | θ̂(p+1) \ {r̂(p+1)

k }
)]

,

in which θ̂(p+1) \ {r̂(p+1)
k } denotes the set operation of removing the point r̂

(p+1)
k

from the set of points θ̂(p+1). The maximization step above is easily and efficiently

implemented by removing points r̂
(p+1)
k one at a time and by evaluating the likelihood.

If removing point r̂
(p+1)
kremove

from θ̂(p+1) actually increases the likelihood, that point is

removed

θ̂(p+1) ←
{

θ̂(p+1) \ {r̂(p+1)
kremove

} if pr
(
y | θ̂(p+1) \ {r̂(p+1)

kremove
}
)

> pr
(
y | θ̂(p+1)

)
,

θ̂(p+1) otherwise.
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To deal with the possibility that adding one lump to θ̂(p+1) might increase the

likelihood, we can consider

r̂
(p+1)
add = arg max

r̂

[
pr

(
y | θ̂(p+1) ∪ {r̂}

)]
,

in which θ̂(p+1) ∪ {r̂} denotes the set resulting from the union of sets θ̂(p+1) and {r̂}.
We implemented the maximization step above using the contracting grid algorithm

of § 3.3. Once lump center r̂
(p+1)
add is found, θ̂(p+1) is updated according to

θ̂(p+1) ←
{

θ̂(p+1) ∪ {r̂(p+1)
add } if pr

(
y | θ̂(p+1) ∪ {r̂(p+1)

add }
)

> pr
(
y | θ̂(p+1)

)
,

θ̂(p+1) otherwise.

As we can infer from (4.65), the iterative algorithm developed here necessitates

an initial guess θ̂(0) to refine through the iterations. To find this initial guess, first

recall that J(bθ, τ) ≈ Kb0τ . Hence, given the number of elements J ′ in y and the

exposure time τ , we can take the first estimate K̂(0) of K as

K̂(0) = round

(
J ′

b0τ

)
,

in which the function round(z) rounds the value of z to its nearest integer. Once es-

timate K̂(0) is available, we set θ̂(0) =
{
r̂

(0)
1 , . . . , r̂

(0)

K̂(0)

}
, in which points r̂

(0)
1 , . . . , r̂

(0)

K̂(0)

are drawn from a uniform distribution over the object’s support.

Pseudocode of the algorithm is provided below.

K̂(0) = round
(

J ′

b0τ

)

θ̂(0) =
{
r̂

(0)
1 , . . . , r̂

(0)

K̂(0)

}

for p = 1 to P do

for k = 1 to K̂(p−1) do

α
(p−1)
j,k =

exp

(
−

˛

˛

˛

R̂(j)−r̂
(p−1)
k

˛

˛

˛

2

2
(
σ2+r2

b

)
)

∑K̂(p−1)

k′=1 exp

(
−

˛

˛

˛

R̂(j)−r̂
(p−1)

k′

˛

˛

˛

2

2
(
σ2+r2

b

)
)

r̂
(p)
k = σ2

σ2+r2
b
r̂

(p−1)
k +

r2
b

σ2+r2
b

PJ
j=1 α

(p−1)
j,k R̂(j)

PJ
j=1 α

(p−1)
j,k

end for
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kremove = arg max
k=1,...,K̂(p−1)

[
pr

(
Â | θ̂(p) \ {r̂(p)

k }
)]

if pr
(
Â | θ̂(p) \ {r̂(p)

kremove
}
)

> pr
(
Â | θ̂(p)

)
then

θ̂(p) = θ̂(p) \ {r̂(p)
kremove

}
K̂(p) = K̂(p−1) − 1

else

K̂(p) = K̂(p−1)

end if

r̂
(p)
add = arg max

r̂

[
pr

(
Â | θ̂(p) ∪ {r̂}

)]

if pr
(
Â | θ̂(p) ∪ {r̂(p)

add}
)

> pr
(
Â | θ̂(p)

)
then

θ̂(p) = θ̂(p) ∪ {r̂(p)
add}

K̂(p) = K̂(p−1) + 1
else

K̂(p) = K̂(p−1)

end if

end for

Code was developed to implement the reconstruction algorithm above, and sim-

ulations were set up to study its performance. We considered cases similar to those

discussed in § 4.6.2 and § 4.6.3. More specifically, we assumed a field of view of size

64 mm×64 mm, a lump amplitude b0 = 1000 s−1, lump density p = 20000 m−2, lump

width rb = 5.00 mm, imaging system and detector blur uncertainty σ = 1.00 mm,

and, finally, the acquisition time τ varied over 0.01, 0.02, . . . , 0.12 s.

As an example, Figure 4.25a reports a realization of lump centers (i.e., the vec-

tor θ), along with a realization of the list-mode data {R̂(1), . . . , R̂(J ′)} for the case

τ = 0.01 s. For the purpose of this example only, we force the location r1 of the

first lump in θ to (0, 0), the center of the field of view. Figure 4.25b reports a plot

of bθ(r) evaluated over a grid of point in the field of view. We want to stress that

we sampled bθ(r) only to obtain the image of Figure 4.25b: as shown in (4.65), our

reconstruction algorithm operates on the lump centers in θ̂(p) and under no circum-

stances is the object being imaged represented as a set of pixel intensities. Finally,

using the observed data y = {R̂(1), . . . , R̂(J ′)}, we can consider the logarithm of the

likelihood pr(y | θ) in (4.66), and plot it as θ is changed. Specifically, in Figure 4.25c
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(a) Plot of a realization of lump centers r1, . . . , rK (denoted as “×”) for K = 93
and list-mode data R̂(1), . . . , R̂(J ′) (denoted as “◦”) for J ′ = 922

(b) Background image bθ(r) (c) Plot of log-likelihood ln pr(y | θ) obtained
by moving the first point in θ, originally lo-
cated at (0, 0)

Figure 4.25. Example for LMMLEM reconstruction of lumpy background
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we used the original lump locations—denotes as “×” in Figure 4.25a—except for the

first one, r1, which was varied over the entire field of view to obtain an image; red

areas denote large values of pr(y | θ), while small values of pr(y | θ) are represented

in blue.

Intuitively, as the exposure time τ increases, the estimated lump locations θ̂ should

get “closer and closer” to the original lump locations in θ. To make this statement

more precise, we first need to notice that it does not make sense to calculate the sum

of the distances between points in θ̂ and the corresponding points in θ. Because the

order of points in θ̂ and θ is irrelevant (as it leads to the same object), such sum of

distances is not well defined. The number of points in θ̂ could even differ from the

number of points in θ. Instead, we can consider the quantity

d(θ̂; θ) =

∫

∞

[
bθ̂(r) − bθ(r)

]2
d2r

as a measure of the “distance” between θ̂ and θ. If, however, we want to consider

the “average” distance, we have to keep into account the randomness in the vector θ

and the randomness in the observed data y (conditioned on θ). In other words, there

are two sources of randomness, leading to two nested expectations. Furthermore, it

will not hurt normalizing this mean distance with respect to the mean background

intensity
〈∫

∞ [bθ(r)]2 d2r
〉

θ
. We call the resulting quantity the normalized mean

squared error or NMSE

NMSE(τ) =

〈〈∫
∞

[
bθ̂(y|θ)(r) − bθ(r)

]2

d2r

〉

y|θ

〉

θ〈 ∫
∞ [bθ(r)]2 d2r

〉
θ

, (4.67)

in which the right-hand side depends on τ via the (average) number of points R̂(j) in

y. We notice that the expectation at the denominator can be calculated analytically

for the case of the lumpy background model in (4.25). Skipping all the calculations:

〈∫

∞
[bθ(r)]2 d2r

〉

θ

=
b2
0

4πr2
b


K +

K2π

u4

(
u erf(u) +

e−u2 − 1√
π

)2

 , u =

W

2rb

.
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The numerator of the quantity in (4.67) has to be estimated numerically: we generated

40 realizations of θ and, for each of them, we generated 25 random realizations of y.

Each observed data vector y was fed to our LMMLEM reconstruction algorithm and

100 iterations were performed to get θ̂(y | θ) to be used in (4.67). In writing θ̂(y | θ)

we made it clear that the observed data y depends on θ and that, in turn, the estimate

θ̂ depends on y. Using this process, an estimate of NMSE(τ) and one for its standard

deviation σNMSE(τ) were calculated for τ = 0.01, 0.02, . . . , 0.12 s. Figure 4.26 plots

in blue the estimated values of NMSE(τ) along with standard deviations σNMSE(τ)

represented as error bars. These data were also fit with a shifted hyperbolic function
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Figure 4.26. Plot of NMSE(τ) and σNMSE(τ) for different values of τ , along with its
shifted hyperbolic fit.

of the form α/τ +β where coefficients α and β were found by minimizing the weighted

error metric

ε(α, β) =
N∑

n=1

wn

[
NMSE(τn) − α

τn

− β

]2

,
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where N = 12 and τn = 0.01n, for n = 1, . . . , N . Weights w1, . . . , wN were chosen

as the reciprocals of the variances σ2
NMSE(τ1), . . . , σ

2
NMSE(τN ). Our shifted hyperbolic

fit function, which was plotted in red in Figure 4.26, is in good agreement with the

values of NMSE(τ) we found via our simulation code. The fact that β > 0, also

suggests that NMSE(τ) does not go to 0 as more and more data are collected. This

preliminary result, however, necessitates further investigation.

4.9 LMMLEM Reconstruction of PET Data

NOTE: Parts of this section have been adapted from L. Caucci, W. C. J. Hunter,

L. R. Furenlid, and H. H. Barrett, “List-mode MLEM Image Reconstruction from 3D

ML Position Estimates,” in IEEE Nuclear Science Symposium Conference Record,

pages 2643–2647, Knoxville, TN, October/November 2010 [317].

Consider the PET setup shown in Figure 4.27.

180◦

Object f

Detector D1 Detector D2

Figure 4.27. Setup of a simple PET system

Assume that the field of view is subdivided into N voxels, centered at locations

rn, for n = 1, . . . , N . The goal of any image reconstruction algorithm is to calculate

an estimate f̂ = {f̂1, . . . , f̂N} for the discrete set of numbers f = {f1, . . . , fN}. Here,
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f is a discrete approximation [69] to the unknown object f(r). The object of interest

has been injected with the radiotracer and pairs of photons are emitted from it.

The two photons in each pair travel along the same straight line, but in opposite

directions. We will refer to a coincidence event when both photons get collected by

the corresponding detector, and we will assume that a mechanism for pairing photon

collections is available. For example, this can be done by just recording the time of

interaction and pairing events that occurred within a small time interval [6].

Each of the two detectors shown in Figure 4.27 is made of a thick scintillation

crystal with PMT optical readout. From the PMT outputs for the jth coincidence

event collected by each detector, the 3D location of interactions R̂
(j)
1 and R̂

(j)
2 within

detectors D1 and D2, respectively, are estimated. These two estimates of locations

of interaction are paired to form the jth attribute vector Â(j) = (R̂
(j)
1 , R̂

(j)
2 ). Dur-

ing some acquisition time τ , a total of J coincidence events are collected, and the

attribute list Â = {Â(1), . . . , Â(J)} is formed. Given the list Â , the likelihood of

f = {f1, . . . , fN} is defined as [258,261]

L(f ; Â ) = pr(Â | f) = Pr(J | f)
J∏

j=1

pr(Â(j) | f), (4.68)

where we assume that Aj and Aj′ are statistically independent for all j 6= j′. The

quantity pr(Â(j) | f) is the probability density function for the attribute vector Â(j),

conditioned on f . It is useful to write [258]

pr(Â(j) | f) =
N∑

n=1

pr(Â(j) | n) Pr(n | f), (4.69)

in which pr(Â(j) | n) represents the probability density function of estimating Â(j) =

(R̂
(j)
1 , R̂

(j)
2 ) when a pair of photons is emitted from the nth voxel in the field of view,

and Pr(n | f) is the probability that a pair of photons is emitted from voxel n

when the discretized radiotracer distribution is f . In particular, we can calculate this
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probability as [258]

Pr(n | f) =
snfn∑N

n′=1 sn′fn′

, (4.70)

in which the numbers sn, with n = 1, . . . , N , are the voxel sensitivities. Each sn is the

probability that the two photons emitted from voxel n are collected by the detectors.

Notice that the quantities sn can be measured or they can also be calculated from

the system geometry.

The LMMLEM reconstruction algorithm takes the form given in (4.10), which we

report below for convenience:

f̂ (k+1)
n = f̂ (k)

n

{
1

τ

J∑

j=1

pr(Â(j) | n)
∑N

n′=1 pr(Â(j) | n′)sn′ f̂
(k)
n′

}
.

where k is the iteration index. Relevant properties of LMMLEM reconstruction are

presented in [258]. For example, under broad conditions, the estimate f̂ (k) calculated

according to the formula above converges to the global maximum of the likelihood

L(f ; Â ) in (4.68).

Evaluation of the LMMLEM iterative expression above requires the calculation

of pr(Â(j) | n), which is the probability density function for the attribute vector Â(j)

given that a photon pair is emitted from the nth voxel. By Bayes’ rule, we can write

pr(Â(j) | n) = pr(R̂
(j)
1 , R̂

(j)
2 | n) =

=

∫

D1

∫

D2

pr(R̂
(j)
1 , R̂

(j)
2 | R

(j)
1 , R

(j)
2 , n) pr(R

(j)
1 ,R

(j)
2 | n) d3R

(j)
2 d3R

(j)
1 ,

where
∫

D1
and

∫
D2

denote integration over the 3D volume of detector 1 and detector 2,

respectively. Notice that we have

pr(R̂
(j)
1 , R̂

(j)
2 | R

(j)
1 , R

(j)
2 , n) = pr(R̂

(j)
1 , R̂

(j)
2 | R

(j)
1 , R

(j)
2 ) =

= pr(R̂
(j)
1 | R

(j)
1 ) pr(R̂

(j)
2 | R

(j)
2 ),

because the estimation of R̂
(j)
i , for i = 1, 2, depends only on the true location of

interaction R
(j)
i in detector Di and estimation in one detector is independent on the
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estimation in the other detector. The expression for pr(Â(j) | n) is now [46]

pr(Â(j) | n) =

∫

D1

∫

D2

pr(R̂
(j)
1 | R

(j)
1 ) pr(R̂

(j)
2 | R

(j)
2 ) ×

× pr(R
(j)
2 | R

(j)
1 , n) pr(R

(j)
1 | n) d3R

(j)
2 d3R

(j)
1 .

The expression above contains probability density functions of the form pr(R̂ | R).

These densities are the densities for the location of interaction estimates R̂, when the

actual location of interaction is R. In other words, pr(R̂ | R) measures the detector

performance. The concept of detector performance can be made more formal by using

the Fisher information matrix FR at location R [69,139,318]. More details concerning

FR, including an approximate expression for pr(R̂ | R) will be provided in the next

chapter. For now, we will assume that an expression for pr(R̂ | R) is available.

To derive an expression for pr(R
(j)
1 | n), consider a small cube V

R
(j)
1

of side ε

centered at R
(j)
1 . We will first consider the probability that an interaction occurs

within the cube V
R

(j)
1

, given that a photon is emitted from a point rn inside the nth

voxel of the field of view. We have [69]

Pr
(
interaction in V

R
(j)
1

| n
)
≈ ε3µpee

−µtot∆1(R
(j)
1 ;rn)

4π|R(j)
1 − rn|2

,

in which µpe is the photoelectric attenuation coefficient for the detector crystal, µtot

is its total attenuation coefficient, and the quantity ∆1(R
(j)
1 ; rn) measures how much

the photon from rn traveled within the detector crystal before reaching point R
(j)
1 ,

as shown in Figure 4.28. The approximation in the expression above comes from the

fact that point rn is allowed to vary over the entire volume of the nth voxel.

By simple probability properties:

pr(R
(j)
1 | n) = lim

ε→0

Pr
(
interaction in V

R
(j)
1

| n
)

ε3
≈ µpee

−µtot∆1(R
(j)
1 ;rn)

4π|R(j)
1 − rn|2

. (4.71)

To calculate pr(R
(j)
2 | R

(j)
1 , n), we start by recalling that, by our assumption, the

two photons that interacted at R
(j)
1 and R

(j)
2 travel in opposite directions along the
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D1 D2

∆1(R
(j)
1 ; rn)

∆2(R
(j)
2 ; rn)

rn

R
(j)
1

R
(j)
2

Figure 4.28. Definition of ∆1(R
(j)
1 ; rn) and ∆2(R

(j)
2 ; rn)

same line, and this line must contain point rn as well. Therefore, the point R
(j)
2 must

belong to the intersection between detector D2 and the line

R = R
(j)
1 + (rn − R

(j)
1 )`, −∞ < ` < ∞ (4.72)

passing through R
(j)
1 and rn. It is convenient to introduce the function

ψD2(R) =

{
1 if R ∈ D2,
0 otherwise,

so that

pr(R
(j)
2 | R

(j)
1 , n) ≈ µpee

−µtot∆2(R
(j)
2 ;rn)

∫ ∞

−∞
ψD2

(
R

(j)
1 + (rn − R

(j)
1 )`

)
×

× δDir

(
R

(j)
2 − R

(j)
1 − (rn − R

(j)
1 )`

)
d`, (4.73)

where δDir(R) is the 3D Dirac delta function. Notice that the integrand in the expres-

sion above is nonzero only when the point R
(j)
2 belongs to the intersection between

the line defined in (4.72) with the detector D2. Along with the units of µpe, the 3D

Dirac delta function integrated over a line makes the dimensions of pr(R
(j)
2 | R

(j)
1 , n)

equal to inverse volume, as they should. Putting the pieces together, we find

pr(Â(j) | n) ≈

=
µ2

pe

4π

∫

D1

pr(R̂
(j)
1 | R

(j)
1 )

e−µtot∆1(R
(j)
1 ;rn)

|R(j)
1 − rn|2

∫

D2

pr(R̂
(j)
2 | R

(j)
2 )e−µtot∆2(R

(j)
2 ;rn) ×
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×
∫ ∞

−∞
ψD2

(
R

(j)
1 + (rn − R

(j)
1 )`

)
δDir

(
R

(j)
2 − R

(j)
1 − (rn − R

(j)
1 )`

)
d` d3R

(j)
2 d3R

(j)
1 .

(4.74)

Theoretical arguments we summarized in § 3.2 and simulation results we will

discuss in the next chapter allow us to make some assumptions which, in turn, will

allow fast numerical calculation of the integrals that define pr(Â(j) | n). First of all,

because the Fisher information matrix FR is slowly varying with respect to R and

ML estimates R̂MLE are within a short distance from R, we can assume

FR ≈ FR̂MLE
,

and

|R(j)
1 − rn|2 ≈ |R̂(j)

MLE,1 − rn|2.

Furthermore, if we assume R ≈ R̂MLE, then we can write

∆i(R
(j)
i ; rn) ≈ ∆i(R̂

(j)
MLE,i; rn), i = 1, 2.

With these approximations and by performing the integral over R
(j)
2 in (4.74), we get

pr(Â(j) | n) ≈ µ2
pe

4π

e−µtot[∆1(R̂
(j)
MLE,1;rn)+∆2(R̂

(j)
MLE,2;rn)]

|R̂(j)
MLE,1 − rn|2

∫

D1

pr(R̂
(j)
MLE,1|R

(j)
1 ) ×

×
∫ ∞

−∞
ψD2

(
R

(j)
1 + (rn − R

(j)
1 )`

)
pr

(
R̂

(j)
MLE,2|R

(j)
1 + (rn − R

(j)
1 )`

)
d` d3R

(j)
1 , (4.75)

for which we will assume

pr(R̂MLE|R) ≈

√
det

(
FR̂MLE

)

(2π)3/2
exp

[
−1

2

(
R̂MLE − R

)T

FR̂MLE

(
R̂MLE − R

)]
. (4.76)

The expression in (4.75) is amenable to a fast implementation for the calculation

of pr(Â(j)|n). For example, because the density pr(R̂MLE|R) is sharply peaked and is

essentially zero a few millimeters away from the estimated value R̂MLE, we can replace

the integration over D1 with an integration over a small detector volume centered at

R̂
(j)
MLE,1. Also, the line integral that appears in (4.75) can be expressed in terms of



218

erf(u) = 2π−1/2
∫ u

0
exp(−v2) dv. To show this, we can begin by noticing that detectors

are usually shaped as a parallelepiped, hence the quantity ψD2

(
R

(j)
1 + (rn − R

(j)
1 )`

)

is nonzero only when ` ∈ [`1, `2], for some values of `1 and `2 that depend on R
(j)
1 ,

rn, and the detector geometry, as shown in Figure 4.29.

D1 D2

rn

R
(j)
1

` = 0

` = 1

` = `1

` = `2

Figure 4.29. Definition of `1 and `2

Upon substitution of (4.76), the line integral over ` that appears in (4.75) becomes

I
(
R

(j)
1

)
=

√
det

(
F

R̂
(j)
MLE,2

)

(2π)3/2

∫ `2

`1

exp

[
−1

2

(
a − b`

)T

F
R̂

(j)
MLE,2

(
a − b`

)]
,

in which we have set

a = R̂
(j)
MLE,2 − R

(j)
1 , b = rn − R

(j)
1 .

To further simplify the notation, assume

A2 = aTF
R̂

(j)
MLE,2

a, B = aTF
R̂

(j)
MLE,2

b, C2 = bTF
R̂

(j)
MLE,2

b,

so that
(
a − b`

)T

F
R̂

(j)
MLE,2

(
a − b`

)
= A2 − 2B` + C2`2,

in which we used the fact that the matrix F
R̂

(j)
MLE,2

is symmetric. If we complete the

square, we get

A2 − 2B` + C2`2 = (α − C`)2 + β,
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provided that we set

α =
B

C
, β = A2 − B2

C2
.

With these substitutions, we obtain

I
(
R

(j)
1

)
=

√
det

(
F

R̂
(j)
MLE,2

)

(2π)3/2
e−

1
2
β

∫ `2

`1

e−
1
2
(C`−α)2 d` =

=

√
det

(
F

R̂
(j)
MLE,2

)

C(2π)3/2
e−

1
2
β

∫ C`2−α

C`1−α

e−
1
2
u2

du =

=

√
π

2C

√
det

(
F

R̂
(j)
MLE,2

)

(2π)3/2
e−

1
2
β
[
erf(C`2 − α) − erf(C`1 − α)

]
.

Using the result above in (4.75) and (4.76) once again to expand the definition of

pr(R̂
(j)
MLE,1|R

(j)
1 ), we get

pr(Â(j) | n) ≈
√

πµ2
pe

64π4

√
det

(
F

R̂
(j)
MLE,1

)√
det

(
F

R̂
(j)
MLE,2

)
×

×
∫

D1

e−
1
2
β

C

[
erf(C`2 − α) − erf(C`1 − α)

]
×

× exp

[
−1

2

(
R̂

(j)
MLE,1 − R

(j)
1

)T

F
R̂

(j)
MLE,1

(
R̂

(j)
MLE,1 − R

(j)
1

)]
d3R

(j)
1 .

Even though our notation does not show it, quantities `1, `2, C, α, and β do depend

on the integration variable R
(j)
1 . Numerical calculation of the expression above can

be performed by evaluating the integrand at a few points R
(j)
1 around R̂

(j)
MLE,1 and

by summing up all such values. Reconstruction results will be discussed in the next

chapter.
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CHAPTER 5

Parallel Computing and

Algorithms Implementation

We begin this chapter with a brief introduction to parallel computing. We then

continue by discussing in some details two popular computing platforms: the Cell

Broadband Engine Architecture (CBEA) and graphics processing units (GPUs). Im-

plementations of the contracting-grid algorithm for the 2D and 3D estimation of

position of interaction within a scintillation crystal are discussed and performance

results presented. GPU devices turn out to be particularly suited to performing list-

mode maximum-likelihood expectation-maximization (LMMLEM) reconstruction, as

we will show towards the end of this chapter. As a practical application, the LMM-

LEM algorithm is applied to real data acquired with the ModPET imaging system [6].

We conclude this chapter with a discussion of fast generation of random numbers on

a GPU device.

5.1 Why Parallel Computing?

In this section, we will give a brief introduction to parallel computing. We will

not be exhaustive; for an excellent discussion, the interested reader can consult, for

example, [319] or [320].

Until a few years ago, frequency scaling was the dominant way to increase the

performance of a computer. Electronic components were designed to work at higher

and higher frequency so that the frequency of the clock that drove them could be

increased. Assuming that the execution of an instruction took a constant number of

clock cycles, as the frequency increased, the time required to carry out an instruction

shortened.
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However, about a decade ago, frequency scaling started to show its limitations, as

shown in Figure 5.1. Circuit technology poses a limit on the speed at which a logic

gate can switch from one state to the other. Furthermore, as the frequency (clock

rate) increases, power consumption increases at the same rate [321]. Cooling becomes

a huge problem. Another problem is that the speed at which a signal propagates inside

a processing unit is finite. For a clock frequency of, say, 3 GHz, the distance a signal

can travel during a clock cycle is just a few centimeters. Building small circuits might

just not be possible. In any case, a small circuit is harder to cool than a larger one

consuming the same amount of power.

1980 1985 1990 1995 2000 2005 2010
10

0

10
1

10
2

10
3

10
4

Year of introduction

C
lo

ck
ra

te
[M

H
z]

Figure 5.1. Log-scale plot of clock rates for some popular microprocessors intro-
duced in the past three decades

A possible way to increase performance and solve the problems mentioned above

is to abandon serial computation (in which one execution flow exists at any time and

the instructions are executed sequentially, one after the other) and consider hardware
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and software components able to carry out parallel computing. More specifically, we

refer to parallel computing as the ability to carry out many calculations simultane-

ously [319, 320, 322]. Parallel computing solves the problems we had with frequency

scaling. In fact, rather than designing a single, powerful processing element that

carries out operations fast, parallel computing allows us to break down the problem

into subproblems which are solved concurrently by many slower processing elements.

Collectively, the computational power of these slower processing elements surpasses

the power of the single and faster processing element.

We can classify parallel hardware by the level at which parallelism is supported.

We can have multi-core computer, multi-processor computer, computer clusters, or

any combination of them. A multi-core computer [319,323] is equipped with a single

CPU that supports two or more execution threads. The cores in multi-core CPU

execute instructions independently of each other. All the cores are implemented in

the same physical package and so they might share some on-die resources, such as

cache memory. The number of cores is usually rather small. Dual- or quad-core

architectures are very popular. The majority of the CPUs produced today are multi-

core.

In a multi-processor architecture, two or more processors are connected together

by the computer’s circuitry so that they share computer resources, such as the main

memory and the disk [319]. A crucial part of a multi-processor architecture is the

communication link between the main memory and the processors [324]. The com-

munication can be by means of a system bus or a crossbar switch. A system bus

consists of a bus that connects all the processing units and the memory. Only one

communication at a time is allowed. Because of this limitation, a system bus does not

scale very well with the size of the system and it is rarely used for high-performance

computing. A crossbar switch is a switch able to connect multiple inputs to multiple

outputs. The easiest way to conceptually visualize how a crossbar switch works is by

imaging a set of horizontal input lines and a set of vertical output lines. Every time



223

a horizontal (input) line crosses a vertical (output) line, we have a possible communi-

cation link between an input line and an output line. Thus, a crossbar switch is able

to support more than one communication at a time. Crossbar switches are frequently

used in high-end multi-processor systems.

Finally, in a cluster architecture, we have many computers connected together

via a dedicated fast network. Each computer in the computer cluster has its local

memory, disk storage, and peripherals. Usually, all the computers in the cluster have

the same or similar hardware configuration. Very often, a file server is part of the

cluster. Computers in the cluster might use their local disk(s) as a temporary storage

media (besides for storing the operating system).

Writing programs for a parallel computer architecture is more difficult than writing

sequential programs [325,326]. A parallel program consists of many subtasks running

in parallel. The various subtasks might need to communicate and/or synchronize

with each other to carry out the computation. Communication and synchronization

requirements introduce a whole new plethora of programming difficulties and bugs.

The matter is made worse by the difficulty and complexity that testing a parallel

program pose. For example, the relative speed at which subtasks are completed

might change the final result if synchronization is not coded appropriately.

Given a sequential application, we can usually identify portions of the code that

can run in parallel and other parts that cannot be run in parallel but must be run

sequentially. This gives a theoretical upper limit for the speedup S that can be

obtained when a sequential program is ported to a parallel architecture and run on

P processors. If α is the fraction of total running time that is spent in the sequential

program by running portions of the code that can be parallelized, then the maximum

theoretical speedup Smax is provided by Amdahl’s law [327] and it is

Smax =
1

(1 − α) + α
P

.

In particular, we see that as the number of processors increases (i.e., P → ∞), the
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maximum theoretical speedup is 1
1−α

. In other words, the part of code that must

run sequentially limits the speedup that can be obtained. Amdahl’s law makes one

important assumption, namely that the total number of communication messages

between processors grows no more than linearly with the number of processors. If

this is not the case, Amdahl’s law cannot be applied.

In some cases, the computational overhead needed to handle P processors can be

large. This would be, for example, the case in which large amounts of data are to be

transmitted over a network link or system bus to all computing devices involved in

the computation. To account for this, let β denote the portion of time that is spent

in ancillary computation when only one processor is used. For example, β would

be the fraction of total running time needed to send some amount of data over a

network link. With this new parameter, we can modify Amdahl’s law to account for

the computational overhead needed to handle P processors:

Smax =
1

(1 − α − β) + α
P

+ Pβ
. (5.1)

Contrary to the previous case, now when P → ∞, the maximum theoretical speedup

Smax converges to zero. Plots in Figure 5.2 summarize the behavior of the maximum

theoretical speedup Smax as function of the number of processes P . The red curve is a

plot of Smax according to Amdahl’s law, while the blue plot shows Smax as calculated

according to the modification to Amdahl’s law we provided in (5.1). For our plots,

α = 0.70 and β = 0.02. The two curves are initially very similar. However, Smax

for the modified version of Amdahl’s law soon starts to decrease as the number of

processors increases.

5.2 The Cell Broadband Engine Architecture

The Cell Broadband Engine Architecture (CBEA) or simply Cell BE, is a single-

chip microprocessor architecture developed by Sony, Toshiba, and IBM over a 4-year
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period starting in March 2001 [328, 329]. This microprocessor has primarily been

developed to deliver high performance [330, 331] and it equips the latest generation

of Sony’s PlayStation game console, namely the PlayStation 3. The Cell BE has also

equipped other devices as well, such as blade servers and acceleration cards. Due to

its low cost and availability, the Cell BE has been widely used to carry out scientific

applications, as reported in [332–336].

Schematically shown in Figure 5.3, the Cell BE architecture includes [337,338]:

• one Power Processor Element (PPE);

• eight Synergistic Processor Elements (SPEs);

• one Element Interconnect Bus (EIB);

• two memory controllers;

• two input/output controllers.

The PPE the in Cell BE is a PowerPC processor capable of running two threads

at the same time. Two distinct register files are available, one for each thread. Each

register file consists of 32 128-bit registers. Data and instruction caches are available

on the PPE as well. The PPE is capable of running 64-bit RISC code (optimized

for performing simple operations fast) and vector instructions as wells [338]. Within

the processor architecture, the PPE interacts with the operating system and it or-

chestrates other resources, the most important being the SPEs. The PPE runs at

a 3.2 GHz clock frequency and it can manipulate data and perform arithmetic oper-

ations via an arithmetic-logic unit (ALU) called Power Processing Unit (PPU).

The SPEs are RISC processors specialized for data-intensive vector operations.

Each SPE features 128 general-purpose registers, each 128 bits wide. Custom-designed

vector operations are used to manipulated the content of the registers. Because each

register is 128 bits (16 bytes) wide, it can store two double precision floating-point
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numbers or four single-precision floating point numbers. Integer types are allowed

as well [338]. In such a case, each register can store four signed or unsigned integer

values, eight signed or unsigned short-integer values, or sixteen signed or unsigned

character values. Vector instructions—which are executed by the SPE’s Synergistic

Processing Unit (SPU)—perform the same operation on each of the values stored

in the vector registers involved in the operation. For example, we can consider two

registers, each storing four floating point values, and perform a vector addition. In

this case, each component of one register is added to the corresponding component

of the other register. The SPE does not directly support scalar operations. Scalar

operations are, however, supported by the compiler, which translates each scalar op-

eration that appears in the code into the corresponding vector operation. Only one

component of the result of the vector operation is then used; the other components

are ignored [338].

Each SPE also includes a Local Store (LS) capable of storing up to 256 kB of data

or code [338]. A Direct Memory Access (DMA) controller completes each SPE. The

task of the DMA controller is to orchestrate data transfers from and to the SPE’s LS

and the main memory or another SPE’s local store. A programming library provides

the necessary programming interface to access the DMA controller functionalities,

such as initiate a DMA transfer. It is worth noting that the DMA controller can govern

data transfers while the rest of the SPE is involved in a computation [338]. This allows

overlapping vector operations with data transfers. Double-buffering, which consists

in transferring data to or from a portion of the LS while another portion of the LS

memorizes data on which computation is being performed, is a technique commonly

used to increase performance. The LS is the only memory space that an SPE can

directly access: access to another SPE’s LS or the main memory require a DMA data

transfer.

The EIB allows communication between the processing elements (the PPE and

the SPEs) with the on-chip memory and input/output controllers. The EIB consists
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of four 16-byte-wide data rings. Data are transferred in blocks of 128 bytes each.

Because of the ring structure of the EIB, the location of the two processing units

involved in the data transfer will affect latency. In other words, mean data latency

increases with the number of connection “hops” the data have to go through [338].

Each ring is unidirectional, meaning that for a given ring, data always move clockwise

or counterclockwise. However, to minimize mean data latency, two rings always move

data in a clockwise fashion and the remaining two rings always in a counter-clockwise

fashion. The EIB is capable of carrying out many data transfers concurrently, thus

reaching a theoretical overall bandwidth of 204.8 GB/s [338].

The two memory controllers (shown in Figure 5.3) interface the Cell BE with the

system’s main memory [338]. The amount of main memory supported can vary from

64 MB to 64 GB. Again, in an effort to increase performance, the memory controllers

can queue up to 64 memory reads and up to 64 memory writes. Different priority

strategies and optimizations are available. For example, it is possible to make SPE

reads have a higher priority with respect to all other reads. Speculative reads and

“slow” mode (to reduce power consumption) are available as well [338]. The theoretical

maximum bandwidth the two memory controllers provide altogether is 25.6 GB/s.

Finally, the two input/output controllers (shown in Figure 5.3) interface the

Cell BE to other devices [338]. Such devices can be, for example, another mem-

ory unit, a video card, or even another Cell BE microprocessor. Each input/output

controller is interfaced with twelve 8-bit-wide lines, and can work at a theoretical

peak bandwidth of 76.8 GB/s.

5.2.1 Basic Programming Notions

In Cell BE programming, the PPE is treated as a conventional CPU. As we saw

before, the processing unit in the PPE is capable of performing arithmetic and logic

operations. In addition, the PPE has the capability to initiate DMA transfers and
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start code execution on the SPEs. It is this latter feature that mostly differentiate

the PPE’s architecture from a conventional CPU [338].

Because of design choices, some care must be paid when data structures are al-

located and DMA transfers performed. For example, a single DMA data transfer

cannot exceed 16 kB. If the block of data to be transferred is larger than 16 bytes, its

size (in bytes) must be a multiple of 16. Shorter data transfers are allowed, provided

that the size of the block of data being transferred is 1, 2, 4, or 8 bytes. Finally, the

source and the destination memory buffers must be naturally aligned, meaning that

the last four bits of the source and destination addresses must be the same [338]. As

explained above, the DMA controller can operate independently from the processing

unit. This implies that the processing unit can perform other operations while data

are being transferred. Synchronization barriers are provided to stop code execution

in the processing unit until pending DMA transfers are completed.

A Cell BE program typically makes use of threads to run parallel code on the

SPEs. Each thread receives the information about the task to be performed on the

SPE. A thread is typically responsible for loading the code in the SPE’s LS as well

as for starting code execution on the SPE. The SPE needs to have data loaded in

the LS to process them. As discussed above, DMA transfers allow data transfers

from the main memory to the LS, and vice versa. Once data are loaded in the LS,

the SPU typically process them. Because the SPUs are optimized for data intensive

vector operations, greater speedup will be attained if data are processed using vector

instructions. At the end of the computation, the result can be copied to main memory

using a DMA transfer and the SPU code fragment terminates executing [338].

The programming model discussed above might seem very complicated and hard to

use. Fortunately, there are programming tools [339] that provide a simple, high-level

data-parallel model that is easy to understand and that maps onto the capabilities

of the Cell BE. Often times, these tools introduce new data types and functions to

conveniently expose to the programmer the data parallelism that the hardware allows
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and take advantage of it.

5.2.2 An Example

In this section, we want to provide a simple reference example of a Cell BE program.

The example we considered performs a componentwise addition of the elements of

two vectors. The example consists of two pieces of code: one to be run on the PPU

and the other on the SPUs. Because these two types of processing units have different

instruction sets, the two pieces of code are stored as two different files and they have to

be compiled with two different compilers, each one targeting a particular instruction

set. Finally, we have a third file that contains definitions common to both pieces of

code.

The PPU code is responsible for allocating and filling up the data arrays as well

as filling up two particular data structures. The first data structure contains data

and parameters that each SPU needs to carry out its task. We will refer to this

data structure as the “control block.” Information stored in the control block would

include the address of the data arrays and the number of array elements each SPU

will have to process. The second data structure contains information the operating

system needs to initiate code execution on the SPU. Within the Cell BE programming

documentation [338], this information is collectively referred to as the “context.”

To make it possible for the PPU to start code execution on all the SPU available,

six threads are created. The code was developed to be run on a Sony PlayStation 3

game console, on which only six (out of eight) SPUs can be used by the programmer.

By creating six threads, we are guaranteed that each SPU available will be occupied

with executing SPU code. The SPUs will run code independently from the PPU.

This makes it possible to use the PPU as an additional processing unit on which

computation can be carried out. In the example reported below, we decided to use

the PPU to process the “leftover” array elements. For example, the total number
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of array elements to process might not be a multiple of six. Rather than having a

different number of array elements to be processed by each SPU, we opted to have

the same number of elements processed by each SPU and to leave the remaining

elements for processing on the PPU. This implementation choice makes the code

more understandable and easier to debug.

The PPU then waits for all the SPUs to terminate their execution and, finally,

the result is displayed on the screen.

File main_ppu.c

#include <math.h>

#include <stdio.h>

#include <libspe2.h>

#include <pthread.h>

#include "my_defines.h"

///////////////////////////////////////////////////////////////////////////////////////////

extern spe_program_handle_t array_add_spu;

///////////////////////////////////////////////////////////////////////////////////////////

void *function_spe_thread(void *arg);

///////////////////////////////////////////////////////////////////////////////////////////

struct spe_thread_data_t {

spe_context_ptr_t context;

unsigned int entry;

pthread_t pthread;

void *argp;

void *envp;

};

///////////////////////////////////////////////////////////////////////////////////////////

int main(int argc, char **argv) {

static struct array_add_ctrl_blk_t array_add_ctrl_blks[6] __attribute__((aligned(128)));

static float a[ARRAY_SIZE] __attribute__((aligned(128)));

static float b[ARRAY_SIZE] __attribute__((aligned(128)));

static float c[ARRAY_SIZE] __attribute__((aligned(128)));

static struct spe_thread_data_t thread_infos[6];

int elements_per_spu, i;

// Fill in the input arrays

for(i = 0; i < ARRAY_SIZE; ++i) {

a[i] = cosf(1.00 + i);
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b[i] = sinf(1.00 + i);

}

// Calculate the number of array elements each SPU will process

elements_per_spu = (ARRAY_SIZE / 6) & ~0x0003;

// Loop to fill in the control blocks and start threads

for(i = 0; i < 6; ++i) {

// Set the number of array elements to process

array_add_ctrl_blks[i].num_elements = elements_per_spu;

// Set the address of arrays

array_add_ctrl_blks[i].array_a = a + i * elements_per_spu;

array_add_ctrl_blks[i].array_b = b + i * elements_per_spu;

array_add_ctrl_blks[i].array_c = c + i * elements_per_spu;

// Set the address of the control block

thread_infos[i].argp = & array_add_ctrl_blks[i];

thread_infos[i].envp = NULL;

thread_infos[i].context = spe_context_create(0, NULL);

// Load the code in the SPE’s LS

spe_program_load(thread_infos[i].context, & array_add_spu);

thread_infos[i].entry = SPE_DEFAULT_ENTRY;

// Start a thread to run code on an SPE

pthread_create(& thread_infos[i].pthread, NULL, function_spe_thread, & thread_infos[i]);

}

// Process the ‘‘leftover’’ array elements

for(i = (6 * elements_per_spu); i < ARRAY_SIZE; ++i) {

c[i] = a[i] + b[i];

}

// Wait for the termination of the threads

for(i = 0; i < 6; ++i) {

pthread_join(thread_infos[i].pthread, NULL);

spe_context_destroy(thread_infos[i].context);

}

// Print the result on the screen

for(i = 0; i < ARRAY_SIZE; ++i) {

printf("%f␣+␣%f␣=␣%f\n", a[i], b[i], c[i]);

}

return(0);

}

///////////////////////////////////////////////////////////////////////////////////////////

void *function_spe_thread(void *arg) {

register struct spe_thread_data_t *data = (struct spe_thread_data_t *) arg;

// Execute SPE code and wait for it to terminate

spe_context_run(data -> context, & (data -> entry), 0, data -> argp, data -> envp, NULL);

// Terminate the thread

pthread_exit(NULL);

}

Concerning the SPU code, whose listing is reported below, we see that the first

task the SPU code needs to perform is a DMA transfer to copy the control block

from main memory to the LS. The address of the control block is conveniently passed

as a parameter to the main SPU program. The necessary memory buffers are then

allocated (by default in the SPE’s LS) and the input data is copied from main memory
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to the buffers in the LS. The data are processed by vector operations. In our case,

vector additions are performed between the elements of the input arrays and the

result is copied to a third array. Because we are performing a vector operation that

involves single-precisions floating point numbers, four array elements of the input

arrays are processed by each call of the vector addition operation. Thus, the body of

the for(...) loop repeats a number of times that is given by the number of array

elements divided by four. After all elements are processed, the result is copied from

the LS to main memory using a DMA transfer. The SPU code then terminates.

We finally note that in an attempt to make the code clearer and to cope with

some of the limitations that DMA transfers have (such as maximum block size and

alignment requirements), we wrote some functions that will break up a large DMA

data transfer into a sequence of smaller ones.

File array_add_spu.c

#include <libmisc.h>

#include <spu_mfcio.h>

#include "my_defines.h"

///////////////////////////////////////////////////////////////////////////////////////////

void gen_mfc_get(void *ls, uint64_t ea, uint32_t size, uint32_t tag, uint32_t tid, uint32_t rid);

void gen_mfc_put(void *ls, uint64_t ea, uint32_t size, uint32_t tag, uint32_t tid, uint32_t rid);

///////////////////////////////////////////////////////////////////////////////////////////

int main(unsigned long long speid, unsigned long long argp, unsigned long long envp) {

static struct array_add_ctrl_blk_t array_add_ctrl_blk __attribute__((aligned(128)));

float *a, *b, *c;

int i, n;

// Get the control block via a DMA transfer

mfc_get(& array_add_ctrl_blk, argp, sizeof(array_add_ctrl_blk), 15, 0, 0);

// Wait for the termination of the DMA transfer

mfc_write_tag_mask(1 << 15);

mfc_read_tag_status_all();

// Allocate memory for the input arrays

n = array_add_ctrl_blk.num_elements;

a = calloc_align(n, sizeof(*a), 7);

b = calloc_align(n, sizeof(*b), 7);

// Get the input data via DMA transfers

gen_mfc_get(a, (uint32_t) array_add_ctrl_blk.array_a, n * sizeof(*a), 15, 0, 0);

gen_mfc_get(b, (uint32_t) array_add_ctrl_blk.array_b, n * sizeof(*b), 15, 0, 0);

// Allocate memory for the output array
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c = calloc_align(n, sizeof(*c), 7);

// Wait for the termination of the DMA transfers

mfc_write_tag_mask(1 << 15);

mfc_read_tag_status_all();

// Loop to process the data

for(i = 0; i < (n >> 2); ++i) {

// Perform a vector addition of four data pairs at a time

*(((vector float *) c) + i) = spu_add(*(((vector float *) a) + i), *(((vector float *) b) + i));

}

// Start a DMA transfer to copy the result to main memory

gen_mfc_put(c, (uint32_t) array_add_ctrl_blk.array_c, n * sizeof(*c), 15, 0, 0);

free_align(a);

free_align(b);

// Wait for the termination of the DMA transfer

mfc_write_tag_mask(1 << 15);

mfc_read_tag_status_all();

free_align(c);

return(0);

}

///////////////////////////////////////////////////////////////////////////////////////////

void gen_mfc_get(void *ls, uint64_t ea, uint32_t size, uint32_t tag, uint32_t tid, uint32_t rid) {

unsigned register int block_size;

while(size > (16 * 1024)) {

mfc_get(ls, ea, 16 * 1024, tag, tid, rid);

ls += 16 * 1024;

ea += 16 * 1024;

size -= 16 * 1024;

}

mfc_get(ls, ea, size & ~0x000f, tag, tid, rid);

ls += size & ~0x000f;

ea += size & ~0x000f;

size &= 0x000f;

block_size = 8;

do {

if(size >= block_size) {

mfc_get(ls, ea, block_size, tag, tid, rid);

ls += block_size;

ea += block_size;

size -= block_size;

}

block_size >>= 1;

} while(block_size > 0);

return;

}

void gen_mfc_put(void *ls, uint64_t ea, uint32_t size, uint32_t tag, uint32_t tid, uint32_t rid) {

unsigned register int block_size;

while(size > (16 * 1024)) {

mfc_put(ls, ea, 16 * 1024, tag, tid, rid);

ls += 16 * 1024;

ea += 16 * 1024;

size -= 16 * 1024;

}

mfc_put(ls, ea, size & ~0x000f, tag, tid, rid);

ls += size & ~0x000f;
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ea += size & ~0x000f;

size &= 0x000f;

block_size = 8;

do {

if(size >= block_size) {

mfc_put(ls, ea, block_size, tag, tid, rid);

ls += block_size;

ea += block_size;

size -= block_size;

}

block_size >>= 1;

} while(block_size > 0);

return;

}

File my_defines.c

#define ARRAY_SIZE 1024

struct array_add_ctrl_blk_t {

int num_elements;

float *array_a;

float *array_b;

float *array_c;

} __attribute__((aligned(16)));

5.3 The CUDA Environment

As desktop computers’ computational power increases, so does the demand for fast,

real-time, 3D graphics rendering. Fueled by the game and entertainment industry, to-

day’s graphics processing units (GPUs) have become highly parallel, general-purpose

computing devices [340]. Because of mass production, newer products provide higher

and higher performances at very competitive prices.

In this context, NVIDIA launched in 2006 a programming environment called

Compute Unified Device Architecture or CUDA which allows programmers to access

the tremendous parallel capabilites that modern GPU devices offer. More specifi-

cally, the CUDA programming model consists of a minimal extension to the C/C++

programming language, plus a runtime library [340]. Because of its simple, yet pow-

erful model, CUDA has become extremely popular and successful in the scientific

community [341–353].
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5.3.1 Basic Programming Notions

Because of their intended use in highly parallel data-intensive applications, one of

the key design strategies of today’s GPU devices was to optimize data manipulation

and processing versus flow control. Indeed, this is the case of most gaming and

entertainment applications in which the same operation is performed on many data

elements, without the need of complicated flow control. As a result, the hardware

implementation of a GPU greatly differs from the hardware implementation of a

conventional CPU. In a GPU, many transistors are employed to optimize and speed

up floating-point operations and data manipulation. Support for advanced flow-

control (such as as branch prediction) is generally lacking or very limited.

In the CUDA language, the GPU unit is usually referred to as the device. The

device acts as a coprocessor to the rest of the computer, which is usually referred to

as the host. This notion will be used consistently in the remainder of this chapter.

We can also talk about host memory, which is the conventional system memory, and

device memory, which is physically installed in the same board the GPU device is

installed on (see Figure 5.4). The GPU can access only the memory installed on the

GPU device. Specialized library functions are provided to copy blocks of data from

the host memory to the device memory, from the device memory to the host memory,

or even from the device memory to the device memory [340].

In order to access the parallel capabilities of a CUDA-enabled device, the pro-

grammer writes kernels. A kernel in execution is usually referred to as a thread. To

reiterate, a kernel is a piece of code, while a thread is the abstract entity represented

by a piece of code that is executing. Thus, a kernel might give rise to many threads,

each of them working with different inputs and, potentially, starting executing at

different points in time [340]. Threads are grouped into 1D, 2D, or 3D blocks and

blocks are grouped into 1D or 2D grids. In CUDA, a particular calling syntax allows

the programmer to specify the size of blocks and grids. The maximum number of
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Figure 5.4. Diagram of a computer equipped with a GPU device

threads per block is a relatively small number. For current hardware implementa-

tions, such number does not exceed 1024 [340]. The number of blocks in a grid can

be much higher. For example, current hardware supports grids of size up to 65535 ×
65535 [340]. Figure 5.5 clarifies these concepts and presents an example of grouping

threads into blocks and blocks into a grid.

Thread

Block

Grid

Figure 5.5. Thread and block hierarchies in CUDA

Thread blocks are automatically scheduled by the hardware, without the interven-

tion of the operating system or the programmer. In a GPU device, threads have little
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context, and so their scheduling is extremely efficient: a thread ready for execution

can be selected and scheduled in at a cost of just a few clock cycles [340]. Because

of the large number of cores, hundreds of threads can be executed concurrently. This

represents a remarkable departure from conventional multi-core CPUs, which usu-

ally have no more than sixteen cores and do not requires many threads to keep the

hardware busy.

In a GPU device, the order in which threads are scheduled for execution is unde-

fined [340]. Therefore, the programmer cannot rely on any particular order. There are

cases, however, in which it is necessary to know if a thread has reached a particular

point in the execution. This can be accomplished via synchronization barriers [340].

When a threads encounters a synchronization barrier, its execution is suspended until

all the threads in the same block have reached the same synchronization barrier. In

a GPU device, synchronization is possible only among the threads in the same block.

No synchronization mechanism is provided for threads that belong to two different

blocks.

A synchronization barrier is used, for example, when a thread needs to read from

memory a value that another thread wrote. Without any synchronization mechanism,

a thread will not be able to know if the value being read is the correct one or is the

one from a previous computation. When the result of a computation depends on the

order or timing of other events, we talk about race conditions [354]. Synchronization

barriers are a common way to resolve race conditions.

A GPU device is equipped with a few different memory spaces. Memory can be

local, shared, or global. Local memory has a scope of one thread. This means that

only the thread to which a portion of this memory is associated, can access it. No

other threads can access that portion of memory. The local memory has the lifetime

of a thread, meaning that when the thread terminates the execution, the content of

its local memory becomes undefined and not accessible from other threads. Local

memory is, unfortunately, quite slow. It might take hundreds of clock cycles for
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retrieve a value from local memory. For this reason, the compiler tries to avoid using

it and will store local variables in registers whenever possible [340].

Shared memory is particular type of on-chip memory that can be shared among

all the threads in a thread block. This type of memory is very fast but, unfortunately,

only 16 kB of shared memory are available for each block. Shared memory is typically

used to shared data with other threads in the same block or to store temporary

results. In the former case, synchronization barriers are often needed to resolve race

conditions.

Global memory is visible to all threads and host, and its lifetime extends to the

whole application. Global memory is off-chip and it is not cached. Similarly to local

memory, accessing global memory usually requires hundreds of clock cycles. Global

memory is usually used to share input and output data between the device and the

host. This is accomplished by means of special function calls that the host uses to

copy data from host memory to global memory and vice versa. As for the case of

shared memory, the user must avoid race conditions when accessing global memory.

The same synchronization barrier described for shared memory is used to solve race

conditions when accessing global memory [340].

While all the types of memory spaces described above are read/write memories, a

GPU device is equipped with read-only memory spaces as well. These memory spaces

are referred to as constant and texture memories. To make use of these memory spaces,

the host code will have to set their content first. The content of these memory spaces

will be available to threads during the execution of kernel code. Contrary to the

memory spaces discussed before, the constant and the texture memory spaces are

cached, resulting in higher performance if the same datum is accessed multiple times

during the execution of kernel code. Furthermore, because these memory spaces can

be only read, no race condition between threads is possible.

The way in which texture memory is accessed is somewhat peculiar. As its name

suggest, the texture memory has been designed to facilitate texture rendering and
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other tasks that are common in graphics rendering and computer games. This is the

reason why texture memory supports features like linear interpolation and referencing

via normalized floating-point coordinates. Further details about constant and texture

memory spaces will not be provided here. The interested reader can consult the official

documentation [340]. A summary of all the memory types is reported in Table 5.1.

Memory Location Cached? Access Scope Lifetime

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads
in block Block

Global Off-chip No R/W All threads
and host Application

Constant Off-chip Yes R All threads
and host Application

Texture Off-chip Yes R All threads
and host Application

Table 5.1. Memory types available on a GPU device

As we mentioned earlier, a GPU device performs thread scheduling in hardware

with minimal overhead. Furthermore, the hardware is able to detect when a thread

is waiting for data to be read from memory. This makes it possible to temporarily

suspend the execution of threads that are waiting for data to be read from memory

and select for execution some threads that already have data available. By scheduling

out threads that are waiting for data, it is possible to hide memory access with actual

computation [340]. This makes GPU programming very convenient. Contrary to

Cell BE programming, the programmer does not need to worry about DMA data

transfers and make sure that such transfers are completed before the data are accessed

to. In a GPU device, all of this is handled transparently and automatically by the

hardware [340].

Figure 5.6 summarizes the basic steps that we need to carry out in a CUDA appli-

cation. First of all, the CPU instructs the GPU device to allocate some device memory



242

for the input data. This is accomplished via the library function cudaMalloc(...).

Data are copied to the device memory via the library function cudaMemcpy(...).

The control is then passed to the GPU device by means of a kernel call. The syn-

tax of such a call is of the form my_kernel<<<N, M>>>(...), in which my_kernel is

the name of the kernel, N is the grid size, and M is the block size. As in a C/C++

function, parameters to be passed to the kernel are enclosed in round parentheses.

Once the threads have finished executing, the control returns to the CPU. The CPU

then copies the result from the device memory to the host memory and the portion

of device memory no longer needed is released.

GPU

CPU

cudaMalloc(...) cudaMemcpy(...) cudaMemcpy(...) cudaFree(...)

my_kernel<<<N, M>>>(...)

Figure 5.6. Workflow of a CUDA application

We conclude this introduction to GPU programming with a discussion about

scalability [320]. With the term scalability, we refer to the ability of a system to be

enlarged to accommodate growing amounts of computation or advances in technology.

Recall that, in a GPU device, threads are grouped in blocks and blocks make up grids.

We also noticed that only the threads in the same block can use the same bank of

shared memory to share data fast. By design, the maximum number of threads in a

thread block is a relatively small number–such as 1024—and it is not expected to grow

as fast as technology improves. On the other hand, as technology evolves, a larger and
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larger number of thread blocks can be run in parallel. Recall that the programmer is

not allowed to make any assumption on the order of execution of threads. This makes

GPU programming scalable as the programmer is allowed only to rely on—and design

his/her GPU code around—the maximum size of a thread block (which is a rather

small and almost constant value across GPU technologies) and nothing else [340].

5.3.2 An Example

In this section, we will consider the same programming example we considered in

§ 5.2 for the Cell BE. This time, however, we will analyze CUDA code and we will

run the program on a computer equipped with, at least, one GPU device. As before,

the input arrays—allocated in host memory—are filled up with data. Recall that

the GPU device can access only device memory. Therefore, to make it possible for

the GPU device perform computation with the input data, two memory blocks are

allocated in the device memory space. The host code then calls a particular library

function to copy the input data to the blocks of device memory previously allocated.

The next step is to decide what each thread has to do and set up the thread

blocks and block grid. In our implementation, we decided that the nth thread will

add together the nth elements of the input arrays and put the result in the destination

array. Therefore, the total number of threads has to be equal to or greater than the

number of elements in each array. In our implementation, we decided to use 1D

thread blocks of 256 threads each. We also chose a 1D thread grid and the number

of blocks in the thread grid has to be calculated so that all the elements in the array

are processed.

In the next step, the kernel function is called. The particular CUDA <<< . . . >>>

notation instructs the hardware to generate a block grid, populate its blocks with

threads, and start executing the threads. Threads are scheduled in hardware with

no intervention from the programmer. Once all the threads have completed their
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execution, the result is copied from the device memory to the host memory. At this

point, the computation on the device has terminated and the content of the device

memory is no longer needed. Memory previously allocated on the device is released

and the result is printed on the screen.

Let us consider now the portion of code that is executed on the GPU device.

Recall that in CUDA, this piece of code is usually referred to as the kernel. In

the programming example reported below, the kernel is defined by the __global__

keyword. Its implementation is extremely simple. From the block index, the block

size, and the thread index, a 1D index n is calculated. The code then fetches the nth

components of the two input arrays, add them together, and stores the result as the

n-th component of the output array. Some care must be paid to make sure the code

does not access memory locations beyond the arrays. This is accomplished by the

if(...) statement that appear in the kernel implementation.

File main.cu

#include <cuda.h>

#include <math.h>

#include <stdio.h>

///////////////////////////////////////////////////////////////////////////////////////////

#define ARRAY_SIZE 1024

///////////////////////////////////////////////////////////////////////////////////////////

__global__ void array_add_kernel(float *c_dev, float *a_dev, float *b_dev, int array_size);

///////////////////////////////////////////////////////////////////////////////////////////

int main(int argc, char **argv) {

float *a_dev, *b_dev, *c_dev;

static float a[ARRAY_SIZE];

static float b[ARRAY_SIZE];

static float c[ARRAY_SIZE];

int threads_per_block;

int num_blocks;

int i;

// Fill in the input arrays

for(i = 0; i < ARRAY_SIZE; ++i) {
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a[i] = cosf(1.00 + i);

b[i] = sinf(1.00 + i);

}

// Allocate memory buffers on the device

cudaMalloc(((void **) (& a_dev)), ARRAY_SIZE * sizeof(*a_dev));

cudaMalloc(((void **) (& b_dev)), ARRAY_SIZE * sizeof(*b_dev));

cudaMalloc(((void **) (& c_dev)), ARRAY_SIZE * sizeof(*c_dev));

// Copy the input data from the host memory to the device memory

cudaMemcpy(a_dev, a, ARRAY_SIZE * sizeof(*a), cudaMemcpyHostToDevice));

cudaMemcpy(b_dev, b, ARRAY_SIZE * sizeof(*b), cudaMemcpyHostToDevice));

// Set the number of threads per block

threads_per_block = 256;

// Calculate the number of blocks needed to process all the elements of the arrays

num_blocks = ARRAY_SIZE / threads_per_block + ((ARRAY_SIZE % threads_per_block) > 0);

// Call the kernel

array_add_kernel<<<num_blocks, threads_per_block>>>(c_dev, a_dev, b_dev, ARRAY_SIZE);

// Copy the result from the host memory to the device memory

cudaMemcpy(c, c_dev, ARRAY_SIZE * sizeof(*c), cudaMemcpyDeviceToHost);

// Free the memory that was allocated on the device

cudaFree(a_dev);

cudaFree(b_dev);

cudaFree(c_dev);

// Print the result on the screen

for(i = 0; i < ARRAY_SIZE; ++i) {

printf("%f␣+␣%f␣=␣%f\n", a[i], b[i], c[i]);

}

return(0);

}

///////////////////////////////////////////////////////////////////////////////////////////

__global__ void array_add_kernel(float *c_dev, float *a_dev, float *b_dev, int array_size) {

const int n = blockIdx.x * blockDim.x + threadIdx.x;

// Check if the array index points within the array

if(n < array_size) {

// Add the elements and store the result

c_dev[n] = a_dev[n] + b_dev[n];

}

return;

}

5.4 The Future: Cell BE or GPU?

If we compare the CUDA code above with the same piece of code that we devel-

oped for the Cell BE, we will immediately notice that the CUDA code is simpler

and easy to understand. We mentioned that one of the strategies often adopted by

Cell BE programmers to increase performance is to use double buffering to overlap

data transfer with computation. In the case of a GPU device, this step is auto-

matically performed by the hardware. By pausing threads that are waiting for data
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from the device memory and by allowing execution of threads that already have data

available, a GPU device can effectively attain high performance without any effort

from the programmer. Another important difference between the Cell BE and a GPU

device is that new and more powerful GPU devices are being regularly launched year

after year and this trend is expected to continue. Because GPU devices are scalable,

programs written for today’s GPU devices will continue to work properly when run

on tomorrow’s GPU devices. On the other hand, the Cell BE architecture makes only

a few provisions for future improvements and extensions. One of them regards the

size of the local store. Although rumors that IBM is working on another processor in

the Cell BE “family” are circulating, no release of an improved version of the Cell BE

is expected for the next year or so.

While Cell BE programming for scientific applications was a hot topic around the

year 2007, more recent developments in GPU technology have been able to provide

scalable solutions, lower prices, and hardware that is easy to program. Although

greatly increasing performance, the Cell’s SPUs have been notoriously difficult to

develop code for. However, and as we will see in the next section, the Cell BE still

remains a viable solution in some applications. For example, in some algorithms it

might be necessary to make access to a relatively large amount of data fast. The

Cell BE’s LS might be a possible candidate to store such data. A GPU device might

simply not have enough shared memory to store all the data, resulting in the need to

access global or constant memory every time a datum is needed. The same algorithm

might, therefore, run slower on a GPU device than on the Cell BE.

5.5 2D ML Position Estimation on the Cell BE

In § 4.3 we described a simple algorithm to perform maximum-likelihood estimation

of the 2D or 3D position of interaction within a scintillation crystal. The algorithm we

described, namely the contracting-grid algorithm [45,173,253], uses the PMT data g
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as well as calibration data—in the form of the MDRF g(R)—to calculate an estimate

R̂MLE of R according to

R̂MLE = arg max
R0∈D

[
K∑

k=1

{
gk ln [gk(R0)] − gk(R0)

}]
. (5.2)

In this section, we want to present some details of the implementation—in the C

programming language—of the 2D maximum-likelihood estimation algorithm on the

Cell BE architecture, which we introduced in § 5.2.

When an emitter distribution is imaged, a list of events is collected by gamma-

ray cameras. For each event in the list, a PMT data vector is given. The goal of

the 2D maximum-likelihood estimation algorithm we are describing in this section

is to use the PMT data to estimate the location of interaction for each event. As

we discussed in some detail in § 5.2, the Cell BE architecture includes one Power

Processor Element (PPE) and eight Synergistic Processor Elements (SPEs). The

main idea of the parallel algorithm we are going to propose is to break down the list

of events into many sublists, and assign each sublist to one of the SPEs or PPE for

processing. The SPEs and the PPE will, independently, perform maximum-likelihood

estimation for each entry of the sublist they were assigned to. When the SPEs and

the PPE have completed their calculations, the partial results are combined.

As we noted in § 4.3, in a practical case, the calibration data g(R) is available only

for a discrete set of 2D points Rn, for n = 1, . . . , N . For the problem at hand, the

scintillation crystal was divided into an array of 161×161 pixels and the crystal itself

was coupled via a light guide to a 3×3 array of PMTs. As it was remarked in § 4.3, it is

usually convenient to zero-pad the 161×161 calibration data g(Rn) to a power of 2 in

each dimension to make the algorithm run faster. With zero padding, the calibration

data g(Rn) consist of an array of size 256 × 256 (thus, N = 2562 = 65536) and the

estimation algorithm will require just seven iterations to converge. This number of

iterations differs from the one reported in [45] because, in our case, the scintillation

crystal was of size 161× 161 pixels, while in [45] its size was just 81× 81. Apart from
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the number of iterations, our algorithm is very similar to the one described in [45].

Conceptually, the zero padding is equivalent to stating that, if a hypothetical

scintillation event were to occur outside the crystal, then no signal would be produced

by the PMTs. With this assumption and noticing that the number of components in

the vectors g and g(Rn) is K = 9, we can rewrite (5.2) as

n̂MLE = arg max
n0=1,...,65536

[
9∑

k=1

{
gk ln [gk(Rn0)] − gk(Rn0)

}]
.

The total size of calibration data is thus NK = 65536 · 9 = 589824 numerical values.

Recall that these data represent the means of Poisson random variables, thus they

are, in general, non-integer numbers. In our Cell BE implementation, we opted to

store these data as floating-point numbers in single precision. Each of such values

requires 4 bytes of storage, bringing the total storage requirements for the calibration

data to 2304 kB. Because this number exceeds the size of the local store (which is

256 kB, see § 5.2), an ad hoc data arrangement is needed.

An important observation is that, during the first few iterations, the contracting-

grid algorithm accesses only a subset of the whole calibration data g(Rn). Recall

that, at each iteration, the algorithm calculates the likelihood for points Rn in a 4×4

grid. Thus, at the first iteration, only 16 calibration data vectors will be needed.

To carry out the second iteration, all that is needed are 16 out of 256 calibration

vectors. Which ones in this set of 256 vectors will actually be needed depends on

the calculations that were carried out during the first iteration. Similarly, for the

third iteration, only 16 out of 4096 calibration data vectors will actually be needed.

Again, which vectors will actually be needed depends on calculations carried out in

the previous two iterations. A direct consequence of this simple observation is that,

to carry out the first three iterations of the algorithm, only a limited amount of data

is actually needed. For example, for the first iteration 16 · 9 · 4 = 576 bytes of data

are needed. The second iteration would require 162 · 9 · 4 = 9216 bytes of data to be

available. For the third iteration, 163 · 9 · 4 = 147456 bytes of data will be needed. To
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summarize, the algorithm needs no more than 576+9216+147456 = 157248 ≈ 154 kB

of data to complete the first three iterations of the algorithm. Notice that these data

would fit in the local store available on each SPE. Therefore, we opted to store

the data for the first three iterations of the algorithm in each SPE’s local store, thus

avoiding the need to fetch calibration data via time-consuming DMA transfers during

the first three iterations of the algorithm.

Calibration data for the remaining four iterations of the algorithm were arranged

in such a way that estimations for scintillation events occurring at or near the center

of the scintillation crystal face would be performed faster than estimation for scintil-

lation events occurring near the edge of the crystal. The fundamental reason for this

implementation choice comes from the fact that, usually, the object being imaged is

placed at or near the center of the field of view. Thus, it seems reasonable to ex-

pect that the central area of the scintillation crystal would receive a larger number of

gamma-ray photons than the areas near the edge of the crystal. Calibration data for

the 56× 56 central area of the crystal was partitioned into four regions, labeled A, B,

C, and D, as shown in Figure 5.7. Storing one of the 32 × 16 blocks—marked as A

and B in Figure 5.7—of calibration data takes 32 · 16 · 9 · 4 = 18432 bytes of storage,

while the two semi-frames (denoted as C and D) require (562 − 322)/2 · 9 · 4 = 21600

bytes. Thus, all these data blocks are small enough that any of them can be stored in

the SPEs’ local stores, along with the calibration data needed during the first three

iterations. In our C implementation of the algorithm, parameters such as the size of

calibration data regions A, B, C, and D were defined via the pre-processor directive

#define. This increased flexibility and allowed us to easily change the size of such

data regions when fine-tuning our implementation to obtain the best performance

within the limitations imposed by the hardware. The algorithm was specifically writ-

ten to be run on a Sony PlayStation 3, for which only six out of the eight SPEs are

accessible to the programmer. Thus each of the 32 × 16 blocks (A and B) shown in

Figure 5.7 was stored twice, in two different local stores. The two remaining areas (C
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Figure 5.7. Partitioning of the 56 × 56 calibration data for the central area of the
crystal for our PlayStation 3 implementation
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and D) depicted in Figure 5.7 were stored only once.

When, after the first three iterations of the algorithm, calibration data for the

56 × 56 central area of the crystal are needed, the index of the SPE that stores such

data is determined, and an appropriate SPE-to-SPE DMA transfer is initiate to fetch

the data. Again, the reason for which the 32× 16 blocks (A and B) were stored twice

is that it would seem reasonable to expect that such data would be accessed more

often than the data in the two semi-frame regions (C and D). Having two copies of

each of the 32× 16 blocks of data allowed us to obtain load balancing when accessing

data: each SPE storing either data block A or B locally would serve data requests

from two other SPEs as well as data requests from itself.

Finally, when during the computation, calibration data outside the central 56×56

region of the detector’s crystal are needed, an appropriate DMA transfer from main

memory is performed. This type of DMA transfer is much slower than an SPE-to-

SPE DMA transfer. However, owning to the assumption that most of the gamma-

ray interactions will take place in the central area of the crystal, the algorithm still

performs well.

As a final note, we want to remark that our implementation heavily relies on the

parallel capabilities that the Cell BE offers. Besides using all the SPEs available

for computation, the algorithm resorts to vector instructions to operate on vector

operands and to efficiently calculate the values of the log-likelihood. Because our

algorithm stores intermediate values as single-precision floating-point numbers, each

vector instruction we used operated on vectors of four elements. Thus, just by us-

ing vector instructions, each steps in our algorithm would replace four steps in an

equivalent non-vectorized implementation of the same algorithm. To further speed

up the calculation and to avoid time-consuming for(...) and if(...) statements,

our implementation took advantage of the Cell BE’s “bits and mask” intrinsics [338].

For example, when a vector comparison was needed to calculate the maxima between

corresponding entries in two different vectors, a bit pattern was computed using a
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specific Cell BE intrinsic. The calculated bit pattern and another intrinsic were then

used to select the entries at which the maxima occurred. This way of manipulating

the data allowed us to calculate at which point of the 4 × 4 grid the log-likelihood

attained the largest value without actually making use of any if(...) statement.

Iterating over the 4 × 4 grid was replaced with manual for(...)-loop unrolling and

Cell BE vector instructions.

The Cell BE code we developed was compiled with IMB’s XL C/C++ compiler

version 9.0, and run on a PlayStation 3 hardware platform. The Linux operating

system and the Cell BE Software Development Kit (SDK) version 3.0 had been pre-

viously installed on the PlayStation 3. The ML position estimation algorithm was

run on real data consisting of a list of 867685 events. The calibration data we used

are depicted in Figure 5.8. For each PMT, the mean response was measured by mov-

ing a gamma-ray point source over the camera face [6]. Thus, the whole calibration

data form a set of nine 161 × 161 images, one for each PMT. The algorithm was

also implemented for a conventional computer architecture, compiled with the GCC

compiler version 4.4.1, and run on different hardware platforms. Running time was

recorded and the average number of events processed per second was calculated by

dividing the number of events in the list by the average running time (estimated

over at least 100 iterations of the algorithm). Performance results are reported in

Table 5.2. The estimated locations of interaction (one for each event in the list) were

further processed to generate an image by simply counting the number of interac-

tions that fell within each pixel of the detector. The image we obtained is depicted as

Figure 5.9. The object being imaged was a mouse that had previously been injected

with a radiotracer. Bright regions in the image correspond to organs and tissues with

high activity. Structures that can easily be recognized are the bladder, the tail, arms,

and legs.
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(a) PMT 1 (b) PMT 2 (c) PMT 3

(d) PMT 4 (e) PMT 5 (f) PMT 6

(g) PMT 7 (h) PMT 8 (i) PMT 9

Figure 5.8. Images of the PMT responses. Each pixel in the images represents
the PMT response for a gamma-ray point source centered over that location on the
camera face
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Hardware Platform Events/s

PlayStation 3 (Cell Broadband Engine) 866374.69
Intel® Xeon® CPU E5540, 2.53 GHz 391270.03
Intel® Xeon® CPU E5506, 1.6 GHz 286228.78
AMD Phenom™ II X4 965 Processor, 3.4 GHz 147307.02
AMD Phenom™ 9950 Quad-Core Processor, 2.6 GHz 99412.38
AMD Phenom™ 9850 Quad-Core Processor, 2.5 GHz 84158.03
Dual Core AMD Opteron™ Processor 270, 2 GHz 54676.95
AMD Athlon™ Processor MP 2400+, 2 GHz 11827.62

Table 5.2. Performance results for the 2D ML estimation algorithm

Figure 5.9. Result of the 2D ML position estimation from real data shown as a
log-scale image
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5.6 3D ML Position Estimation on a GPU Device

Consider now the case of a gamma-ray camera with a thick scintillation crystal. As

we saw in § 1.4, thick crystals have higher sensitivity than thin crystals. We also

remarked that, unless the depth of interaction Z within a thick crystal is estimated

along with the (X, Y ) location, parallax errors will occur. In this section, we discuss an

implementation of a GPU algorithm for the maximum-likelihood (ML) estimation of

the (X, Y, Z) location of interaction of a gamma-ray photon within a thick scintillation

crystal. Our GPU implementation of the ML algorithm for the estimation of the 3D

location of interaction uses the same ideas that were used to develop Cell BE code

for the 2D ML estimation of the location of interaction. The two architectures—the

Cell BE and NVIDIA’s GPUs—are, however, substantially different. Therefore, one of

the goals of this section is to show how the same problem and the same mathematical

approach to solving it are implemented in two completely different ways. Another goal

of this section is to verify through simulation one of the properties of ML estimation

we briefly summarized in § 3.2, namely that, as the number of photoelectrons per

event increases, ML estimates approach Gaussian statistics with covariance matrix

given by the inverse of the Fisher information matrix.

The ML estimation of the 3D location of interaction of a gamma-ray photon with

the crystal is mathematically formalized as

R̂MLE = arg max
R0∈D

[
K∑

k=1

{
gk ln [gk(R0)] − gk(R0)

}]
,

in which R̂MLE is the estimate for the unknown location of interaction R, gk are noisy

PMT outputs for k = 1, . . . , K and, finally, the gk(R0) are the calibration data. As in

the case of 2D ML estimation, the calibration data are provided for a set of discrete

points R0 within the crystal. For our 3D estimation, however, gk(R0) is sampled on

a 3D lattice of points, instead of on a grid. The contracting-grid algorithm of [45,173]

is still well suited to solve this estimation problem. For convenience, we will still
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use the word “grid” to refer to the 3D lattice of points at which the log-likelihood is

calculated at each iteration of the algorithm.

To describe the implementation of the algorithm on a GPU device, it is conve-

nient to recall the thread hierarchy depicted in Figure 5.5 and the different memory

spaces available on a GPU device (see Table 5.1), along with their main features.

The calibration data gk(R0) for discrete points R0 do not change throughout the

iterations of the algorithm. Thus, in our implementation, we chose to store these

data in constant memory, as opposed to global memory. The main advantage of this

implementation decision is that constant memory is cached, while global memory is

not (see Table 5.1).

As in the case of 2D ML estimation, the input to the algorithm is a list of J

PMT data vectors {g(1), . . . , g(J)}. Once this list is copied from host memory to

global memory, the appropriate thread hierarchy is generated. Because threads in

the same block have the ability of share data via shared memory, we decided to

associate a thread block to each of the PMT data vectors g(j). Upon invocation of

the kernel, each thread in the block first loads one of the components of g(j) from

global memory to shared memory. These loads are executed concurrently and are

localized in space (meaning that most of the loads that are invoked during a short

time interval are loads from the same memory bank), thus the hardware is able to

carry out a few of them at the same time.

An iteration of the contracting-grid algorithm consists on calculating the log-

likelihood for points R0 on a 4 × 4 × 4 grid. Recall that, in CUDA, a thread

block can be 1D, 2D, or 3D and the total number of threads in the block cannot

exceed 1024 [340]. This particular computational model turned out to be very con-

venient for implementation of the 3D contracting-grid algorithm. Indeed, 3D thread

blocks of size 4 × 4 × 4 were generated, with each thread in the block calculating

the log-likelihood for one of the points in the grid. Because the thread block is 3D,

the thread index associated to each thread is actually a vector index of three com-
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ponents, which were used to quickly index the point R0 within the 4 × 4 × 4 grid.

Once the values of the log-likelihood are calculated, they are stored in the block’s

global memory. One of the threads of the block is in charge of finding the maximum

of the log-likelihood values, calculate the center of the grid for the next iteration, and

update the grid step sizes. The process described in this paragraph is then repeated

until all the step sizes are reduces to one, at which point the algorithm terminates.

To test the effectiveness of the algorithm, we considered a NaI(Tl) thick crystal

of size 52.30 mm× 52.30 mm× 25 mm divided into 69× 69× 25 voxels. The crystal

was coupled to an 8 × 8 array of PMTs [60]. The same calibration data of [60] were

used for our tests. The GPU algorithm was run with simulated PMT data from [355].

This data set consisted of a list of J = 2 · 105 vectors of simulated PMT responses

for a 45◦, 511 keV gamma-ray incident on the camera’s crystal. A cross-section (for

y = 0 mm) of the 3D ML-estimated distribution of the location of interaction is

reported as Figure 5.10, while the first 5,000 estimated locations of interaction are

shown in the scatter plot of Figure 5.11.

Figure 5.10. Cross-section of the 3D ML-estimated distribution of the location of
interaction for a 45◦, 511 keV beam of gamma-ray photons incident on the camera’s
crystal

As for the case of 2D ML estimation, C code was developed for a conventional

hardware platform as well. To evaluate algorithm performance we used the same

data we used before (i.e., a list of J = 2 · 105 vectors of simulated PMT responses)

and we ran the algorithm 100 times on different hardware platforms, including GPU

devices. Results, measured in terms of number of processed events per seconds, are
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Figure 5.11. Scatter plot of the first 5,000 estimated locations of interaction for
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reported in Table 5.3. When more than one GPU device was available, the list of

events was divided into sublists of approximatively the same length and each sublist

was assigned to a GPU device.

Our implementation takes advantage of the lifetime of memory spaces for a GPU

device. As Table 5.1 shows, global, constant, and texture memories have a lifetime of

the whole application. This means that so long as the application does not terminate

or the memory is not deallocated or overwritten, the content of such memory spaces is

left unchanged. In a typical application, we can decide to load in the device memory

the calibration only once, at the beginning of our code. Every time PMT data will

have to be processed to estimate the 3D locations of interaction, the calibration

data will already be in the device’s constant memory and ready to be used, without

incurring in any time penalty due to host-to-device calibration data transfers.

Hardware Platform Events/s Speedup

Intel® Xeon® CPU E5540, 2.53 GHz* 3279.92 —
NVIDIA GeForce GTX 295, 1 device 52561.00 16.03
NVIDIA GeForce GTX 295, 2 devices 104335.32 31.81
NVIDIA GeForce 9800 GX2, 1 device 40654.62 12.40
NVIDIA GeForce 9800 GX2, 2 devices 80607.25 24.58
NVIDIA GeForce 9800 GX2, 3 devices 120516.67 36.74
NVIDIA GeForce 9800 GX2, 4 devices 160645.01 48.98
NVIDIA GeForce 9800 GX2, 5 devices 197454.39 60.20
NVIDIA GeForce 9800 GX2, 6 devices 232461.37 70.87
NVIDIA Tesla C1060, 1 device 80036.25 24.40
NVIDIA Tesla C1060, 2 devices 158945.45 48.46
NVIDIA Tesla C1060, 3 devices 237228.06 72.33
NVIDIA Tesla C1060, 4 devices 313789.08 95.67
NVIDIA Tesla C2050, 1 device 241359.90 73.59
NVIDIA Tesla C2050, 2 devices 471183.70 143.66
NVIDIA Tesla C2050, 3 devices 686089.59 209.18
NVIDIA Tesla C2050, 4 devices 883516.32 269.37
*Using only one core.

Table 5.3. Performance results for the 3D ML estimation algorithm
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We have said numerous times that, because of measurement noise, the data g that

are used to perform ML estimation are random, and so is any non-constant quantity

calculated from g. We also have discussed in § 4.6.1 how the Fisher information matrix

can be used to evaluate the performance of any unbiased estimator. For clarity, we

will repeat here some of the material that was presented in § 4.6.1, but we will use

the notation relevant to the problem of estimating the 3D location of interaction from

noisy data g. We will first consider the case of estimation by means of any estimator

R̂, and then we will move on by examining the case in which estimates are calculated

via ML methods.

The bias b(R) at R for the random variable R̂ is written as

b(R) =
〈
R̂ − R

〉
R̂|R

=
〈
R̂

〉
R̂|R

− R,

which, for our 3D estimation problem above, turns out to be a 3 × 1 vector. The

covariance matrix of the estimates R̂ at R is given by

KR̂|R =

〈[
R̂ − 〈R̂〉R̂|R

] [
R̂ − 〈R̂〉R̂|R

]T
〉

R̂|R
,

while an expression for the (m,n)th component of the Fisher information matrix FR

turns out to be [69]

[FR]m,n =

〈[
∂

∂Rm

ln pr
(
g | R

)] [
∂

∂Rn

ln pr
(
g | R

)]〉

g|R
,

for m = 1, 2, 3, n = 1, 2, 3, and we denoted the components of the vector R as R1,

R2, and R3. Finally, the Cramér-Rao lower bound (CRLB) assumes the form [69]:

[
KR̂|R

]
m,m

= σ2
R̂m

>
[
F−1

R

]
m,m

. (5.3)

We now turn our attention to the special case in which R̂ = R̂MLE. As we briefly

alluded to in § 3.2, maximum-likelihood estimators are asymptotically efficient (mean-

ing that, as more and more photoelectrons per event are measured by the PMTs, KR̂|R

approaches F−1
R and the inequality in (5.3) becomes an equality). Although the actual
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probability density function pr(R̂MLE | R) of the ML estimates R̂MLE for an inter-

action at R can, in theory, be calculate with very good accuracy [356], the method

of [356] requires conditioning on an auxiliary parameters, which can be difficult to

define and calculate in a practical case. For this reason, in the remainder of this

section, we will adopt the method presented in [357]. Even though [357] assumes

a Gaussian model for the noise, many practical cases allow us to invoke the central

limit theorem [127, 128] and apply the theory developed in [357] to non-Gaussian

noise models as well. For the case of 3D estimation from PMT data, the conditions

of the central limit theorem are satisfied when we have a sufficiently large number of

low-noise PMTs. For the problem at hand, results reported in [357] and [268] show:

pr(R̂MLE | R) ≈
√

det(FR)

(2π)3/2
exp

[
−1

2

(
R̂MLE − R

)T

FR

(
R̂MLE − R

)]
. (5.4)

The expression above is the probability density function of a multivariate normally-

distributed random variable with mean R and covariance matrix F−1
R .

To derive an expression for FR, we first need to recall that in § 4.1.6 we denoted by

nk the number of photoelectrons produced when a gamma-ray photon entered the kth

PMT and struck the photocathode (see Figure 4.7). In § 4.1.6, we also argued that the

random variable nk follows Poisson statistics with mean nk(R, Eint). Through a noisy

channel, the voltage at the output of the kth PMT reaches an analog-to-digital (A/D)

converter, which converts the output voltage into an integer number gk. The noisy

channel and A/D conversion introduce a small error, which we can model as normally

distributed with standard deviation σ of a few A/D units [358]. Hence [279],

pr(g | R) =
K∏

k=1

pr(gk | R) =
K∏

k=1

∞∑

nk=0

pr(gk | nk) Pr(nk | R) =

=
K∏

k=1

1√
2πσ2

∞∑

nk=0

exp

[
−1

2

(gk − rnk)
2

σ2

] [
nk(R, Eint)

]nk

nk!
e−nk(R,Eint),
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in which the number r is the A/D conversion factor. A useful approximation is [279]

[FR]m,n ≈
K∑

k=1

r2

σ2 + r2nk(R, Eint)

∂nk(R, Eint)

∂Rm

∂nk(R, Eint)

∂Rn

=

=
K∑

k=1

1

σ2 + rgk(R)

∂gk(R)

∂Rm

∂gk(R)

∂Rn

, (5.5)

where the second form follows from gk(R) = rnk(R, Eint).

One necessity that arises in the calculation of the Fisher information matrix FR

above is that partial derivatives of the calibration data g(R) are needed. In our

case, however, calibration data were available only for a discrete set of points R. We

therefore turned our attention to data smoothing with spines to obtain an analytic

expression for the calibration data from which partial derivatives can be calculated.

Alternatives to smoothing with splines have been proposed as well [24, 60]. Spline

functions are introduced in Appendix A, along with their main properties. For our

data smoothing procedure, we used 3D spline approximation for each of the K PMT

outputs. With respect to the notation developed in Appendix A, we used mx = my =

mz = 3, Mx = My = 10, and Mz = 5. Plots of the calibration data and their fit are

shown in Figure 5.12 through Figure 5.17. Each figure reports plots of the K = 64

PMT outputs when only one variable at a time is changed and the others are kept

fixed. Figure 5.12 through Figure 5.14 correspond to an interaction location R close

to crystal’s entrance face: PMT outputs are numerically low and most of the PMTs

output a non-zero signal. On the contrary, when the interaction occurs deeper into

the crystal and at a point R closer to the PMTs, only a few PMTs produce a large

signal, as shown in Figure 5.15 through Figure 5.17.

Fitting the calibration data also allowed us to re-sample them and obtain cali-

bration data sampled on a much finer grid than was originally provided. With this

finer sampling, more iterations of the contracting-grid algorithm could be calculated.

Although ML estimation on this finely re-sampled calibration data was considerably

slower than ML estimation on the original calibration data, the re-sampled calibration
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Figure 5.12. Plots as functions of X of PMT response functions g(X, Y0, Z0) for X ∈ [−26.15, 26.15] mm, Y0 =
−3.789855 mm and Z0 = 0.50 mm (blue lines) along with their spline approximation (red lines)
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Figure 5.13. Plots as functions of Y of PMT response functions g(X0, Y, Z0) for X0 = −18.949275 mm, Y ∈
[−26.15, 26.15] mm and Z0 = 0.50 mm (blue lines) along with their spline approximation (red lines)
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Figure 5.14. Plots as functions of Z of PMT response functions g(X0, Y0, Z) for X0 = −18.949275 mm, Y0 =
−3.789855 mm and Z0 ∈ [0.00, 25.00] mm (blue lines) along with their spline approximation (red lines)
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Figure 5.15. Plots as functions of X of PMT response functions g(X, Y0, Z0) for X ∈ [−26.15, 26.15] mm, Y0 =
−3.789855 mm and Z0 = 24.50 mm (blue lines) along with their spline approximation (red lines)
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Figure 5.16. Plots as functions of Y of PMT response functions g(X0, Y, Z0) for X0 = −18.949275 mm, Y ∈
[−26.15, 26.15] mm and Z0 = 24.50 mm (blue lines) along with their spline approximation (red lines)
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Figure 5.17. Plots as functions of Z of PMT response functions g(X0, Y0, Z) for X0 = −18.949275 mm, Y0 =
−3.789855 mm and Z0 ∈ [0.00, 25.00] mm (blue lines) along with their spline approximation (red lines)
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data yielded estimates whose accuracy was limited by noise in the data g only.

As a test, we considered the same 52.30 mm×52.30 mm×25.00 mm NaI(Tl) crystal

considered before and we assumed an interaction at R = (26.30, 26.30, 1.50) mm in

the crystal. In other words, the point R was 1.50 mm underneath the central point

of the crystal’s entrance face. We generated 107 realizations of noisy PMT outputs

g = {g1, . . . , gK} for K = 64 and, for each of them, we ran 15 iterations of the

contracting-grid algorithm above (appropriately modified to handle the re-sampled

calibration data). By binning the 107 estimates R̂MLE, a discrete representation of

pr(R̂MLE | R) as a function of R̂MLE could be calculated. To compare pr(R̂MLE | R)

estimated from the simulation data with the theoretical model predicted in (5.4), we

considered three sets of plots of probability density functions, as shown in Figure 5.18.

In each set, only one component of R̂MLE at a time was being changed while the others

were held fixed and near the true location. The agreement between the plots in each

set is striking, and it confirms that the noise model summarized by (5.4) is appropriate

for our case.

Plots of the Cramér-Rao lower bounds are reported in Figure 5.19 through Fig-

ure 5.21. More specifically, Figure 5.19, Figure 5.20, and Figure 5.21 report the lower

limits on the standard deviations for, respectively, the X, Y , and Z components of

any estimate R̂ of the true location of interaction R. The Cramér-Rao lower bound

results are reported for different values of the Z coordinate inside the crystal. As

expected, as the depth of interaction increases, the uncertainty on the estimate of the

location of interaction reduces.

5.7 LMMLEM Image Reconstruction on a GPU Device

In this section, we provide some details about the simulation code we developed

to test list-mode reconstruction on a GPU device. Recall that the derivation we

presented in § 4.9 was for the PET setup of Figure 5.22, which sandwiched the 3D
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(Ŷ

|X
,Y

,Z
)

 

 

Theoretical
Simulated data

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

x 10
8
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Figure 5.18. Comparison of the probability density functions of 3D maximum-likelihood estimates of location of
interaction calculated through simulated data with the theoretical probability density functions calculated using the
Fisher information matrix. For all plots, the true location of interaction was at X = 26.30 mm, Y = 26.30 mm, and
Z = 1.50 mm
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Figure 5.19. Plots for different values of depth of interaction of the lower limit on the standard deviation of the X
component of any 3D estimate R̂ of the location of interaction
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Figure 5.20. Plots for different values of depth of interaction of the lower limit on the standard deviation of the Y
component of any 3D estimate R̂ of the location of interaction
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Figure 5.21. Plots for different values of depth of interaction of the lower limit on the standard deviation of the Z
component of any 3D estimate R̂ of the location of interaction
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radiotracer distribution f(r) between two gamma-ray cameras facing each other. For

our simulation, we assumed that the field of view (FOV) measured 20 mm×20 mm×
20 mm and that it was subdivided into a 3D grid of 40× 40× 40 square voxels. Each

voxel thus measured 0.50 mm along each side.

Transverse

S
a
g
it

ta
l

C
oronal

~x

~y

~z

Figure 5.22. Setup of the simulated 3D PET system

One of the ingredients that enters in the expression of the LMMLEM algorithm

in (4.10) is the vector s of sensitivities s1, . . . , sN , where N denotes the total number

of voxels in the FOV (for our case, N = 403 = 64000). We recall that each number

sn is the probability that a pair of gamma-ray photons emitted from the nth voxel

gets detected by both detectors and gives rise to an attribute vector Â(j) of the

list Â . Voxel sensitivities, which are solely determined by the system’s geometry

and the linear absorption coefficient of the camera’s crystal, could, in principle, be

calculated analytically. In practice, however, this might require the calculation of

multidimensional integrals over complicated integration domains. For this reason, we

decided to calculate each of the sn by simulating a radiotracer distribution inside the
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nth voxel, isotropically emitting pairs of gamma-ray photons. The probability that

both photons are detected by the corresponding detectors is then averaged over all

possible propagation directions

sn ≈ 2π

NϑNϕ

Nϑ−1∑

p=0

Nϕ−1∑

q=0

Pr
(
` 6 `1

(
rn, arccos

(
p+1/2
Nϑ

)
, 2π

(
q+1/2
Nϕ

)))
×

× Pr
(
` 6 `2

(
rn, arccos

(
p+1/2
Nϑ

)
, 2π

(
q+1/2
Nϕ

)))
,

in which `i(r, ϑ, ϕ) denotes the length of the segment defined by the intersection

between detector Di and the line passing through the point r and parallel to the

versor ~p =
(
sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ)

)
. In our code, we set Nϑ = 4096

and Nϕ = 1024. It is important to notice that by setting ϑ = arccos
(

p+1/2
Nϑ

)
in

the expression above we take care of the differential element that appears in the

calculation of sn over a solid angle

sn =

∫

2π

Pr
(
` 6 `1(rn, ϑ, ϕ)

)
Pr

(
` 6 `2(rn, ϑ, ϕ)

)
dΩ,

in which Pr
(
` 6 `i(rn, ϑ, ϕ)

)
denotes the probability of a photoelectric interaction

before the gamma-ray proton has traveled the distance `i(rn, ϑ, ϕ) within the crystal

Pr
(
` 6 `i(rn, ϑ, ϕ)

)
=

µpe

µtot

∫ `i(rn,ϑ,ϕ)

0

pr(`) d` =

=
µpe

µtot

[
1 − e−µtot`i(rn,ϑ,ϕ)

]
,

where

pr(`) =

{
µtote

−µtot` if ` > 0,
0 otherwise,

and we denoted with µpe the photoelectric attenuation coefficient of the crystal ma-

terial and with µtot the sum of the photoelectric and scattering (µsc) attenuation

coefficients. For NaI(Tl) and photon energy 511 keV, values of µpe and µtot are

5.8537 m−1 and 34.2228 m−1, respectively [359]. Figure 5.23 shows planar images ob-

tained by restricting the sensitivity function along three planes normal to one another
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and passing through the center of the field of view. Please refer to Figure 5.22 for a

pictorial representation of the location of these planes. As expected, the sensitivity

attains its maximum value at the center of the field of view and decreases as we get

closer and closer to one of the corners of either detector’s entrance face. We also want

to remark that, because sensitivities s1, . . . , sN do not depend on the object being

imaged, they can be calculated once for all and saved to a file for later use. This,

however, will not be true if we allow our system to be adaptive [7, 205], but we can

turn to GPU computing for the efficient recalculation of sensitivities s1, . . . , sN every

time the system is reconfigured.

(a) Sagittal view (b) Transverse view (c) Coronal view

Figure 5.23. Sensitivities s along three planes passing through the center of the
field of view

Each gamma-ray camera used the same crystal we first presented in § 5.6, and

we used the same PMT calibration data [355]. Recall that the PMT calibration data

consist of a set of vectors of the form g(Rn) = {g1(Rn), . . . , gK(Rn)}, one for each

point Rn of the 69 × 69 × 25 grid into which the crystal’s volume was divided. The

index k denotes the PMT index, with K = 64 the total number of PMTs.

The original PMT data were first resampled on a finer grid. This step was carried

out by first fitting the PMT calibration data with spline functions gk(X, Y, Z) for

k = 1, . . . , K and then by evaluating such function on a 138×138×50 grid of points.

Furthermore and in virtue of (5.5), the same spline functions also allow us to calculate
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the Fisher information matrix (FIM) at each point of such grid. In our reconstruction

algorithm, both the resampled PMT calibration data and the FIMs were calculated

once and store to binary files to be used in subsequent runs of the same code. Our

implementation also takes advantage of the fact that each FIM is a 3 × 3 symmetric

matrix; hence only six of its elements need to be stored.

For our simulation, we assumed that the real object f being imaged was a sphere

of 15.50 mm of radius surrounding ten high-activity cubes of size 1 mm×1 mm×1 mm

and arranged as shown in Figure 5.24. The total activity from the ten cubes was equal

to 25 · 104 collected counts per second and so was the total activity coming from the

sphere surrounding the cubes, for a grand total of 50 ·104 collected counts per second.

Each voxel in the field of view measured 500 μm × 500 μm × 500 μm.

(a) Sagittal view (b) Transverse view (c) Coronal view

Figure 5.24. Log-scale images of the simulated object f along three planes passing
through the center of the field of view

The generation of the noise-free list-mode data A was carried out as follows. A

voxel in the field of view was randomly selected according to the probability model

of (4.5) and a point r inside the selected voxel was chosen according to a uniform

probability distribution over the voxel volume. Next, a propagation direction ~p was

isotropically and randomly generated, and two exponentially distributed random vari-

ables `1 and `2 were generated to account for how much each photon traveled inside

the camera’s crystal before getting absorbed. If both `1 and `2 took on values smaller
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that the length of the intersection between the line passing through r and propagating

along the direction ~p, and the corresponding detector’s crystals (see Figure 5.25a),

then we assumed that the gamma-ray photons were absorbed by the cameras and

that they produced measurable PMT outputs. The actual location of interactions R1

and R2 were calculated and paired to form the list-mode datum A = (R1, R2) to be

added to the list A . If either R1 or R2—as shown in Figure 5.25b—or both—see

Figure 5.25c—fell outside the detector, the process just delineated started over with

the selection of a new voxel in the field of view.

D1 D2

`1

`2

r

R1

R2

(a) Case of both points R1 and R2 inside the
detectors

D1 D2

`1

`2

r

R1

R2

(b) Case of point R1 outside one detector and
R2 inside the other detector

D1 D2

`1

`2

r

R1

R2

(c) Case of both points R1 and R2 outside
the detectors

Figure 5.25. Generation of noise-free list-mode data A

The generation of list-mode data Â = {Â(1), . . . , Â(J)} from noise-free list-mode

data A = {A(1), . . . , A(J)} is depicted in Figure 5.26. In our notation, A(j) is the

pair (R
(j)
1 , R

(j)
2 ) of the actual locations of interaction for the jth line of response,
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while Â(j) denotes the pair (R̂
(j)
MLE,1, R̂

(j)
MLE,2) of maximum-likelihood estimates of

(R
(j)
1 , R

(j)
2 ), calculate from PMT data using the contracting-grid algorithm of § 5.6.

A =
{
A(1), . . . ,A(J)

}
,

A(j) =
(
R

(j)
1 , R

(j)
2

)

Evaluate g
(
R

(j)
i

)

for i = 1, 2 and j = 1, . . . , J

Generate Poisson random

numbers g
(j)
i =

{
g
(j)
1,i , . . . , g

(j)
K,i

}

For i = 1, 2, calculate

R̂
(j)
MLE,i = 3DMLE

(
g

(j)
i

)

Â =
{
Â(1), . . . , Â(J)

}
,

Â(j) =
(
R̂

(j)
MLE,1, R̂

(j)
MLE,2

)

Figure 5.26. Steps involved in the generation of Â from A

We now discuss in more details the procedure summarized by Figure 5.26. First,

thanks to the spline functions g1(R), . . . , gK(R) we discussed above and in § 5.6, the

MDRF at points R
(j)
1 and R

(j)
2 for j = 1, . . . , J was evaluated. By the procedure

we delineated in the previous paragraph, points R
(j)
i are guaranteed to lie inside the

corresponding detector volumes. It is important to remember that, under the Poisson

noise model for the PMT outputs, gk(R
(j)
i ) gives the mean of the Poisson random

variable gk for the kth PMT output and interaction location R
(j)
i . Hence, for each

interaction location R
(j)
i , K random numbers were drawn from K Poisson random

variables with means g1(R
(j)
i ), . . . , gK(R

(j)
i ), respectively. These random numbers

were then used in the 3D ML position of interaction estimation algorithm of § 5.6 to

obtain the estimate R̂
(j)
MLE,i. The collection of the Â(j) = (R̂

(j)
MLE,1, R̂

(j)
MLE,2), in which

each R̂
(j)
MLE,i was calculated as we just discussed, makes up the noisy list-mode data
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Â . This whole process is graphically summarized in Figure 5.26.

We are now ready to apply the iterative expression (4.10) to the list-mode data

Â . To do so, we need to evaluate quantities of the form pr(Â(j) | n), in which Â(j)

is one element of Â and n is a voxel index in the field of view. Recall that, at the

end of § 4.9, we derived an approximate expression for pr(Â(j) | n), which we report

below for convenience

pr(Â(j) | n) ≈
√

πµ2
pe

64π4

√
det

(
F

R̂
(j)
MLE,1

)√
det

(
F

R̂
(j)
MLE,2

)
×

×
∫

D1

e−
1
2
β

C

[
erf(C`2 − α) − erf(C`1 − α)

]
×

× exp

[
−1

2

(
R̂

(j)
MLE,1 − R

(j)
1

)T

F
R̂

(j)
MLE,1

(
R̂

(j)
MLE,1 − R

(j)
1

)]
d3R

(j)
1 . (5.6)

It is important to remember that, even though our notation does not show it, quan-

tities `1, `2, C, α, and β also depend on the integration variable R
(j)
1 . Indeed,

α =
B

C
, β = A2 − B2

C2
,

where

A2 − 2B` + C2`2 = (α − C`)2 + β,

A2 = aTF
R̂

(j)
MLE,2

a, B = aTF
R̂

(j)
MLE,2

b, C2 = bTF
R̂

(j)
MLE,2

b,

and

a = R̂
(j)
MLE,2 − R

(j)
1 , b = rn − R

(j)
1 .

To speed up the reconstruction procedure in (4.10), we can start by noticing that

for voxels that are a short distance (say, 2 mm) away from the line passing through

points R̂
(j)
MLE,1 and R̂

(j)
MLE,2, the value of pr(Â(j) | n) is very small. One way to see

this, for example, is by analyzing the integral over ` that appears in (4.76); if voxel

n (and, hence, its center rn) is far away from the straight line connecting R̂
(j)
MLE,1 with

R̂
(j)
MLE,2, then for no value of ` the point R

(j)
2 = R

(j)
1 + (rn − R

(j)
1 )` will be close to

R̂
(j)
MLE,2 enough so that pr(R̂

(j)
MLE,2 | R

(j)
2 ) 6≈ 0. For this reason, our implementation of
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the reconstruction algorithm finds, for each Â(j) = (R̂
(j)
MLE,1, R̂

(j)
MLE,2) in Â , the voxel

indices n that are “near” the straight line defined by R̂
(j)
MLE,1 and R̂

(j)
MLE,2. Such values

of n form a list, which we will denote as NÂ(j) . The quantity pr(Â(j) | n) is then

evaluated only for values of n in NÂ(j) .

Our CUDA code for the calculation of pr(Â(j) | n) is based on the approximate

expression in (5.6). More specifically, a 2D block grid is defined, and each thread

block in the grid is tasked with calculating pr(Â(j) | n) for one element Â(j) of Â

and all the values of n in NÂ(j) . The reason why we used a 2D block grid as opposed

to just a 1D block grid is that, as we discussed in § 5.3, the GPU hardware limits the

size of the grid in each dimension to 65535, whereas the number J of elements in Â

can easily exceed such value. By using a 2D block grid, the J = 65535 limit of 1D

block grid can easily be overcome. The volume integration that appears in (5.6) is

well suited for a GPU architecture. For this reason, we took our thread blocks to

be 3D, and each thread in the block evaluated the integrand for a particular value

of the integration variable R
(j)
1 . Once again, we took advantage of the fact that the

exponential factor that appears in the integrand makes the integrand itself negligible

a few millimeters away from the point R̂
(j)
MLE,1. In other words, the integral over the

whole detector space D1 is replaced with the sum of a few hundred terms obtained

by varying R
(j)
1 near R̂

(j)
MLE,1. In our implementation, we used thread blocks of size

7 × 7 × 7 which gives 73 = 343 threads per block, below the limit we mentioned in

§ 5.3. Once all the threads in the block have completed calculating the value of the

integrand, their sum is calculated and stored to global memory. This process is then

repeated for the next value of n in NÂ(j) and so on, until the whole list NÂ(j) has

been processed.

Besides taking advantage of the parallel processing capabilities of today’s GPU

devices, we further increased the computation speed by judicious usage of the dif-

ferent memory spaces that GPU devices feature. For example, the elements of the
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Fisher information matrices F
R̂

(j)
MLE,1

and F
R̂

(j)
MLE,2

depend only on R̂
(j)
MLE,1 and R̂

(j)
MLE,2,

respectively. Hence they can be loaded to shared memory and used repeatedly during

the evaluation of pr(Â(j) | n) for all the values of n in NÂ(j) . Similarly, values of the

integrand in (5.6) were saved to shared memory to speed up the computation and let

one of the threads sum all the values up.

The final step of the reconstruction algorithm involves one or more iterations

of (4.10), which, using sets NÂ(j) , takes the form

f̂ (k+1)
n = f̂ (k)

n





1

τ

J∑

j=1

pr(Â(j) | n)∑

n′∈N
Â(j)

pr(Â(j) | n′)sn′ f̂
(k)
n′





, (5.7)

in which τ denotes the total exposure time and the vector f̂ (k) is the estimate of f

at the kth iteration of the reconstruction algorithm. For our example, we assumed

τ = 2 s and that the list Â contained J = 105 elements. The choice of f̂ (0) is

arbitrary (as long as f̂
(0)
n > 0 for n = 1, . . . , N); the algorithm will ensure convergence

to a maximum-likelihood f̂MLE of pr(Â | f) no matter what f̂ (0) is. Convergence

speed might, however, depend on the choice of f̂ (0). In our implementation we opted

for f̂ (0) = s, where s is the vector of the voxel sensitivities. Another possible choice

is f̂
(0)
n = f0 for some constant positive value f0 and n = 1, . . . , N .

Our implementation of the reconstruction algorithm has been broken down into

three main steps (or tasks). They are:

1. 3D maximum-likelihood estimation of R̂
(j)
MLE,i to get Â ;

2. evaluation of pr(Â(j) | n) for Â(j) ∈ Â and n ∈ NÂ(j) ;

3. application of the iterative formula (5.7) above.

The first two steps are those that require substantial computational power, and they

also parallelize well. For this reason, GPU code was developed to carry out those two
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tasks, as we discussed in § 5.6 and above in this section. For all the steps listed above,

CPU code was developed as well. This has a few advantages. First of all, developing

CPU code is easier and less prone to programming bugs than developing GPU code:

once the CPU code has been developed, the numerical results can be used to test the

correctness of the GPU implementation of the same numerical calculation. Second,

by developing CPU code first, we can identify the portions of the code in which most

of the computation time is spent, so that we can develop faster code only for those

portions. Finally, the CPU code can guide and be used as starting point for the GPU

code that performs the same task. For example, a for(...) loop in CPU code can be

implemented on a GPU device by creating the appropriate thread hierarchy in which

each thread implements the body of the for(...) with minor modifications.

Table 5.4 reports performance results for our CPU and GPU implementations of

the LMMLEM reconstruction algorithm when run on the example of this section (see

Figure 5.24). The expression in (5.7) was iterated ten times. In Table 5.4 we also

indicated in parenthesis the GPU speedup with respect to the CPU implementation,

and for a different number of GPU devices used. The speedups of Table 5.4 are

graphically reported in Figure 5.27. It is interesting to note that the performance

of the GPU 3D maximum-likelihood estimation of position of interaction actually

deteriorates as more GPU devices are used. This can be explained using the modified

Amdahl’s law model of (5.1): in our example, the list Â contained a relatively small

number of events and most of the time was spent to initialize the GPU devices and set

up the GPU computation. These steps included establishing a communication channel

with each GPU device, allocating the necessary memory buffers on the GPU devices,

and transferring GPU code from the host memory to each GPU device. This overhead

grows linearly with the number of GPU devices used. For the case of a relatively small

number of events in the list Â , the initialization overhead will constitute a substantial

fraction of the total computation time. In other words, 0 < α ¿ β < 1 in (5.1).

Finally, Figure 5.28 shows the results of the LMMLEM reconstruction algorithm
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Task

Computing Platform 3D MLE pr(Â(j) | n) LMMLEM

Intel® Xeon® L5506 2.13 GHz

{
104.39

1915.84
s
events/s

9347.17
10.70

s
events/s

2.17
0.22

s
s/iter

NVIDIA Tesla C2050, 1 device

{
1.11

180401.22
s (94.06×)
events/s

60.09
1664.06

s (155.55×)
events/s

n/a

NVIDIA Tesla C2050, 2 devices

{
1.16

171799.61
s (89.99×)
events/s

30.30
3311.45

s (308.49×)
events/s

n/a

NVIDIA Tesla C2050, 3 devices

{
1.47

135632.30
s (71.01×)
events/s

20.29
4929.06

s (460.68×)
events/s

n/a

NVIDIA Tesla C2050, 4 devices

{
1.80

111151.81
s (57.99×)
events/s

15.52
6442.47

s (602.27×)
events/s

n/a

NVIDIA Tesla C2050, 5 devices

{
2.86

69942.32
s (36.50×)
events/s

12.66
7897.76

s (738.32×)
events/s

n/a

NVIDIA Tesla C2050, 6 devices

{
3.95

50670.69
s (26.43×)
events/s

11.22
8911.21

s (833.08×)
events/s

n/a

NVIDIA Tesla C2050, 7 devices

{
4.78

41839.17
s (21.84×)
events/s

10.09
9911.99

s (926.38×)
events/s

n/a

NVIDIA Tesla C2050, 8 devices

{
6.01

33261.77
s (17.37×)
events/s

9.74
10264.06

s (959.67×)
events/s

n/a

Table 5.4. CPU and GPU running times and speedups for the LMMLEM reconstruction algorithm
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Figure 5.27. Speedups (with respect to conventional CPU code) obtained by run-
ning a portion of the LMMLEM reconstruction algorithm on a different number of
GPU devices
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f̂ (10) after 10 iterations of (5.7). Comparison with Figure 5.24 shows the effectiveness

of the LMMLEM algorithm in producing good estimates of the unknown radiotracer

distribution f .

(a) Sagittal view (b) Transverse view (c) Coronal view

Figure 5.28. Log-scale images of the reconstructed object f̂ (10) along three planes
passing through the center of the field of view

5.8 LMMLEM Reconstruction with ModPET

In this section, we apply the LMMLEM algorithm to an existing system, namely

ModPET, a diagram of which is reported in Figure 5.29.

Each gamma-ray camera shown in the setup of Figure 5.29 is equipped with a

thin (5 mm) NaI(Tl) crystal, and the camera has been experimentally calibrated [6]

to perform 2D estimation of location of interaction of gamma-ray photons within the

camera’s crystal. In other words, no information about the depth of interaction will

be available to the LMMLEM reconstruction algorithm.

Even though the actual depth of interaction Z cannot be estimated from PMT

data, we can still characterize it statistically. We will denote with ∆ the continuous

random variable that indicates how much a gamma-ray photon has traveled within

the detector before being absorbed and producing measurable PMT signals, and we

will assume that ∆ takes on values in [0, ∆max]. Notice that ∆max depends on the
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Figure 5.29. Schematic diagram of ModPET (dimensions in millimeters)
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direction of propagation ~p of the gamma-ray photon: ∆max attains its minimum of

Zmax = 5 mm (the crystal’s thickness) at normal incidence and varies as ∆max =

Zmax/ cos θ, where θ is the angle between ~p and the versor ~n normal to the crystal’s

entrance face.

In this framework, we can consider the probability density function of ∆ condi-

tioned on the fact that the gamma-ray photon has been absorbed:

pr(∆ | ∆ 6 ∆max) =
pr(∆, ∆ 6 ∆max)

Pr(∆ 6 ∆max)
=





pr(∆)

Pr(∆ 6 ∆max)
if ∆ 6 ∆max,

0 otherwise,

in which ∆ (without conditioning) follows an exponential distribution

pr(∆) =

{
µtote

−µtot∆ if ∆ > 0,
0 otherwise.

Integrating pr(∆) over [0, ∆max] gives

Pr(∆ 6 ∆max) = 1 − e−µtot∆max ,

so that

pr(∆ | ∆ 6 ∆max) =





µtote
−µtot∆

1 − e−µtot∆max
if ∆ ∈ [0, ∆max],

0 otherwise.

The mean of ∆ (conditioned on the event ∆ 6 ∆max) is calculated as

〈∆〉∆|∆6∆max =
µtot

1 − e−µtot∆max

∫ ∆max

0

∆e−µtot∆ d∆ =

=
1

µtot

[
1 − e−µtot∆max

(
µtot∆max + 1

)

1 − e−µtot∆max

]
.

For NaI(Tl) and gamma-ray energy of 511 keV, µtot ≈ 34.2228 m−1 [359], which, for

∆max = 5 mm (normal incidence), gives 〈∆〉∆|∆6∆max = 2.4287 mm ≈ ∆max/2.
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By a change of variables, we can also consider the probability density function of

the depth of interaction Z for different values of the angle of incidence θ

pr(Z | Z 6 Zmax) =
1

cos θ





µtote
−µtotZ/ cos θ

1 − e−µtotZmax/ cos θ
if ∆ ∈ [0, Zmax],

0 otherwise.

Some plots of pr(Z | Z 6 Zmax) for a few values of θ are shown in Figure 5.30.
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0.05

0.1
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Z
m

a
x
)

[m
m

−
1
]

 

 

θ = 0°
θ = 20°
θ = 40°

Figure 5.30. Plots of the probability density function pr(Z | Z 6 Zmax) for different
values of the angle of incidence θ

We can also use the expression of pr(Z | Z 6 Zmax) to calculate the mean and

variance of Z:

〈Z〉Z|Z6Zmax =
cos θ

µtot

[
1 − e−µtotZmax/ cos θ(µtotZmax/ cos θ + 1)

1 − e−µtotZmax/ cos θ

]
,

and
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σ2
Z|Z6Zmax

= 〈Z2〉Z|Z6Zmax −
[
〈Z〉Z|Z6Zmax

]2
=

cos2 θ

µ2
tot

(
1 − e−µtotZmax/ cos θ

)2 ×

×
[
1 − e−µtotZmax/ cos θ

(
µ2

totZ
2
max

cos2 θ
+ 2

)
+ e−2µtotZmax/ cos θ

]
,

which are plotted in Figure 5.31a and Figure 5.31b, respectively.
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Figure 5.31. Plots of mean 〈Z〉Z|Z6Zmax and standard deviation σZ|Z6Zmax as func-
tion of the angle of incidence θ

The results of Figure 5.31 show that, because of the relatively small attenuation

coefficient of NaI(Tl), the mean depth of interaction for our Zmax = 5 mm crystal

is approximatively centered around the middle of the detector, with little variability

as the angle of incidence θ is varied. This also implies relatively large values for the

standard deviation of the depth of interaction, as shown in Figure 5.31b. Notice that

the value of σZ|Z6Zmax plotted in Figure 5.31b is just below the standard deviation

σU =
√

52/12 mm ≈ 1.44 mm for a uniform random variable U over [0, Zmax], where

Zmax = 5 mm. For this reason and even though ModPET features thin crystals, the

integrals over the detector volumes that were used in § 4.9 cannot be just replaced

with area integrals over the detector entrance faces: our treatment of ModPET must

take into account the almost-uniformly-distributed depth of interaction Z.

Much of the theory we developed in § 4.9 still applies to the case of ModPET,
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with the notable different given by the fact that ModPET employs two thin (Zmax =

5 mm) crystals of NaI(Tl) is each gamma-ray camera. For this reason, the theory we

developed will be modified as needed. One important clarification on the notation is

in order: as we did in § 4.9, we will use the vector R to denote a 3D point inside some

crystal volume, and we will use the notation R′ to denote the first two components

of R. In other words, if R = (X, Y, Z), then R′ = (X, Y ) and we can also write

R = (R′, Z). This notation will often be used inside integrals, so, for example, given

functions f(R) and g(R′), we can write
∫

D
f(R)g(R′) dR, with the understanding

that g(R′) depends only on the first two components of the integration variable R.

With this in mind, we will use Â′(j) = (R̂
′(j)
1 , R̂

′(j)
2 ) to denote the jth element of the

list mode data Â ′, in which R̂
′(j)
1 and R̂

′(j)
2 are 2D estimates of location of interaction

within detector D1 and detector D2, respectively. In a similar fashion, r′ will denote

the first two components of the vector r in the field of view.

Our reconstruction algorithm is still mainly based on (4.10), which makes use of

the probability density function pr(Â′(j) | n) of Â′(j) = (R̂
′(j)
1 , R̂

′(j)
2 ) conditioned on

a pair of photons being emitted from the nth voxel in the field of view. One way to

calculate such probability density functions is by means of Monte Carlo sampling,

as it has been discussed and done in [6]. In that work, pr(Â′(j) | n) is calculated

by drawing 3D samples R
(j)
1 and R

(j)
2 normally distributed about (R̂

′(j)
1 , Zmax/2)

and (R̂
(j)
2 , Zmax/2), respectively. The line of response connecting samples R

(j)
1 and

R
(j)
2 is then supplied to a line-projector algorithm [360] to calculated the length of

the segment resulting from the intersection between the line of response itself and

each voxel in the field of view. Repeated multiple times, this builds up a finite sum

approximating pr(Â′(j) | n) up to a constant factor. Some of the limitations of this

Monte Carlo-based method for the calculation of pr(Â′(j) | n) have already been noted

in [6], one of them being that the detector blur is assumed constant over the whole

detector space. Moreover, the Z components of R
(j)
1 and R

(j)
2 are sampled from an

univariate and normally distributed random variable, in contrast with the (almost-
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uniform) truncated exponential distribution of Figure 5.30. For these reasons, we

depart from [6] and calculate pr(Â′(j) | n) in another way.

The starting point for our method for calculation of pr(Â′(j) | n) is the exact

expression in (4.74), which for our 2D estimates R̂
′(j)
1 and R̂

′(j)
2 has to be rewritten

as

pr(D1)(Â′(j) | n) =

=
µ2

pe

4πZ2
max

∫

D1

pr(R̂
′(j)
1 | R

′(j)
1 )

e−µtot∆1(R
(j)
1 ;rn)

|R(j)
1 − rn|2

∫

D2

pr(R̂
′(j)
2 | R

′(j)
2 )e−µtot∆2(R

(j)
2 ;rn) ×

×
∫ ∞

−∞
ψD2

(
R

(j)
1 + (rn − R

(j)
1 )`

)
δDir

(
R

(j)
2 − R

(j)
1 − (rn − R

(j)
1 )`

)
d` d3R

(j)
2 d3R

(j)
1 ,

where we have used the superscript “(D1)” in pr(D1)(. . .) to mean that the outermost

integral is over detector D1. It is important to remark that in the expression above we

have assumed depths of interaction Z
(j)
1 and Z

(j)
2 uniformly distributed over [0, Zmax],

no matter what the angle of incidence θ is. This is why a 1/Z2
max factor appears in

front of the integral over D1. If we repeat the same process but we change the order

of integration, we get

pr(D2)(Â′(j) | n) =

=
µ2

pe

4πZ2
max

∫

D2

pr(R̂
′(j)
2 | R

′(j)
2 )

e−µtot∆2(R
(j)
2 ;rn)

|R(j)
2 − rn|2

∫

D1

pr(R̂
′(j)
1 | R

′(j)
1 )e−µtot∆1(R

(j)
1 ;rn) ×

×
∫ ∞

−∞
ψD1

(
R

(j)
2 + (rn − R

(j)
2 )`

)
δDir

(
R

(j)
1 − R

(j)
2 − (rn − R

(j)
2 )`

)
d` d3R

(j)
1 d3R

(j)
2 .

The expressions for pr(D1)(Â′(j) | n) and pr(D2)(Â′(j) | n) above represent the same

quantity, but calculated in two different ways. Because neither pr(D1)(Â′(j) | n) nor

pr(D2)(Â′(j) | n) can be calculated analytically, we will introduce some approximations

and we will evaluate some of the 3D integrals numerically. More specifically, our code

for the evaluation of pr(D1)(Â′(j) | n) performs numerically the integration over D1,

while in the evaluation of pr(D2)(Â′(j) | n) it is the integration over D2 that gets
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performed numerically. This introduces an asymmetry in our code, which we fix by

taking

pr(Â′(j) | n) =
1

2

[
pr(D1)(Â′(j) | n) + pr(D2)(Â′(j) | n)

]
(5.8)

as an approximate expression for pr(Â′(j) | n). As in § 4.9, the presence of the Dirac

delta function δDir(. . .) makes it trivial to perform one of the 3D integrals and get

pr(D1)(Â′(j) | n) =

=
µ2

pe

4πZ2
max

∫

D1

pr(R̂
′(j)
1 | R

′(j)
1 )

e−µtot∆1(R
(j)
1 ;rn)

|R(j)
1 − rn|2

∫ ∞

−∞
ψD2

(
R

(j)
1 + (rn − R

(j)
1 )`

)
×

× pr
(
R̂

′(j)
2 | R

′(j)
1 + (r′

n − R
′(j)
1 )`

)
e−µtot∆2(R

(j)
1 +(rn−R

(j)
1 )`;rn) d` d3R

(j)
1 .

With the help of Figure 4.29, we can find two numbers `1 and `2 such that ψD2

(
R

(j)
1 +

(rn − R
(j)
1 )`

)
= 1 for ` ∈ [`1, `2] and ψD2

(
R

(j)
1 + (rn − R

(j)
1 )`

)
= 0 otherwise. It is

important to notice that the straight line passing through R
(j)
1 and rn might not

intersect detector D2: in such a case, numbers `1 and `2 do not exist and pr(D1)(Â′(j) |
n) = 0. If numbers `1 and `2 do exist, we have

∆2(R
(j)
1 + (rn − R

(j)
1 )`; rn) =

∣∣(` − `1)(rn − R
(j)
1 )

∣∣ = (` − `1)
∣∣rn − R

(j)
1

∣∣,

provided that ` ∈ [`1, `2]. With this observation, the expression for pr(D1)(Â′(j) | n)

has now become

pr(D1)(Â′(j) | n) =
µ2

pe

4πZ2
max

∫

D1

pr(R̂
′(j)
1 | R

′(j)
1 )

e−µtot∆1(R
(j)
1 ;rn)

|R(j)
1 − rn|2

×

×
∫ `2

`1

pr
(
R̂

′(j)
2 | R

′(j)
1 + (r′

n − R
′(j)
1 )`

)
e−µtot(`−`1)|rn−R

(j)
1 | d` d3R

(j)
1 . (5.9)

Figure 5.33 reports the Cramér-Rao lower bounds (CRLBs) for the estimation

of the 2D location of interaction from PMT data. These CRLBs were calculated

using (5.3) and (5.5), which we report below for convenience

[FR]m,n ≈
K∑

k=1

1

σ2 + rgk(R)

∂gk(R)

∂Rm

∂gk(R)

∂Rn

.
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Figure 5.32. Diagram for the calculation of ModPET PMT gain

The value of σ2 was set to 2 [358], while r was calculated with the help of Figure 5.32.

The angle ϑ1/2 measuring the spread of the bundle of optical photons that make

it to the entrance face of the kth PMT can be calculated as

ϑ1/2 ≈ tan−1

[
(38.1 mm)/2

(2.50 + 8.00) mm

]
= 1.0670 rad.

Hence, the solid angle Ω subtended by the same bundle of photos is

Ω = 2π
(
1 − cos ϑ1/2

)
= 3.2502 ster.

The PMT output gk is related to r according to

2Ω

4π
rEγηNaI(Tl)η = gk,

where Eγ is the energy of a gamma-ray photon in units of MeV, ηNaI(Tl) is the number

of optical photons per MeV for NaI(Tl), and η is the PMT’s quantum efficiency.
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Experimentally, gk ≈ 1575, so that:

r =
gk

2Ω

4π
EγηNaI(Tl)η

≈ 0.7902,

in which we have taken Eγ = 0.511 MeV, ηNaI(Tl) = 37700 photons/MeV [235], and

we have assumed η = 0.20 [358].

Recall that the two cameras have been experimentally calibrated [6], so any man-

ufacturing difference in the two cameras has to be taken into account by having a

set of calibration data for each camera, as shown in Figure 5.34 and Figure 5.35.

Plots in Figure 5.33 suggest that if we exclude pathological cases near the edges

of the detector (as emphasized in Figure 5.33 by red squares superimposed on the

CRLB maps), maximum-likelihood estimates R̂′ are very accurate, as the standard

deviations of the components of R̂′ are typically less than 1.00 mm. Our calcu-

lations show that the average standard deviation for the X̂ component of R̂′ is

σX̂ = 0.5350 mm and that the average standard deviation for the Ŷ component

of R̂′ is σŶ = 0.5365 mm. These standard deviations can be related to the full

width at half maximum (FWHM) of the distribution of the X̂ and Ŷ estimates using

the relationship FWHM = 2
√

2 ln 2σ ≈ 2.35σ, giving FWHMX̂ = 1.2598 mm and

FWHMŶ = 1.2633 mm. These values are comparable to the detector’s X and Y

intrinsic spatial resolutions experimentally found in [6].

As in § 4.9, the density pr(R̂′ | R′) is well approximated with a Gaussian:

pr(R̂′ | R′) ≈

√
det

(
FR̂′

)

2π
exp

[
−1

2

(
R̂′ − R′)T

FR̂′

(
R̂′ − R′)

]
, (5.10)

in which FR̂′ is the 2×2 Fisher information matrix at R̂′. By examining the elements

of FR̂′ (or [FR̂′ ]−1) for different values of R̂′, we notice that there is little correlation

between X̂ and Ŷ estimates. Indeed, if we assume KR̂′ ≈ [FR̂′ ]−1, then Figure 5.36

suggests −0.15 mm2 . σX̂Ŷ . 0.15 mm2 for most of the detector face. On the

other hand, values of σ2
X̂

and σ2
Ŷ

range from 0.30 mm2 to 1.20 mm2 (see Figure 5.33).
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Figure 5.33. Plots of Cramér-Rao lower bounds (in millimeters) for the 2D estima-
tion of location of interaction for ModPET gamma-ray cameras. The regions outside
the red squares indicate detector pixels for which estimates R̂′ are inaccurate and/or
their calculation and processing is numerically unstable
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(a) PMT 1 (b) PMT 2 (c) PMT 3

(d) PMT 4 (e) PMT 5 (f) PMT 6

(g) PMT 7 (h) PMT 8 (i) PMT 9

Figure 5.34. MDRF calibration data for ModPET camera 1
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(a) PMT 1 (b) PMT 2 (c) PMT 3

(d) PMT 4 (e) PMT 5 (f) PMT 6

(g) PMT 7 (h) PMT 8 (i) PMT 9

Figure 5.35. MDRF calibration data for ModPET camera 2



299

FIM elements Fx,y for camera 1
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Figure 5.36. In the top row, plots of the off-diagonal elements of the Fisher infor-
mation matrix FR̂′ (in inverse square millimeters) for the 2D estimation of location
of interaction for ModPET gamma-ray cameras. In the bottom row, plots of the
off-diagonal elements of [FR̂′ ]−1 (in square millimeters). The regions outside the red
squares indicate detector pixels for which estimates R̂′ are inaccurate and/or their
calculation and processing is numerically unstable
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Hence, depending on the values of estimates X̂ and Ŷ , the probability density function

pr(R̂′ | R′) could alternatively be modeled as the probability density function of two

independent and normally distributed random variables.

With the assumption in (5.10), the line integral over ` in (5.9) becomes
∫ `2

`1

pr
(
R̂

′(j)
2 | R

′(j)
1 + (r′

n − R
′(j)
1 )`

)
e−µtot(`−`1)|rn−R

(j)
1 | d` =

=

√
det

(
F

R̂
′(j)
2

)

2π

∫ `2

`1

exp

[
−1

2

(
a − b`

)T

F
R̂

′(j)
2

(
a − b`

)]
e−c(`−`1),

where we have set

a = R̂
′(j)
2 − R

′(j)
1 , b = r′

n − R
′(j)
1 , c = µtot

∣∣rn − R
(j)
1

∣∣.

If we further set

A2 = aTF
R̂

′(j)
2

a, B = aTF
R̂

′(j)
2

b, C2 = bTF
R̂

′(j)
2

b,

and complete the square, we find
∫ `2

`1

pr
(
R̂

′(j)
2 | R

′(j)
1 + (r′

n − R
′(j)
1 )`

)
e−µtot(`−`1)|rn−R

(j)
1 | d` =

=

√
det

(
F

R̂
′(j)
2

)

2π
ec`1−β/2

∫ `2

`1

exp

[
−1

2
(C` − α)2

]
d`,

where

α =
B − c

C
, β = A2 −

(
B − c

C

)2

.

Finally, we can use the erf(. . .) function to express the integral above, yielding
∫ `2

`1

pr
(
R̂

′(j)
2 | R

′(j)
1 + (r′

n − R
′(j)
1 )`

)
e−µtot(`−`1)|rn−R

(j)
1 | d` =

=

√
π

2C

√
det

(
F

R̂
′(j)
2

)

2π
ec`1− 1

2
β
[
erf(C`2 − α) − erf(C`1 − α)

]
.

With this result, the expression for pr(D1)(Â′(j) | n) assumes the form,

pr(D1)(Â′(j) | n) =

√
πµ2

pe

32π3Z2
max

√
det

(
F

R̂
′(j)
1

)√
det

(
F

R̂
′(j)
2

)
×
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×
∫

D1

e−µtot∆1(R
(j)
1 ;rn)

|R(j)
1 − rn|2

[
erf(C`2 − α) − erf(C`1 − α)

]
×

× ec`1− 1
2
β

C
exp

[
−1

2

(
R̂

′(j)
1 − R

′(j)
1

)T

F
R̂

′(j)
1

(
R̂

′(j)
1 − R

′(j)
1

)]
d3R

(j)
1 .

Next, we observe that some of the quantities that appear in the expression above only

depend on R
(j)
1 , so that we can write

pr(D1)(Â′(j) | n) =

√
πµ2

pe

32π3Z2
max

√
det

(
F

R̂
′(j)
1

)√
det

(
F

R̂
′(j)
2

)
×

×
∫

D′
1

1

C
exp

[
−1

2

(
R̂

′(j)
1 − R

′(j)
1

)T

F
R̂

′(j)
1

(
R̂

′(j)
1 − R

′(j)
1

)]
×

×
{∫ Zmax

0

e−µtot∆1(R
(j)
1 ;rn)

|R(j)
1 − rn|2

ec`1− 1
2
β
[
erf(C`2 − α) − erf(C`1 − α)

]
dZ

(j)
1

}
d2R

′(j)
1 .

Furthermore, we can use e−ε ≈ 1 − ε for |ε| ¿ 1 to write

pr(D1)(Â′(j) | n) =

√
πµ2

pe

32π3Z2
max

√
det

(
F

R̂
′(j)
1

)√
det

(
F

R̂
′(j)
2

)
×

×
∫

D′
1

1

C
exp

[
−1

2

(
R̂

′(j)
1 − R

′(j)
1

)T

F
R̂

′(j)
1

(
R̂

′(j)
1 − R

′(j)
1

)]
×

×
{∫ Zmax

0

1 − µtot∆1(R
(j)
1 ; rn)

|R(j)
1 − rn|2

ec`1− 1
2
β
[
erf(C`2 − α) − erf(C`1 − α)

]
dZ

(j)
1

}
d2R

′(j)
1 .

(5.11a)

If we repeat the same process but for pr(D2)(Â′(j) | n), we get

pr(D2)(Â′(j) | n) =

√
πµ2

pe

32π3Z2
max

√
det

(
F

R̂
′(j)
1

)√
det

(
F

R̂
′(j)
2

)
×

×
∫

D′
2

1

C
exp

[
−1

2

(
R̂

′(j)
2 − R

′(j)
2

)T

F
R̂

′(j)
2

(
R̂

′(j)
2 − R

′(j)
2

)]
×

×
{∫ Zmax

0

1 − µtot∆2(R
(j)
2 ; rn)

|R(j)
2 − rn|2

ec`1− 1
2
β
[
erf(C`2 − α) − erf(C`1 − α)

]
dZ

(j)
2

}
d2R

′(j)
2 .

(5.11b)

As an example, Figure 5.37 reports a grayscale plot of pr(Â′(j) | n) as calculate

using the procedure discussed above. In this figure, large values of pr(Â′(j) | n) are
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denoted as dark regions. The uncertainty in the depth of interaction Z for points

R
(j)
1 and R

(j)
2 is the main reason why the non-zero values pr(Â′(j) | n) extend a few

millimeters in the X and Y directions. Also notice that the large values of pr(Â′(j) | n)

near either crystal’s entrance face are due to the large numerical value for either solid

angle factors 1

|R(j)
1 −rn|2

or 1

|R(j)
2 −rn|2

when point rn is near one of the crystals.

R̂
(j)
1

R̂
(j)
2

D1 D2

FOV

X

Y Z

Figure 5.37. Grayscale plot of pr(Â′(j) | n)

One of the drawbacks of the expressions we found in (5.11) is that when voxel n

is close to the detector over which we perform the integration numerically, the other

detector space is poorly sampled. Indeed, if voxel n is close to, say, detector D1

and we numerically evaluate pr(D1)(Â′(j) | n), then a small change in the value of

the integration variable (R
′(j)
1 , Z

(j)
1 ) = R

(j)
1 will result in a large change in the value

of the integrand, with the risk of poorly estimate pr(D1)(Â′(j) | n). This problem

is most severe when the object support runs right up to the sensitive area of the

camera. The same problem occurs when voxel n is close to detector D2 and we
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evaluate pr(D2)(Â′(j) | n) numerically. In this work, this problem has been partially

solved by defining pr(Â′(j) | n) as in (5.8). A more satisfactory solution would be to

retain the integrals over D1 and D2 and consider the following expression

pr(Â′(j) | n) =
µ2

pe

4πZ2
max

∫

D1

pr(R̂
′(j)
1 | R

′(j)
1 )

e−µtot∆1(R
(j)
1 ;rn)

|R(j)
1 − rn|2

×

×
∫

D2

pr(R̂
′(j)
2 | R

′(j)
2 )e−µtot∆2(R

(j)
2 ;rn)ψBn(R

(j)
1 , R

(j)
2 ) d3R

(j)
2 d3R

(j)
1 ,

in which ψBn(R
(j)
1 , R

(j)
2 ) = 1 if the line of response defined by points R

(j)
1 and R

(j)
2

intersects voxel Bn; otherwise, ψBn(R
(j)
1 ,R

(j)
2 ) = 0. Equivalently, we can consider

pr(Â′(j) | n) =
µ2

pe

4πZ2
max

∫

D2

pr(R̂
′(j)
2 | R

′(j)
2 )

e−µtot∆2(R
(j)
2 ;rn)

|R(j)
2 − rn|2

×

×
∫

D1

pr(R̂
′(j)
1 | R

′(j)
1 )e−µtot∆1(R

(j)
1 ;rn)ψBn(R

(j)
1 , R

(j)
2 ) d3R

(j)
1 d3R

(j)
2 .

Numerical evaluation of the two expressions above is, however, computationally ex-

pensive, as two nested 3D numerical integrations are required.

Rather than using the same algorithm we used in § 5.7 to reconstruct the data,

here we opted for a more general algorithm, still based on the MLEM methods. This

algorithm is known in the literature as the ordered subset (OS) MLEM algorithm,

or OSMLEM. First proposed in [204] for the case of binned data, the OSMLEM

algorithm groups projection data into an ordered sequence of P subsets, where the

number P is also called the OS level [204]. One iteration of the OSMLEM algorithm

is now defined as a single pass through to all the P projections (or subsets) [204].

The equivalent of (3.10) but for the case of the OSMLEM algorithm takes the form:

f̂ (kP+p+1)
n = f̂ (kP+p)

n

{
1

∑M
m=1 h

(p)
m,n

M∑

m=1

g
(p)
m h

(p)
m,n

∑N
n′=1 h

(p)
m,n′ f̂

(kP+p)
n′

}
, (5.12)

in which g(p) is the projection data associated to the pth subset, for p = 0, . . . , P − 1,

and, as usual, k denotes the iteration number. Hence, kP represents the effective

number of image updates after k iterations of the algorithm. The recursion formula
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provided above shows that the standard MLEM algorithm is sequentially applied to

each subset, with the resulting reconstruction becoming the starting value for use

with the next subset [204].

There are different choices for the subsets [204]. For example, in the case of

non-overlapping subsets, a natural choice for subset p is simply the data from the pth

projection only. On the other hand, if we employ cumulative subsets, we define subset

p as the concatenation of the data from the first p+1 projections, for p = 0, . . . , P −1.

Finally, we notice that if we use only one subset and define it as the union of the all P

projections, the OSMLEM simply reduces to the MLEM algorithm defined in (3.10).

In the simulation examples of [204], the use of ordered subset has been found to

speed up reconstruction by an order of magnitude over the classical, non-OS MLEM

algorithm for the same restoration “quality.” Some convergence results of the OSM-

LEM algorithm for noise-free data are discussed in [204] as well. For the case of noisy

data, it has been empirically determined that, for a large number of iterations, the

OSMLEM algorithm follows a cycle of different limiting images. One way to break

this cycle and obtain a unique solution is to monotonically reduce the OSMLEM level

down to 1 as the algorithm proceeds throughout the iterations [204].

The adaptation of the OSMLEM algorithm to the case of list-mode data is trivial:

by comparing (5.12) with (4.10) we can conclude [259,260,264,342,361]

f̂ (kP+p+1)
n = f̂ (kP+p)

n





1

τ (p)

∑

Â(j)∈Â (p)

pr(p)(Â(j) | n)
∑N

n′=1 pr(p)(Â(j) | n′)sn′ f̂
(kP+p)
n′



 , (5.13)

in which Â (0), . . . , Â (P−1) are the P data subsets (or projections), along with their

exposure times τ0, . . . , τP−1, and we have explicitly included in pr(p)(Â | n) the de-

pendence on the subset index p (this would be useful, for example, if the imaging

system allows us to collect data along different projections, if the imaging system is

reconfigured as the different data subsets are acquired, or even if we want to intro-

duce motion compensation into our model [362–366]). We will refer to the iterative
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algorithm mathematically formalized above as the ordered subset (OS) LMMLEM or

OSLMMLEM algorithm.

The application of the OSLMMLEM algorithm to emission tomography data has

become very popular in the last decade or so, mainly for its reconstruction speed

when compared to the standard MLEM algorithm operating on binned data. Indeed,

it has been noticed that often just one or two iterations [259] of the OSLMMLEM

reconstruction algorithm already produce an image that would not change signifi-

cantly if additional iterations were performed. In particular, if just one iteration

of the OSLMMLEM algorithm is used, the algorithm passes through the data Â

only once [259, 361], and subset Â (p) can be discarded as soon as it has been used

in (5.13). This way, a hypothetical one-pass OSLMMLEM imaging system would be

able to display estimate f̂ (p) in “real-time” [259] and while the next projection data

Â (p) is being acquired and processed to calculate f̂ (p+1) according to (5.13). As noted

in [361], however, convergence of the OSLMMLEM algorithm is no longer guaran-

teed (unless, of course, for the case in which the OSLMMLEM algorithm reduces to

the LMMLEM algorithm), but a regularized version of the OSLMMLEM algorithm

has been proposed and its convergence properties proven [260].

Application to ModPET: Reconstruction Results

The OSLMMLEM algorithm discussed above was applied to list-mode data acquired

with ModPET, a schematic diagram of which is reported in Figure 5.29. The input

data Â consisted of a list of 11,450,814 lines or response (LORs) for a 18F-NaF bone

scan for a normal mouse. Figure 5.38, which was originally published in [6], shows a

maximum intensity projection of reconstructed volume, superimposed on a grayscale

optical image of the mouse. The data were reconstructed using the LMMLEM recon-

struction algorithm of [6].

The elements Â(j) of Â are of the form Â(j) =
(
R̂

(j)
1 , `

(j)
1 , R̂

(j)
2 , `

(j)
2

)
, where the

vector R̂
(j)
i denotes a 3D point within crystal Di, and the scalar value `

(j)
i is the
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Figure 5.38. Maximum intensity projection of reconstructed volume from a 18F-
NaF mouse bone scan superimposed on a grayscale optical image (courtesy of Stephen
K. Moore [6])
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value of the log-likelihood defined in (3.4) that was previously calculated as part of

the estimation of point R̂
(j)
i from PMT data. The Ẑ

(j)
i component (i.e., the depth

of interaction) of each point R̂
(j)
i in the data Â was either −2.50 mm or +2.50 mm,

depending which crystal space the point R̂
(j)
i belongs to. This makes sense if we

recall that ModPET features a thin (5 mm) NaI(Tl) crystal in each of the two 2D

gamma-ray cameras and, as we argued above, a depth of interaction of 2.50 mm is

approximatively the expected value of the random variable representing the actual

depth of interaction. Contrary to [6], our implementation does not use the estimates

Ẑ
(j)
i of the depths of interaction. Indeed and as we can see from (5.11), only the 2D

points R̂
′(j)
i enter in our expressions for pr(D1)(Â′(j) | n) and pr(D2)(Â′(j) | n), and

the distribution of the actual depth of interaction Z
(j)
i is assumed uniform over the

crystal thickness. The remaining components
(
X̂

(j)
i , Ŷ

(j)
i

)
= R̂

′(j)
i of the vector R̂

(j)
i

took on values over a 153 × 153 regular grid of points spaced by 750 μm along each

dimension.

The elements Â(j) of the list Â were initially filtered using the values of the log-

likelihood `
(j)
i : given a lower bound for the log-likelihood on the form of a threshold

`min, attribute vector Â(j) of Â is retained if and only if `
(j)
1 > `min and `

(j)
2 > `min.

This process allows us to discard lines of response that, overall, have a low likelihood

given the PMT data acquired by the hardware. In our implementation, we set `min =

−30.00 [6], which resulted in the rejection of about 65.13% of the lines of response

originally contained in Â . Another 14.95% of the original lines of response in Â

that passed the likelihood threshold test were rejected because at least one of the

points R̂
′(j)
1 or R̂

′(j)
2 that define the jth line of response fell outside the red squares

drawn in Figure 5.33. The reason we decided to exclude these lines of response is

because the Fisher information matrices FR̂ are poorly estimated for points R̂ that

lie outside the red squares, resulting in numerical instability during the calculation

of pr(D1)(Â′(j) | n) and pr(D2)(Â′(j) | n) according to (5.11). After these two selection

steps, only 2,280,715 lines of response were retained, corresponding to 19.92% of the
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original lines of response in Â . We will denote the list of the retained lines of response

as Â (X):

Â
(X) =

{
Â(1), . . . , Â(J)

}
, (5.14)

where J = 2280715.

The calculation of pr(Â′(j) | n) for Â(j) ∈ Â (X) according to (5.8) and (5.11) was

performed using computer code developed for a GPU device. For easy handling, the

list Â (X) was partitioned into 512 sublists, which we called “fragments.” Each frag-

ment contained about 4,455 lines of response. Specialized CUDA code was developed

to evaluate pr(Â′(j) | n) for each line of response in each fragment, resulting in 512

data files. To speed up the computation, we also decided to restrict the values of

the voxel index n to voxels “near” the line of response. This is justified by the fact

that pr(Â′(j) | n) ≈ 0 for voxels n that were more than 2 mm away from the line

of response, as shown in Figure 5.37. Voxel indices n were saved to disk along with

the values of pr(Â′(j) | n). We likewise sped up the evaluation of the integrals over

R
′(j)
i in (5.11) by only considering an NX × NY = 16 × 16 grid of points R

′(j)
i inside

a ∆X × ∆Y = 4 mm × 4 mm region centered around R̂
′(j)
i . On the other hand, the

integral over Z
(j)
i used NZ = 16 samples uniformly spaced over the whole ∆Z = 5 mm

detector thickness. Despite all these attempts to speed the calculation up, the eval-

uation of pr(Â′(j) | n) for Â(j) ∈ Â (X) took approximatively 1.63 hours when a total

of eight NVIDIA Tesla C2050 GPU cards were used. This figure translates to about

2.58 ms per line of response. As shown in Figure 5.29, the field of view measured

88 mm× 88 mm× 32 mm and it was divided into a 3D grid of 160× 160× 64 voxels.

Thus, each voxel measured δx × δy × δz = 550 μm × 550 μm × 500 μm.

To test the effectiveness of the OSLMMLEM on reconstructing the list-mode data

Â (X), we first ran the LMMLEM algorithm discussed in § 4.4 on the data Â (X). This

can effectively be done by setting P = 1 in (5.13). We ran 10 iterations of (5.13)

with P = 1 and reported some reconstruction results in Figure 5.39. Because the
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reconstructed object is 3D, we limited ourselves to displaying some significant slices

through the object. Going from left to right, Figure 5.39 shows sections of the recon-

structed object along x-y planes in the field of view for z = −6.25 mm, z = −3.25 mm,

z = −0.25 mm, and z = 2.25 mm, where the point r = (x, y, z) = (0, 0, 0) is located

at the center of the field of view. The same planes will be used in the next figures

for ease of comparison. Performing 10 iterations of the LMMLEM algorithm took

approximatively 3.10 hours, of which about 2.65 hours were spent in loading from the

disk the data pr(Â′(j) | n).

To test the effectiveness of the OSLMMLEM algorithm in speeding up the recon-

struction when compared to the LMMLEM algorithm, we applied (5.13) with P > 1

to the data Â (X). More specifically, data subsets Â (0), . . . , Â (P−1) were defined in

terms of the 512 fragments into which the list-mode data Â (X) was subdivided. As

an example, for the case P = 2, Â (0) was made up of the first 256 fragments and

Â (1) was made up of the remaining 256 fragments. In this way, roughly the first half

of Â (X) defined Â (0) and the remaining elements of Â (X) were used to form Â (1). A

similar scheme was used for the cases P = 4 and P = 16. Figure 5.40 shows OSLMM-

LEM reconstructions for P = 2; Figure 5.41 for P = 4 and, finally, Figure 5.42 for

P = 16. In all these reconstructions, we took the values of the sensitivities as the

initial guess: f̂ (0) = s.

We do not claim that visual examination of just one reconstructed object suffices

to define image quality, but we note that the LMMLEM reconstruction after 10 itera-

tions (shown in Figure 5.39) is comparable to the P = 2 OSLMMLEM reconstruction

after 4 iterations (see Figure 5.40), which, in turn, is comparable to the P = 4

OSLMMLEM reconstruction after 2 iterations (see Figure 5.41). This comparison is

summarized in Figure 5.43.

The reconstructed images reported in Figure 5.42 show one of the shortcomings of

the multiplicative nature of any MLEM scheme (hence, the OSLMMLEM algorithm as

well). To understand this point, let us consider the extreme case in which each ordered
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(a) After iteration 2

(b) After iteration 4

(c) After iteration 6

(d) After iteration 8

(e) After iteration 10

Figure 5.39. LMMLEM reconstructions of list-mode data Â (X)
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(a) After iteration 2

(b) After iteration 4

(c) After iteration 6

(d) After iteration 8

(e) After iteration 10

Figure 5.40. OSLMMLEM reconstructions of list-mode data Â (X) for P = 2
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(a) After iteration 2

(b) After iteration 4

(c) After iteration 6

(d) After iteration 8

(e) After iteration 10

Figure 5.41. OSLMMLEM reconstructions of list-mode data Â (X) for P = 4
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(a) After iteration 2

(b) After iteration 4

(c) After iteration 6

(d) After iteration 8

(e) After iteration 10

Figure 5.42. OSLMMLEM reconstructions of list-mode data Â (X) for P = 16
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(a) LMMLEM reconstruction after iteration 10

(b) OSLMMLEM reconstruction with P = 2 subsets after iteration 4

(c) OSLMMLEM reconstruction with P = 4 subsets after iteration 2

Figure 5.43. Comparison of LMMLEM reconstructions with OSLMMLEM recon-
structions
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subset Â (p) contains just one of the elements of Â (X) and let us assume, for simplicity,

that f̂
(0)
n = 1 for n = 1, . . . , N . When the first ordered subset Â (0) = {Â(1)} is

processed according to (5.13), only a subset NÂ(1) of the voxel indices {1, . . . , N} will

satisfy pr(p)(Â(1) | n) 6≈ 0 for n ∈ NÂ(1) , as suggested by Figure 5.37. Hence, f̂
(1)
n ≈ 0

unless n ∈ NÂ(1) . When the second ordered subset Â (1) = {Â(2)} is processed,

additional voxels whose index does not belong to NÂ(2) will be set to zero (or to a

very small value). This process repeats until all the ordered subsets are processed.

Unless all the NÂ(j) have non-empty intersection,

J⋂

j=1

NÂ(j) 6= ∅,

the estimated image f̂ (P ) after the first iteration of (5.13) will satisfy f̂
(P )
n = 0 for all

n = 1, . . . , N . A similar result, albeit to a lesser extent, will occur if the number of

elements in each ordered subset is “too small.” Indeed, as shown in Figure 5.42, only

a relatively small number of pixels of the reconstructed object will assume a non-zero

value and the reconstructed object itself will not look smooth.

To solve this problem, we start by rewriting the OSLMMLEM algorithm of (5.13)

in additive form [367]:

f̂ (kP+p+1)
n = f̂ (kP+p)

n + ∆f̂ (kP+p)
n , (5.15)

where

∆f̂ (kP+p)
n = f̂ (kP+p)

n





1

τ (p)

∑

Â(j)∈Â (p)

pr(p)(Â(j) | n)
∑N

n′=1 pr(p)(Â(j) | n′)sn′ f̂
(kP+p)
n′

− 1



 .

The scheme above, which is mathematically equivalent to (5.13), is then modified by

introducing the relaxation parameter λ(kP+p) so that [264,367]

f̂ (kP+p+1)
n = f̂ (kP+p)

n + λ(kP+p)∆f̂ (kP+p)
n , (5.16)

or also

f̂ (kP+p+1)
n =

(
1 − λ(kP+p)

)
f̂ (kP+p)

n +
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+ λ(kP+p)f̂ (kP+p)
n





1

τ (p)

∑

Â(j)∈Â (p)

pr(p)(Â(j) | n)
∑N

n′=1 pr(p)(Â(j) | n′)sn′ f̂
(kP+p)
n′



 .

The form above shows that, so long as 0 6 λ(kP+p) 6 1 and f̂
(kP+p)
n > 0, then

f̂
(kP+p+1)
n > 0. More important, however, is the fact that by introducing the relaxation

parameter λ(kP+p) we have lost the original multiplicative nature of the OSLMMLEM

algorithm so that the case f̂ (kP+p) = 0 we discussed above no longer occurs: choosing

λ(kP+p) so that 0 6 λ(kP+p) < 1 has the advantage that f̂
(kP+p)
n > 0 also enters in ad-

ditive form in the expression for f̂
(kP+p+1)
n , preventing f̂

(kP+p+1)
n → 0 throughout the

iterations. This, however, comes at a price: by introducing the relaxation parameter

λ(kP+p), the algorithm in (5.15) might no longer converge [367] or, if it does, it might

converge to a solution that is no longer a maximum-likelihood solution. In practice,

just one or two passes through the data are usually enough to obtain reconstruction

comparable to those obtained with many iterations of the LMMLEM algorithm. Con-

vergence of the relaxed OSLMMLEM algorithm is thus reduced to a question with

only theoretical relevance.

To test the relaxed version of the OSLMMLEM algorithm, we ran it on the same

data Â (X) we used before. In our reconstruction, we set the number P of ordered

subsets to 16 and we tested the algorithm for different values of λ(kP+p). For simplicity,

we set λ(kP+p) = λ for all k and p, and for some value of λ we picked up before running

the reconstructions. We also wanted to test the claims in [264,361] and decided to run

just one pass throughout the data Â (X). Some reconstructions obtained after just

one iteration and for different values of λ are reported in Figure 5.44. By visually

comparing these reconstructions with those reported in Figure 5.43, we conclude

that the λ = 0.50 “one-pass” OSLMMLEM algorithm with P = 16 ordered subsets

is capable of producing reconstructed data comparable to those of the LMMLEM

algorithm but after 10 iterations (see Figure 5.39).

So far, we have not discussed how the values λ(kP+p) can be chosen; in Figure 5.44,
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(a) λ = 0.20

(b) λ = 0.30

(c) λ = 0.40

(d) λ = 0.50

(e) λ = 0.60

Figure 5.44. Relaxed OSLMMLEM reconstructions of list-mode data Â (X) with
P = 16 subsets and after iteration 1
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we tried different values and we noticed that some particular choices gave “better”

reconstructions than others. This idea can be made more formal by carrying out

an objective assessment of image quality [5, 65, 69, 72, 124, 318] or OAIQ. From the

statistics of the objects being imaged, the noise properties of the imaging system,

the task we want to perform (such as detection of a signal at a known location), and

how we perform it, an appropriate figure of merit for task performance—such as the

SNR2—can be introduced and maximized. In this context, the “optimal” values of

λ(kP+p) are defined as those that maximize the task performance figure of merit.

Originally introduced in [367], the parameters λ(kP+p) were allowed to be larger

than 1 in the hope that would speed up the reconstruction. As noticed in [367], if

λ(kP+p) > 1, non-negativity of estimates f̂ (kP+p) is, in general, no longer guaranteed.

Indeed, if we multiply both sides of (5.15) by sn and sum over n, then, by (4.11) we

get:
N∑

n=1

sn∆f̂ (kP+p)
n = 0.

Unless ∆f̂
(kP+p)
n = 0 for all n, the result above shows that some of the f̂

(kP+p+1)
n will

be negative if λ(kP+p) is chosen too large in (5.16). To circumvent this problem, a

pseudorelaxation parameter µ
(kP+p)
n is introduced [367]

µ(kP+p)
n =





∞ if ∆f̂
(kP+p)
n > 0,

− f̂
(kP+p)
n

∆f̂
(kP+p)
n

if ∆f̂
(kP+p)
n < 0.

In [367], the relaxation parameter λ(kP+p) is then heuristically calculated as

λ(kP+p) = min

{
µ

(kP+p)
min + 1

2
, 4

}
,

where we have set

µ
(kP+p)
min = min

{
µ(kP+p)

n , for n = 1, . . . N
}
.
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A more interesting alternative, explored in [182], is to chose λ(kP+p) as the value λ

that maximizes the likelihood pr
(
Â (p) | f̂

(kP+p)
n + λ∆f̂

(kP+p)
n

)
:

λ(kP+p) = arg max
06λ6µ

(kP+p)
min

[
pr

(
Â

(p) | f̂ (kP+p)
n + λ∆f̂ (kP+p)

n

)]
.

The line-search over λ is easily carried out via a 1D implementation of the contracting-

grid algorithm we discussed in § 3.3. Although this scheme does not immediately fall

within the OAIQ scenario [5,65,69,72,124,318] we alluded to above, we can interpret

the line-search step as the maximization of the iteration-by-iteration figure of merit

given by the likelihood pr
(
Â (p) | f̂

(kP+p)
n + λ∆f̂

(kP+p)
n

)
.

An interesting question is whether or not the complex calculation of pr(Â′(j) | n)

as mathematically formalized in (5.8) and (5.11) is actually providing an improvement

in terms of image quality with respect to simpler ways of calculating pr(Â′(j) | n). For

example, we could decide to obtain pr(Â′(j) | n) by calculating the intersection length

between lines of response and voxels in the field of view. To pursue this approach,

we first rewrite pr(Â′(j) | n) as [6]

pr
(
Â′(j) | n

)
=

∫

∞
pr

(
Â′(j) | A(j)

)
pr

(
A(j) | n

)
dA(j),

where pr(Â′(j) | A(j)) is the probability density function for estimating the pair

Â′(j) = (R̂
′(j)
1 , R̂

′(j)
2 ), when the true coincidence pair endpoints are A(j) = (R

(j)
1 , R

(j)
2 ).

The term pr(A(j) | n) represents the geometric radiometry of the imaging system.

For fixed A(j) = (R
(j)
1 , R

(j)
2 ), the quantity pr(A(j) | n) has to be understood as the

likelihood of a pair of gamma-ray photons being produced within voxel n, when the

actual line of response `(R
(j)
1 , R

(j)
2 ) is defined by points R

(j)
1 and R

(j)
2 [6]. Hence,

pr(A(j) | n) is proportional to the length L(R
(j)
1 ,R

(j)
2 ; n) of the segment resulting

from the intersection between the line of response `(R
(j)
1 ,R

(j)
2 ) and the volume space

defined by the nth voxel

pr
(
A(j) | n

)
= pr

(
R

(j)
1 ,R

(j)
2 | n

)
=

L
(
R

(j)
1 , R

(j)
2 ; n

)
∑N

n′=1 L
(
R

(j)
1 , R

(j)
2 ; n′

) .
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If `(R
(j)
1 , R

(j)
2 ) does not intersect voxel n, we will set pr(A(j) | n) = 0. Lengths

L(R
(j)
1 , R

(j)
2 ; n) are efficiently calculated via the Siddon algorithm [360,368].

For the case of ModPET, points R̂
′(j)
1 and R̂

′(j)
2 making up Â′(j) are 2D random

estimates corresponding to actual 3D locations of interaction within the corresponding

camera’s crystals. For this reason, Monte Carlo (MC) integration [369, 370] is used

in [6] to estimate pr(Â′(j) | n) according to

pr(MC)
(
Â′(j) | n

)
=

1

M

M∑

m=1

pr
(
R

(j,m)
1 ,R

(j,m)
2 | n

)
, (5.17)

where we used the superscript “(MC)” to differentiate the probability density function

above from the one introduced in (5.11). In the calculation of pr(MC)(Â′(j) | n), points

R
(j,m)
i = (X

(j,m)
i , Y

(j,m)
i , Z

(j,m)
i ) are randomly generated according to

pr
(
X̂

(j)
i | X

(j,m)
i

)
=

1√
2πσ2

X

exp


−

(
X̂

(j)
i − X

(j,m)
i

)2

2σ2
X


 ,

pr
(
Ŷ

(j)
i | Y

(j,m)
i

)
=

1√
2πσ2

Y

exp


−

(
Ŷ

(j)
i − Y

(j,m)
i

)2

2σ2
Y


 ,

pr
(
Z

(j,m)
i

)
=

1√
2πσ2

Z

exp


−

(
Z

(j,m)
i − Z

(middle)
i

)2

2σ2
Z


 ,

in which Z
(middle)
i denotes the depth of a point midway inside crystal i, for i = 1, 2,

and 2D points R̂
′(j)
1 = (X̂

(j)
1 , Ŷ

(j)
1 ) and R̂

′(j)
2 = (X̂

(j)
2 , Ŷ

(j)
2 ) define the list-mode datum

Â′(j) = (R̂
′(j)
1 , R̂

′(j)
2 ). From the expressions above, we see that the components of

R
(j,m)
i are independent of each other and their standard deviations are σX , σY , and

σZ , respectively.

There are a few substantial differences between pr(Â′(j) | n) as calculated accord-

ing to (5.8) and pr(MC)(Â′(j) | n) defined in (5.17):

• The expression for pr(MC)(Â′(j) | n) assumes uniform performance over the

entrance face of the gamma-ray cameras. Furthermore, X estimates are assumed
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independent from Y estimates. On the other hand, the expression in (5.8)

uses the Fisher information matrices F
R̂

′(j)
1

and F
R̂

′(j)
2

to model the position-

dependent performance of each camera.

• In the calculation of pr(MC)(Â′(j) | n), the depth of interaction is assumed nor-

mally distributed with standard deviation σZ and mean Z
(middle)
i . In Figure 5.30,

we argued that the distribution of the depth of interaction actually follows a

truncated exponential distribution which, for our 5 mm NaI(Tl) crystals, is well

approximated by a uniform distribution over the crystal thickness. For this

reason, the expressions in (5.11) assume a uniform distribution of the depths of

interaction Z
(j)
1 and Z

(j)
2 .

• Factors 1

|R(j)
1 −rn|2

and 1

|R(j)
2 −rn|2

in (5.11) model the solid angles at R
(j)
1 and R

(j)
2

subtended by the projection of voxel n along the line of response `(R
(j)
1 , R

(j)
2 ).

No solid-angle calculation enters in the derivation of pr(MC)(Â′(j) | n).

Lastly, we considered reconstructions obtained using the LMMLEM algorithm

in (5.13) with P = 1 and we applied it to the list-mode data Â (X) that were defined

in (5.14). For our reconstructions, we first used pr(Â′(j) | n) as defined by (5.8)

and (5.11). Then we ran the same reconstruction algorithm on the same data but we

used pr(MC)(Â′(j) | n) instead. This latter case actually included two subcases, one

in which we assumed σZ = 1 mm, and the other in which we assumed σZ = 2 mm.

Other parameters used in (5.17) that were found in [6] to give a good compromise

between reconstruction speed and resolution, were as follows: σX = σY = 1 mm and

M = 15.

We will not carry out a formal image quality study here to compare reconstructions

obtained using different expressions for the calculation of pr(Â′(j) | n) or pr(MC)(Â′(j) |
n). Instead, we will limit ourselves to a simple visual inspection of the 18F-NaF bone

scan reconstructions reported in Figure 5.45. From a close look at Figure 5.45, we

conclude that, by using pr(Â′(j) | n), more detailed reconstructions are obtained.
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For example, the pelvic bone, the coccyx (tailbone), and some vertebrae are easily

recognized in the top image of the second column of the arrangement of Figure 5.45.

(a) Using pr(Â′(j) | n)

(b) Using pr(MC)(Â′(j) | n) with σZ = 1 mm

(c) Using pr(MC)(Â′(j) | n) with σZ = 2 mm

Figure 5.45. LMMLEM reconstructions after iteration 10

5.9 Random-Number Generation on a GPU Device

In § 4.6.3 we discussed our Markov-chain Monte Carlo (MCMC) algorithm for the

investigation of the ideal observer’s task performance for the detection of a known

signal buried in random lumpy background. The algorithm was developed in CUDA

and run on a GPU device. As our algorithm makes use of random numbers distributed

according to a few probability distributions, GPU code for the generation of random
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numbers was developed. In this section, we provide an introduction to the topic of

random-number generation, and we discuss the rationale and details that went into

the development of our GPU random-number generation routines.

With the term random-number generator, we refer to any hardware device or

computer algorithm able to generate a sequence of numbers that “appear random.”

Random-number generation finds applications in gambling, statistical analysis (such

as Markov chain Monte Carlo), cryptography, computer simulations, and randomized

algorithms.

An example of a device able to generate random numbers could be a photon-

counting device (such as a photodiode) counting the number of photons emitted by a

constant source during a predetermined time interval [371]: the laws of quantum me-

chanics predict that the number of photons counted follows a particular distribution.

Other physical phenomena often used for the generation of random numbers include

nuclear decay, thermal noise, avalanche noise, and atmospheric noise. All these pro-

cess are, in theory, completely unpredictable and so well suited for the generation

of random numbers. Hardware random-number generators are available on the mar-

ket [372, 373], usually in the form of computer cards that can be plugged inside a

computer. Their major application is in the field of high-security data encryption.

Methods for the generation of random numbers via a computer algorithm [374,375]

uses the value of a “state” variable—called seed—and two functions: one to calculate

a number from the current state and the other to update the state by generating a

new one. Mathematically, we can denote the initial state as S1 and we can introduce

the function r(Sn) to calculate a “random” number, say xn, from Sn, and the function

u(Sn) to calculate the next state Sn+1. In some random-number generator algorithms,

the state Sn and the random number xn coincide, making generation of random

numbers simpler and faster.

Contrary to the case of hardware devices for the generation of random numbers,

the scheme just presented is completely deterministic: given Sn, the values of xn and
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Sn+1 are deterministically computed via the functions r(Sn) and u(Sn), respectively.

However, by carefully constructing the functions r(Sn) and u(Sn) it is possible to

obtain sequences x1, x2, . . . that pass many rigorous statistical tests and lack any

obvious pattern. In other words, the sequence x1, x2, . . . “looks random.” Often,

the development and analysis of a computer algorithm for the generation of random

numbers require advance knowledge of abstract algebra and number theory. Because

of their deterministic nature, the random-number generators just described are more

appropriately termed as pseudorandom-number generators. In the reminder of this

section we will focus on this type of random-number generators.

Historically, most of the pseudorandom-number generators that have been used

belong to the class of linear congruential generators [376, 377]:

xn+1 = Sn+1 = (aSn + c) mod m,

where m (0 < m) is an integer number called modulus, a (0 < a < m) is called

multiplier, c (0 6 c < m) is called increment, and, finally, with the “(aSn + c)

mod m” notation we mean the remainder of the integer division between aSn + c and

m. It is important to note that the sequence x1, x2, . . . is necessary periodic: there

exists an integer number k > 0, called period, such that xn+k = xn for all positive

values of n. This is an immediate consequence of the fact that the state Sn can

only take on values in {0, . . . , m− 1} and, as we keep generating random numbers, a

previous value of the state must sooner or later reappear.

In addition to the mathematical expression shown above, the definition of the

pseudorandom-number generator includes the values of a, c, and m. The choice of

these parameters is critical in the design of the pseudorandom-number generator:

poorly selected values will results in embarrassedly non-random numbers and/or very

short period. In [376], some theoretical results and algorithms are presented. In

particular, the authors advocate the following choices for a, c, and m:

a = 75 = 16807, c = 0, m = 231 − 1 = 2147483647.
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It is shown in [376] that, because a = 75 is a primitive root of m, the period k of the

pseudorandom-number generator above is m = 231 − 1. Besides the values reported

above, many other values have been used or proposed [378].

Despite their popularity and extensive theoretical analysis, linear congruential

pseudorandom-number generators have recently started to show their shortcomings.

The relative short period they allow has become problematic when a long sequence of

good-quality random numbers is needed. Even more problematic is the high correla-

tion between values in the sequence x1, x2, . . . . For example, if a linear congruential

generator is used to generate points uniformly spaced in an n-dimensional space, then

such points will lie on, at most, m1/n parallel hyperplanes [379]. An example of this

phenomenon is depicted in Figure 5.46 for the case n = 3.

For this reason linear congruential pseudorandom-number generators have fallen

into disuse in favor of pseudorandom-number generator that are implementations of

higher-performance methods. In parallel with algorithms, validations tools have been

developed [380,381]. Just to give the reader an idea of what these tools look like, we

cite short descriptions of some of the randomness tests developed in [381]:

“Overlapping permutations.” Analyze sequences of five consecutive random num-

bers. The 120 possible orderings should occur with statistically equal probability.

“Parking lot test.” Randomly place unit circles in a 100× 100 square. If the circle

overlaps an existing one, try again. After 12000 tries, the number of successfully

“parked” circles should follow a certain normal distribution.

“Minimum distance test.” Randomly place 8000 points in a 10000×10000 square,

then find the minimum distance between the pairs. The square of this distance

should be exponentially distributed with a certain mean.

Popular algorithms in use today for the generation of pseudorandom numbers include

“Mersenne twister” [382], “multiply-with-carry” and their lagged variants [383, 384],
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Figure 5.46. Scatter plot showing the clustering along hyperplanes for points gen-
erated using a linear congruential pseudorandom-number generator with a = 884,
c = 0, and m = 8191
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and “Xorshift” [385,386].

Recall that in a typical GPU application, the computation is arranged in a hi-

erarchy of threads, each one executing a fragment of code usually referred to as a

kernel. The GPU device is able to access different memory spaces, such as the global

memory and the shared memory. A GPU code that necessitate the generation of

pseudorandom numbers might have to do so inside a kernel, hence the need for a

GPU pseudorandom-number generator library.

GPU implementation of some of the pseudorandom-number generator algorithms

described above is often problematic or—from a theoretical point of view—impossible.

Ideally, we would like to ensure two properties:

1. the algorithm must be fast and use a limited amount of resources on the device;

2. there has to be no correlation between the random numbers generated by dif-

ferent threads.

The first requirement is easy to understand. Its implications are that the state of the

pseudorandom-number generator must be small enough that a few GPU registers or

bytes of shared memory are enough to memorize it. Furthermore, the pseudorandom-

number generator algorithm should avoid lengthy calculations that require many clock

cycles to execute. The second requirement implies that the stream of random numbers

calculated by one threads should not be a “lagged” copy of the stream of random

numbers calculated by another thread. This requirement will not be satisfied if,

for example, the same algorithm but with different initial states is used by different

threads running in parallel. If this were the case, one stream of random numbers

calculated by one thread will be a lagged copy of the stream of random numbers

calculated by another thread. The lag might be very large, but it is nonetheless

finite.

GPU implementations of some pseudorandom-number generator algorithms have

appeared in the literature. Among them, [387] proposes a fast implementation of the
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linear congruential pseudorandom-number generator of [376]. GPU implementation

of other algorithms have appeared in [388–393], and a general discussion on porta-

bility issues is presented in [394]. Although one of these algorithms—namely the

Mersenne Twister pseudorandom-number generator [382,391]—is often the algorithm

of choice in many applications, its implementation on a GPU device is problematic:

the algorithm is rather complex and storing the state of the generator takes up 624

32-bit integer number, for a total of 2496 bytes. Storing this large state in the limited

shared memory is usually a bad idea, whereas accessing and manipulating 2496 bytes

of global memory each time a random number is needed will greatly reduce perfor-

mances. For these reasons, we decided not to take advantage of the Mersenne Twister

algorithm implementation of [391], instead, we coded our algorithm.

A comparison of different implementations on a GPU device of pseudorandom-

number generator algorithms has appeared in [395]. Based on these results, we chose

the lagged multiply-with-carry (MWC) algorithm introduced in [383,384] as the basic

algorithm for our GPU pseudorandom-number generator. We will provide now the

basic details of the algorithm. A lag-` multiply-with-carry pseudorandom-number

generator requires a multiplier a, a base b and a state Sn of ` + 1 values: Sn =

{xn, . . . , xn−`+1, cn}. The definitions of r(Sn) and u(Sn) dictate how a random number

is generated and how the state is updated. More specifically,

xn+1 = r(Sn) = (axn−r+1 + cn) mod b,

and

Sn+1 = u(Sn) = {xn+1, . . . , xn−`+2, cn+1},

where

cn+1 =

⌊
axn−`+1 + cn

b

⌋
,

and b. . .c denotes rounding towards 0. The initialization of seed requires picking

up a value for c1 such that 0 6 c1 < a and values for x1, . . . , x−` satisfying 0 6
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x1, . . . , x−` < b. Calculation of the period of the pseudorandom-number generator

requires some knowledge of group theory. Without going too much into details, it

suffices to say that the period of the random-number generator is given by the smallest

positive integer k such that

bk = 1 mod ab` − 1.

It can be shown that the largest period is obtain when ab`−1 is a safe prime.1 When

ab` − 1 is a safe prime, the period of the random-number generator is ab`/2 − 1. As

an example, assume ` = 2. Then, if the base is b = 216 = 65536, the largest 16-bit

multiplier such that ab` − 1 is a safe prime is a = 65274. The period of the random-

number generator will therefore be ab`/2− 1 = 140174847639551 ≈ 1.40 · 1014, which

is usually adequate in many applications.

The small size of the state Sn = {xn, . . . , xn−`+1, cn} of a multiply-with-carry

pseudorandom-number generator satisfies our need for a simple and fast GPU algo-

rithm. To obtain the other requirement—namely, absence of correlations between

sequences of random numbers—different threads can use different values for the mul-

tiplier a. Effectively, this makes the pseudorandom-number generators running on

different threads different. Furthermore and as suggested in [396], we have combined

two independent random-number generators to improve randomness and increase the

period of the overall random-number generator. This results in an efficient algorithm

that produces 32-bit integer numbers uniformly distributed in the interval [0, 232−1].

From this, other distributions (including the Poisson distribution [397]) can be eas-

ily obtained. For example, floating-point random numbers uniformly distributed in

the interval [0, 1] are obtained by normalization with the constant 231 − 1, as shown

in Figure 5.47a. Normally distributed random numbers (see Figure 5.47b) can be

1A prime number of the form 2p + 1 is said to be a safe prime if p is also a prime number.
Examples of safe primes are 5, 7, 11, 23, 47, 59, 83, 107, and so on.
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(a) Samples from a uniform random variable in [0, 1]
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(b) Samples from a normal random variable with
mean µ = 4 and standard deviation σ = 2
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(c) Samples from an exponential random variable
with parameter λ = 0.90

Figure 5.47. Example of different distributions obtained from the multiply-with-
carry pseudorandom-number generator algorithm
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generated using [398]:

X1 = (−2 ln U1)
1/2 cos(2πU2),

X2 = (−2 ln U1)
1/2 sin(2πU2),

where U1 and U2 are two realizations of a random variable with uniform distribution

over (0, 1). Similarly, if U is a random variable with uniform distribution over (0, 1)

and λ > 0 is a real number, then:

Y = − ln U

λ

follows an exponential distribution with parameter λ, as shown in Figure 5.47c. Meth-

ods for the generation of samples drawn from other common probability distributions

are available as well [399].

We have not performed extensive statistical analysis of the random numbers gen-

erated using the methods we briefly mentioned above. We have simply limited our-

selves to comparing values of sample mean, sample variance, sample skewness, and

sample kurtosis to the corresponding theoretical values. Given a random variable X,

skewness and kurtosis are defined as [128]

γ1 =

〈
(X − 〈X〉)3

〉
[〈

(X − 〈X〉)2
〉]3/2

, γ2 =

〈
(X − 〈X〉)4

〉
[〈

(X − 〈X〉)2
〉]2 ,

respectively.

Table 5.5 reports our results, which were obtained using 5 · 106 samples. Our

results reveal good agreement with theoretical values.
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Uniform
in [0,1]

Normal
(µ = 4, σ = 2)

Exponential
(λ = 0.90)

Mean
{

Theory 0.5000 4.0000 1.1111
Sample 0.4999 4.0003 1.1081

Variance
{

Theory 0.0833 4.0000 1.2346
Sample 0.0830 3.9776 1.2260

Skewness
{

Theory 0.0000 0.0000 2.0000
Sample −0.0001 −0.0010 2.0327

Kurtosis
{

Theory −1.2000 0.0000 6.0000
Sample −1.1960 0.0117 6.0445

Table 5.5. Comparison between theoretical values and values estimated from sam-
ples for some continuous probability distributions
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CHAPTER 6

Conclusions

This chapter begins by providing a concise summary of the main results obtained and

work carried out in this dissertation. The chapter continues with a detailed possible

application of list-mode data to X-ray digital mammography. We will argue that,

a few years from now, CMOS cameras and computing hardware will have become

fast enough to make list-mode X-ray digital mammography feasible. The system we

propose can be understood as a proof-of-concept for list-mode X-ray imaging, with

the long-term intent to apply the same ideas and techniques to other X-ray imaging

systems, mainly computed tomography (CT). The chapter concludes by providing a

list of topics strictly related to those developed in this dissertation. Each item in this

list has to be understood as the main topic of a journal paper.

6.1 Summary

In this dissertation, we have investigated the use of list-mode data for detection,

estimation, and image reconstruction problems for small-animal emission tomography

imaging.

Our treatment of list-mode data was preceded by a discussion of maximum-

likelihood (ML) estimation, and we presented two classes of algorithms that can

be used to solve maximum-likelihood estimation problems efficiently. These two

classes were contracting-grid-type algorithms (which work extremely well when just

a few numerical parameters characterize the statistics of the observed noisy data)

and maximum-likelihood expectation-maximization (MLEM) algorithms (which are

iterative and might require many iterations to converge, but are preferred when more

than a few parameters are to be estimated). Performance of estimation algorithms is
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analyzed via the Fisher information matrix.

After introducing list-mode data, we discussed their advantages over binned data

and we showed how list-mode data fit in the contest of parameter estimation. Two

topics of interest were considered: estimation of the 2D or 3D position of interaction

from photomultiplier (PMT) data via a contracting-grid algorithm, and list-mode

MLEM image reconstruction. Our investigation of the benefits of list-mode data

continued with the study of detection of a known signal buried in random lumpy

background. We first applied the optimal linear observer (known in the literature as

the Hotelling observer) directly to list-mode data. By theorizing a simple imaging

system, we were able to calculate analytically a figure of merit for our detection task.

Using this figure of merit for detection performance, a surprising and unexpected

result was obtained: if the location of the signal is known, detecting a signal whose

width is smaller than the width of the background lumps is easier than detecting

a signal whose width is larger than the width of the background lumps. The same

identical study was then repeated for the case of the ideal observer. As expected, the

ideal observer outperformed the Hotelling observer. The interesting result, however,

was that the performance gap between the Hotelling observer and the ideal observer

kept increasing as the mean number of detected counts increased. This behavior is

in sharp contrast to what one would find for the case of binned data. Indeed, if the

mean number of detected counts is large enough, the statistics of binned data are

approximatively normally distributed and the ideal observer reduces to the Hotelling

observer. Another interesting result was that the performance of the ideal observer

was found to be asymptotically proportional to the mean number of detected counts.

Besides presenting theoretical results for list-mode data, we considered practical

aspects of their efficient parallel processing. In this dissertation, we considered two

lost-cost parallel computing platforms: Sony’s PlayStation 3 (equipped with the Cell

Broadband Engine chip) and NVIDIA’s graphics processing unit (GPU) architecture.

Due to their scalability, programming convenience, and constant performance im-
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provement, GPU devices are revolutionizing the world of scientific computing. It is

our expectation that, thanks to constant computing hardware improvement, the ap-

plication of list-mode data to medical imaging will find a growing number of appli-

cations. For this reason, this dissertation discussed the implementation of accurate

models for list-mode data processing on a GPU device. In concrete terms, this led

us to develop maximum-likelihood GPU code for volumetric reconstruction from raw

PMT data. The reconstruction algorithm was applied to 18F-NaF bone scan list-

mode data of a normal mouse acquired with the ModPET imaging system. Using

these data, we compared different list-mode algorithms, including an ordered-subset

list-mode variant of the MLEM algorithm that uses a relaxation parameter to improve

reconstruction speed.

6.2 Possible Application

In this dissertation, we provided a general theoretical framework for the analysis

and processing of list-mode data and we applied it to the case of emission tomog-

raphy imaging. Based on the promising—and, in some cases, surprising—results we

obtained, we propose to use the same formalism for a completely different imag-

ing modality, namely X-ray imaging. This idea has been formalized in response to

the 2012 NIH Director’s Early Independence Award (EIA), colloquially known as “skip

your postdoc.” In this section, we report part of the application that was submitted

at the end of January 2012. If funded, this 5-year project will start in Septem-

ber/October 2012. The author would like to thank Dr. Harrison H. Barrett, Dr. Lars

R. Furenlid, Dr. Matthew A. Kupinski, Dr. Diego R. Martin, and Dr. Thomas L. Koch

for the support and help throughout the application process.

It is reasonable to assume that the results we briefly summarized in the previous

section are inherent to list-mode data, and the project we propose represents the first

time anyone has attempted to build a system that embodies them. We will use the
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proposed imaging system to introduce and demonstrate the concept of “ideal dose

utilizer” (IDU) as the extension of the ideal observer to list-mode data, optimally

calculated via maximum-likelihood methods.

In this research project, we propose to apply the theoretical framework developed

in this dissertation, to X-ray digital mammography and breast tomosynthesis. By

building a novel imaging system and by designing data-processing methods that pre-

serve and take full advantage of all the information stored as the list of parameters

estimated for each X-ray photon, we expect to increase the accuracy of digital mam-

mography and breast tomosynthesis and, at the same time, reduce the radiation dose

delivered to the patient. Second only to lung cancer as the cause of death from a ma-

lignant disease, breast cancer is the most common and feared cancer among women

in the United States [400]. As the incidence of breast cancer is increasing, accurate

low-dose methods and imaging systems for early detection and diagnosis are expected

to have a substantial impact on the treatment of such disease.

In Chapter 4, we started from the characterization of the object as a continuous

function—namely, the probability density function of the location of production of

gamma-ray photons—and we analyzed the statistical properties of the imaging system

and gamma-ray cameras to derive an exact expression that characterizes the list-mode

data collected by the hardware. Within the same framework, we derived expressions

for figures of merit for two different observers: the ideal and the optimal-linear ob-

servers. The novelty of this general approach is represented by the fact that these

observers operated directly on list-mode data, as opposed to the more common binned

data. Our analytical calculations, which were later confirmed by simulation results,

have provided valuable insights on the tremendous benefits—numerically quantified

in terms of observer’s figure of merit—that list-mode data allow.

Our theoretical framework applies equally well to image reconstruction, signal

detection, and parameter quantitation. As such, the research we propose includes

the development of computer-aided detection (CADe) and computer-aided diagno-
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sis (CADx) techniques for digital mammography. Conventional CADe/CADx meth-

ods typically use ad hoc procedures for the extraction and classification of features

from an image, without fully taking into account the statistical properties of the image

itself. On the other hand, our formalism allows us to apply the methods of statistical

decision theory to list-mode data for X-ray digital mammography, hence letting us to

analyze and prove the optimality of our methods. By designing a new imaging system

and by developing optimal algorithms for signal detection and parameter quantitation

from list-mode data, we will build a proof-of-concept CADe/CADx system that will

provide clinicians additional information in the form of a “second opinion.”

Recent advantages in CMOS technology are starting to provide cameras fast

enough that X-ray list-mode data collection is becoming feasible. Currently high-end

scientific cameras can read 109 or even 1010 pixels per second. By using a fluorescent

screen, X-ray photons that make through the object produce localized flashes of visi-

ble light, which are seen as clusters of bright pixels on the camera’s detector. At high

enough frame rates (50,000 frames per second or more), a reasonably low number of

clusters of bright pixels will show up in each frame, allowing for discrimination among

clusters and calculation of attributes (such as location and deposited energy within

the fluorescent screen) about each X-ray photon that gets absorbed.

6.2.1 Approach

The system we propose is meant to demonstrate a new concept, which we have called

the “ideal dose utilizer” (IDU). The IDU uses maximum-likelihood methods to esti-

mate list-mode photon attributes, which are then fed to the ideal observer to perform

the task of interest. In other words, not only we define optimal methods that fully

utilize all the information in the data; we also establish what type of data we have

to use (and how we calculate them) so that task performance is optimized and all we

can learn by imaging the object is fully used.
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A schematic diagram of the system we propose to build is illustrated in Figure 6.1.

The setup includes an X-ray tube, a safety shutter, a fluorescent screen, a fiber-optic

taper, an image intensifier, and a camera. The setup also includes an aluminum

frame, stages, and appropriate lead shielding. Table 6.1 lists expected costs.

X-ray
tube

breast

fluorescent
screen

fiber-optic
taper

image
intensifier
camera

Figure 6.1. Setup of the proposed X-ray mammography system

Component Cost ($)

X-ray tube 10,000
Safety shutter 1,775
Thick fluorescent screen 2,500
Fiber-optic taper 22,000
Image intensifier 20,000
Fast CMOS camera 100,000
Miscellaneous items 5,000

TOTAL: 161,275

Table 6.1. Summary of the components and their estimated cost

Processing X-ray list-mode data requires the ability to handle large amounts of

data very fast. In this dissertation we have taken advantage of the CUDA computa-

tional model running on GPU hardware. Thanks to mass production and constant

hardware improvements, GPU technology offers an impressive amount of computa-

tional power at affordable prices. At the time of writing (January 2012), GPU tech-
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nology offers the capability of putting together a computing system capable of 100

TFLOPS (i.e., 1014 floating-point operations per second) at an estimated cost of less

than $40,000.

camera

GPU computer 1

GPU computer 2

visualization/
control computer

high speed
network
connection

Figure 6.2. Diagram of the proposed computing setup

For this research, we are planning to use off-the-shelf components to build two

rack-mount GPU supercomputers for the acquisition and processing of the data, as

shown in Figure 6.2. Because these machines will be dedicated to processing large

amounts of data, no peripherals, with the exception of network connectivity and image

acquisition circuitry, will be part of these machines. The setup also includes a third

machine, which will provide the input/output interface to the user. No particular

GPU capabilities are planned for this machine. Appropriate high-speed network

connectivity completes the setup.

As some of the GPU hardware we plan on using has not appeared on the market

yet, costs are necessarily approximate. Based on current prices and trends, we esti-

mate a cost of around $9,000 for the computing unit labeled as “GPU computer 1”

and a cost of around $30,000 for the unit labeled as “GPU computer 2.” The differ-

ence in cost between these two machines reflects the different tasks to which they will

be dedicated, which, in turn, influences computing requirements. More specifically,

GPU computer 1 will be used to acquire data from the camera and process the frames
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to extract photon-counting information, while GPU computer 2 will run reconstruc-

tion/detection/quantitation codes. Processing camera frames will not necessitates

large amounts of GPU memory. Therefore, inexpensive “gaming” GPU hardware can

be used to build GPU computer 1. On the other hand, we expect that reconstruction

algorithms will benefit from the usage of GPU hardware specifically designed for sci-

entific applications, which usually, comes with much larger memory spaces (currently,

up to 6 GB on high-end GPU cards). These types of device are considerably more

expensive than gaming GPU hardware.

Flashes of light in the visible range are detected at the output face of the image

intensifier by a fast CMOS camera. To reduce the probability of overlapping of

flashes of lights corresponding to two or more X-ray photons [401], the camera has to

operate at very high frame rates, such as 50,000 frames per second or higher. Suitable

cameras able to meet this and other requirements are manufactured by Photron.

As an example, Photron’s FASTCAM SA1.1 camera is able to operate at 67,500

frames per second at a frame size of 256-by-256 pixels. Unless dedicated circuitry

is designed, real-time data transfer of this huge amount of data (of the other of 109

pixel intensities per second) to the computer is not possible. For this reason, the

camera is equipped with a configurable amount of memory (such as 8 GB or 16 GB

or 32 GB). As an example, at 67,5000 frames per second and 256-by-256 pixel array,

the camera mentioned above is capable of storing about 350,000 frames during a

total collection time of about 5 seconds. It is important to emphasize that, by using

maximum-likelihood methods [45,174,268], we will attain subpixel resolution for the

estimation of location of light flashes, which will depend in a complicated way on

the actual number of pixels in the frame. We also remark that a thick fluorescent

screen increases the probability that an X-ray photon gets absorbed and produces a

measurable flash of light on the camera’s detector. However, as the thickness of the

fluorescent screen increases, the spatial size of light flashes on the detector increases

as well. Once again, simulation studies can help to find the screen thickness that
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maximizes performance.

6.2.2 Mathematical Model

The mathematical model we need for X-ray imaging is quite different than the one

we assumed for emission tomography. Recall that in emission tomography, the ob-

ject being imaged is injected with a radiotracer, which forms an unknown emission

distribution under the patient’s metabolism. On the other hand, X-ray imaging is a

transmission-based technique in which X-ray photons produced by an external source

enter the object at one side, pass through it, and get detected by a detector placed

at the opposite side of the object [402], as shown in Figure 6.3.

Lp(r0, ~s)

~s µ(r)

P

R
r

X-ray source

Fluorescent
screen Detector

Figure 6.3. Mathematical model for X-ray imaging

The image-formation mechanism is hence based on the object’s linear attenuation

coefficient µ, so that contrast between different tissues and structures in the object

arises from different attenuation of X-ray radiation. The object is thus modeled via

a spatially-dependent linear attenuation coefficient µ(r), where r denotes a 3D point

within the system’s field of view. The linear attenuation coefficient µ(r) also depends

on the X-ray photon energy, but we will ignore such dependency for simplicity. Simi-
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larly to the background-and-signal decomposition f(r) = bθ(r)+∆f(r) we postulated

in § 4.6.2 and § 4.6.3, we will make the assumption that, when the signal is present,

µ(r) = µθ(r) + ∆µ(r). As our notation suggests, we will make the assumption that

∆µ(r) ¿ µθ(r). We also assumed that the background part µθ(r) of the object is

parameterized by a set of parameters, collectively denoted as the vector θ. For the

case of X-ray mammography, object models µ(r) that have appeared in the literature

include [403–407].

To characterize the image-formation mechanism for the case of the setup in Fig-

ure 6.3, we start by characterizing the X-ray source via the photon radiance func-

tion [69] Lp(r0, ~s), in which r0 is a 3D point in space and the versor ~s defines a

direction of propagation. If r0 is outside the source, then Lp(r0, ~s) = 0 for all ~s. The

function Lp(r0, ~s) models the number of photons emitted per second per unit area

and unit solid angle at point r0 and along direction ~s.

Photons that make it through the object interact with a fluorescent screen, which

we model via a response function dFS(r, ~s; R), for any point R within the volume

defined by the fluorescent screen. By introducing dFS(r, ~s; R), we model how the

fluorescent screen’s response at point R to X-ray photons that at, at point r, are

traveling in direction ~s. With this framework, the light output gFS(R) inside the

fluorescent screen is [69]

gFS(R) = C

∫

P

∫

2π

∫ ∞

0

dFS(r, ~s; R)Lp(r − ~s`, ~s) ×

× exp

[
−

∫ `

0

µ(r − ~s`′) d`′
]

d` dΩ d3r, (6.1)

in which P is the set of 3D points on the entrance face of the fluorescent screen and

C is a constant. From gFS(R), we can calculate the mean pixel intensity gdet
m as

gdet
m =

∫

FS

ddet
m (R)gFS(R) d3R,

in which ddet
m (R) is the response function for the mth pixel of the detector and point

R in the fluorescent screen. It is interesting to note that by virtue of µ(r) = µθ(r) +
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∆µ(r) and ∆µ(r) ¿ µθ(r), we can write

exp

[
−

∫ `

0

∆µ(r − ~s`′) d`′
]
≈ 1 −

∫ `

0

∆µ(r − ~s`′) d`′,

so that (6.1) can be rewritten as

gFS(R) ≈ C

∫

P

∫

2π

∫ ∞

0

dFS(r, ~s; R)Lp(r − ~s`, ~s) ×

× exp

[
−

∫ `

0

µθ(r − ~s`′) d`′
]

d` dΩ d3r +

− C

∫

P

∫

2π

∫ ∞

0

dFS(r, ~s; R)Lp(r − ~s`, ~s) ×

× exp

[
−

∫ `

0

µθ(r − ~s`′) d`′
] [∫ `

0

∆µ(r − ~s`′) d`′
]

d` dΩ d3r,

which gives

gdet
m ≈ C

∫

FS

ddet
m (R)

∫

P

∫

2π

∫ ∞

0

dFS(r, ~s; R)Lp(r − ~s`, ~s) ×

× exp

[
−

∫ `

0

µθ(r − ~s`′) d`′
]

d` dΩ d3r d3R +

− C

∫

FS

ddet
m (R)

∫

P

∫

2π

∫ ∞

0

dFS(r, ~s; R)Lp(r − ~s`, ~s) ×

× exp

[
−

∫ `

0

µθ(r − ~s`′) d`′
] [∫ `

0

∆µ(r − ~s`′) d`′
]

d` dΩ d3r d3R.

If we define the function:

∆µ̃(r, ~s, `) =

∫ `

0

∆µ(r − ~s`′) d`′

and the operator Xm,θ with integral kernel:

[Xm,θ](r, ~s, `) = −C

∫

FS

ddet
m (R)dFS(r, ~s; R)Lp(r − ~s`, ~s) ×

× exp

[
−

∫ `

0

µθ(r − ~s`′) d`′
]

d3R,

then we can write

gdet
m ≈ Xm,θ∆µ̃ −Xm,θ1P,2π,(0,∞),
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in which the function 1P,2π,(0,∞) is the function that identically evaluates to 1. The

expression above allows us to conclude that, with good approximation, gdet
m can be

written as the sum of two terms: the first one resulting by applying to ∆µ̃ the linear

“background” operator Xm,θ (which, in turn, is related in a non-linear way to µθ(r)

and m) and the second term given by Xm,θ acting on the identically constant function

1P,2π,(0,∞). Hence, apart from the “background” term Xm,θ1P,2π,(0,∞), the expression

for gdet
m resembles the expression given in (4.23).

6.2.3 Innovation

• Information Content of a Photon. We propose a new theoretical framework

for the rigorous analysis of the information content of a photon by introducing

appropriate figures of merit for detection/quantitation tasks for X-ray digital

mammography. By building an actual imaging system featuring list-mode data

capabilities, we will show the effectiveness of such approach and we will pave

the way for its adaptation to other related imaging problems, most notably,

X-ray computed tomography.

• Hardware for List-Mode X-Ray Imaging. Collecting and processing X-

ray list-mode data for complete information extraction requires tremendously

fast data acquisition hardware and massively parallel computing capabilities

that are just becoming available. We will design an unprecedented imaging

system for the acquisition of list-mode data for X-ray digital mammography

and we will show how reasonably-priced mass-produced graphics processing

unit (GPU) hardware can provide sufficient computational power to keep up

with data acquisition and processing requirements.

• Accurate Methods for Detection/Quantitation. Starting from a rigorous

characterization of the object, the imaging system, and the list-mode data, we

will introduce a number of novel methods for the detection of signals of interest
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and quantitation of clinically relevant parameters for the screening and moni-

toring of breast tumors. Contrary to popular ad hoc algorithms routinely used

in digital mammography, our methods are optimal with respect to statistically

significant metrics, such as the probability of correct detection of a tumor for a

fixed value of the probability of a false positive (often referred to as “call-back

rate”).

• The Ideal Dose Utilizer. We will introduce the concept of the ideal dose

utilizer (IDU) by extending the ideal observer to list-mode data calculated via

maximum-likelihood estimation. The IDU paradigm provides an optimal way

to use the dose delivered to the patient by careful extraction and use of all the

information that can be learned about the object.

• Real-Time Maximum-Likelihood Tomosynthesis. List-mode data allow

great flexibility in the way in which the data are used for 3D reconstruction. This

would include ordered subset reconstruction algorithms, in which portions (or

“subsets”) of the data are processed for reconstruction while the next few sub-

sets are being collected. Moreover, the imaging system we propose allows for

maximum-likelihood (ML) methods be used in cascade for both calculation of

X-ray attributes and list-mode reconstruction, resulting in what we call “double

ML” processing. Within this new concept, desirable statistical properties of

maximum-likelihood estimates are preserved and they positively contribute to

task performance.

• Low-Dose CADe/CADx Schemes. The computerized methods for detec-

tion/diagnosis we have discussed in the proposal do come with an enormous

benefit for the patient: since they are able to make an optimal use of the data,

they attain the same level of performance of existing methods but for much

lower radiation dose delivered to the patient. Equivalently, our novel methods
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are more accurate than existing ones for the same radiation dose.

• List-Mode Data vs. Binned Data. By software integration of frames ac-

quired by the camera, our system can also collect digitized mammographic

images, thus mimicking conventional systems. Hence, the imaging apparatus

we propose offers the unique opportunity to run comparative studies between

list-mode methods and conventional methods based on projection data, further

shedding some light on the advantages of list-mode techniques in the field of

medical imaging.

• Adaptive List-Mode X-Ray Imaging. Even though not specifically in-

cluded in the research proposal, the system we will design can be conveniently

and effortlessly augmented with adaptive imaging capabilities. For example, by

translating the X-ray source and/or by placing a tungsten beam shaper right

after the X-ray tube, different parts of the object can be imaged at different

magnifications. In conjunction with fast algorithms for volume reconstruction

and accurate methods for CAD diagnosis, an adaptive imaging system will en-

hance diagnostic capabilities by reducing screening time and call-back rate and

making an optimal use of the dose delivered to the patient.

6.3 Future Investigations

In this section, we itemize some possible future work for which the concepts and

theory developed in this dissertation provide a starting point. Each item listed below

has to be understood as a concise summary for a potential journal paper.

• Parameter Estimation from List-Mode Data. In this dissertation, we

mainly considered detection problems. Far more interesting are, however, esti-

mation problems [124, 408, 409], in which we want to extract numerical infor-

mation from the data. This dissertation discussed how PMT data can be used
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to perform estimation of the 2D or 3D location of interaction of a gamma-ray

photon within a scintillation crystal. We can, of course, consider the estima-

tion of any parameter θ (one example relevant to the field of radiology would

be the estimation of volume and location of a tumoral mass [410]) and we can

use list-mode data Â to perform the estimation. Task performance will now

be measured via the Fisher information matrix associated to the parameter θ

being estimated. For example, we could use the same idealized imaging system

of Figure 4.12 and use “scanning” versions [107, 410] of the Hotelling and ideal

observers for the estimation of the location of a signal. Some work on similar

problems has appeared in [411, 412]. It would be interesting to consider plots

similar to those of Figure 4.24, but when the location of the signal is unknown

and it needs to be estimated if the observer concludes that the signal is present.

It seems reasonable to expect that, if the signal is of the same shape and size

as the background lumps, any observer will perform poorly, as the signal would

be indistinguishable from any of the background lumps.

• Comparison with Binned Data. One of the advantages of list-mode data

is that they allow a more accurate data representation if compared to binned

data. Intuitively, this translates into higher performance for the task of interest.

For example, we could consider again the same setup of Figure 4.12, along with

the same SKE/BKS detection problem. This time, however, the observer would

operate on binned data as opposed to list-mode data, so that the binned data

observer performance can be compared to list-mode data observer performance

for the same “class” of observers (for example, Hotelling observer in both cases).

Depending on the mathematical form of the observers, simulation might be

needed to calculate performance.

• List-Mode Channelized Observers. In § 2.5 we introduced the channelized

Hotelling observer (CHO) and we mentioned that one way to reduce the size
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of the data covariance matrix is by passing the data g through a bank of K

channels C = {C1, . . . , CK}, as shown in Figure 6.4 for the case of binned data

g. The same concept is applicable to list-mode data, in which, given list-mode

Input data g

C1

C2

CK

v1

v2

vK

Hotelling
observer

tCHO(g)

tcut

?
>

Figure 6.4. Diagram of channelized Hotelling observer (adapted from [7])

data Â , the channels are implemented as

Ck(Â ) =

∫

∞
ck(Â)u(Â | Â ) dÂ,

for some template channel function ck(Â) and u(Â | Â ) defined as in (4.19).

One topic of interest could be comparing the binned-data channelized Hotelling

observer with the list-mode channelized Hotelling observer. Similarly, we can

compare the list-mode channelized Hotelling observer with its non-channelized

counterpart.

• List-Mode Data vs. Reconstructed Data: Task Performance. In this

work, we used list-mode data directly to perform detection. We also used list-

mode data to perform reconstruction via the LMMLEM (or the OSLMMLEM)

algorithm and calculate an estimate f̂ of the real object f . The reconstructed

object f̂ is usually presented to an observer to make a decision. In both cases,

performance are assessed via an appropriate figure of merit (such as the AUC

for a detection problem). Hence, we could use the same figure of merit to

assess task performance for two different scenarios: in one case, the observer
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operates directly on the list-mode data Â ; in the other case, list-mode data Â

are first used to calculate estimate f̂ via the LMMLEM algorithm (or any other

reconstruction algorithm) and the actual observer is fed f̂ (as opposed to Â ).

It is reasonable to assume that the observer that operates directly on Â will

not be outperformed by the one that operates on f̂ , as processing can never

increase the “information” present in the data [307].

• Statistical Properties of LMMLEM-Reconstructed Data. Because many

reconstruction algorithms calculate deterministic (non random) function of the

input noisy data, the resulting reconstructed data can be interpreted as real-

izations of random vectors in an appropriate Hilbert space. The distribution of

MLEM-reconstructed data has received some attention in the literature, and it

has been found [190, 191] that pixel (or voxel) intensities in the reconstructed

data approximatively follow log-normal statistics. With [190] as a starting point

and by using the code developed in this dissertation, we propose to carry out

the same analysis but for the case of list-mode data and the LMMLEM recon-

struction algorithm.

• OSLMMLEM Reconstruction from Multiple Projections. This disser-

tation has just touched the tip of the iceberg for the application of list-mode

data in medical imaging. One concrete case we have considered was the ap-

plication of the OSLMMLEM reconstruction algorithm to ModPET data [6].

The OSLMMLEM algorithm would be particularly suited for an imaging sys-

tem similar to ModPET but featuring more than two cameras (so that more

that one projection through the object would be defined) or also a tomographic

version of ModPET, in which cameras are mounted on a rotating gantry and

rotated around the object as the data are acquired [361].

• List-Mode Data: Bounds on Null Functions. In § 3.4 we briefly mentioned
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null functions in the context of image reconstruction via the MLEM algorithm.

a null function fnull for an object f was defined as any function that when

added to f , produces the same mean data as f does. Null functions have been

studied in the context of binned data [192,193] and relevant results (in the form

of bounds on the L1, L2, or L∞ norm of fnull) were found for some relevant

cases. The same analysis can be carried out for the case of list-mode data. We

would expect the bounds for the list-mode data case to be—at least—as tight

as the corresponding bounds found for the binned data case, as binned data

can be obtained by deterministically processing list-mode data in way that will

never increase the “information” contained in the data themselves.

• Characteristic Functionals. Recall that in § 4.6.2 we expressed the relation-

ship between the object f(r) being imaged and the mean u(Â | f , τ) of the

Poisson point process u(Â | Â ) as

u(Â | f , τ) = (τLf)(Â),

in which the linear operator L played the same role as the operator H in the

usual relationship g = Hf we had for the binned data case [69]. Because the

object f is a stochastic process, we can calculate its characteristic functional

Ψf(ξ) =
〈
e−2πiξ†f

〉
f

,

in which ξ represents the Fourier conjugate of the function f . Using Ψf(ξ),

we can study how the imaging system maps this characteristic functional to

the characteristic functional of the output noisy data. This calculation has

successfully been carried out for Ψg(ρ), which corresponds to the case of binned

data g [413]. The same analysis but for the case of list-mode data (i.e., finding

Ψ
Â

(ℵ) or Ψu( · |Â )(ℵ) for u(Â | Â ) defined as in (4.19)) would represent a huge

step forward in the statistical characterization of list-mode data.
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• List-Mode Backus-Gilbert Reconstruction. In this dissertation we mainly

used the LMMLEM algorithm (or variants of it) to perform reconstruction of

list-mode data. A different reconstruction scheme, which was originally intro-

duced to calculate Earth models from a finite set of noisy measurements [414],

is the Backus-Gilbert method [415, 416]. We will present below a description

of the Backus-Gilbert method that closely resembles the one provided in [417],

but we will rewrite it using the notation and language of stochastic processes

and linear operators we developed in Chapter 4. Other formulations are possi-

ble [69]. We will start by assuming that the estimate f̂ and the object f being

imaged satisfies the linear relationship:

f̂(r) =

∫

FOV

d(r, r′)f(r′) d3r′, (6.2)

or, more compactly, f̂ = Df , where D is the linear operator with integral kernel

[D](r, r′) = d(r, r′), for some function d(r, r′). Intuitively, “good” estimates f̂

of f will be obtained when d(r, r′) ≈ δDir(r − r′). Contrary to most of the

reconstruction algorithms presented in this work, the estimate f̂(r) above is a

function of the continuous variable r, not a discrete vector of pixel/voxel values

over a 2D or 3D grid. As in Chapter 4, we introduce

u(Â | Â ) =
∑

Â(j)∈Â

δDir

(
Â − Â(j)

)
,

in which Â is the noisy list-mode data. By introducing the integral kernel

q(r, Â), the Backus-Gilbert method postulates a linear relationship between

the stochastic process u(Â | Â ) and the estimate f̂ :

f̂(r) =

∫

∞
q(r, Â)u(Â | Â ) dÂ, (6.3)

which, in more abstract notation, is rewritten as f̂ = Qu. Hence, we can

interpret the operator Q as a “reconstruction operator” because when we apply
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it to the process u (which is defined in terms of Â ) we get the estimate f̂ of

f . The expression above also shows that all we need to calculate f̂ from u is

the linear (and so far unknown) operator Q. As in Chapter 4, we make use

of a linear operator L to calculate the mean of u(Â | Â ) with respect to the

list-mode data Â , and for fixed object f and exposure time τ :

u(Â | f , τ) =
(
τLf

)
(Â) = τ

∫

FOV

pr(Â | r)s(r)f(r) d3r.

If we insert the expression for u(Â | f , τ) above into (6.3) and compare it

with (6.2), we see that

d(r, r′) = τ

∫

∞
q(r, Â)pr(Â | r′)s(r′) dÂ,

which, if we assume d(r, r′) ≈ δDir(r − r′), can be interpreted as imposing that

QL approximates the identity operator over the set of all object functions. The

“goodness” of the reconstruction operator Q is mathematically quantified as

A(r) =

∫

FOV

|r − r′|2 [d(r, r′)]
2

d3r′ =

=

∫∫

∞
q(r, Â)W (Â, Â′; r)q(r, Â′) dÂ dÂ′,

where

W (Â, Â′; r) = τ 2

∫

FOV

|r − r′|2 pr(Â | r′)s(r′)pr(Â′ | r′)s(r′) d3r′.

Because the vector u is a realization of a stochastic process, the estimate f̂ =

Qu is a random function. Hence, another condition we can impose on Q regards

the variance of the random variable f̂(r) for random Â and f :

B(r) =

∫∫

∞
q(r, Â)Ku(Â, Â′)q(r, Â′) dÂ dÂ′,

where

Ku(Â, Â′) =
〈[

u(Â | Â ) − u(Â | τ)
] [

u(Â′ | Â ) − u(Â′ | τ)
]〉

Â ,f
,
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and

u(Â | τ) =

〈〈
u(Â | Â )

〉
Â |f

〉

f

.

Finally notice
∫

FOV

d(r, r′) d3r′ =

∫

∞
q(r, Â)

[
τ

∫

FOV

pr(Â | r′)s(r′) d3r′
]

dÂ =

=
(
Q(τL1)

)
(r),

in which 1 is the vector that corresponds to the unit function defined on r:

1(r) = 1. In words, τL1 is the vector u that corresponds to the mean function

u(Â | 1, τ), and the reconstruction operator Q is then applied to u, giving

estimate 1̂. The vector 1̂ correspond to the function 1̂(r) and, for a “good” Q,

1̂(r) = 1 for all r. Functions A(r) and B(r) measure two different properties of

the estimate f̂ ; A(r) quantifies how close f̂ is to f , while B(r) quantifies how

much f̂ is—on average—susceptible to noise in the input data Â . Notice that

quantities A(r) and B(r) work one against the other. Indeed, if we are looking

for an estimate f̂(r) that exhibits little susceptibility to noise in Â (i.e., small

B(r)), the operator Q might produce a smooth estimate f̂ , which, on average,

might not be a good approximation to f (i.e., large A(r)). Vice versa, if we

demand a good agreement between f̂ and the noisy data Â (i.e., small A(r)),

the algorithm will be oversensitive to the noise in Â , leading to large values for

the variance σ2
f̂(r)

of f̂(r) at any given point. In seeking a compromise between

A(r) and B(r), we can introduce a parameter λ and define the kernel q(r, Â) of

the operator Q as the function that minimizes A(r)+λB(r) under the condition

Q(τL1) ≡ 1̂ = 1: {
minimize: A(r) + λB(r),

subject to:
(
Q(τL1)

)
(r) = 1.

(6.4)

If Sr,λ is the linear operator with integral kernel

[Sr,λ](A,A′) = W (A,A′; r) + λKu(Â, Â′),
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then the solution [418] to (6.4) is

q(r, Â) =

∫

∞

[
S−1

r,λ

]
(A,A′)p(A′) dA′

∫∫

∞
p(A)

[
S−1

r,λ

]
(A,A′)p(A′) dA dA′

,

where p = τL1. If we insert the expression above into (6.3), we get

f̂(r) =

∫∫

∞
u(A | Â )

[
S−1

r,λ

]
(A,A′)p(A′) dA dA′

∫∫

∞
p(A)

[
S−1

r,λ

]
(A, A′)p(A′) dA dA′

,

or, more compactly

f̂(r) =
u†S−1

r,λp

p†S−1
r,λp

.
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APPENDIX A

Spline Functions

A.1 Introduction

In the simplest case, a spline function s(x) is a piecewise polynomial function defined

on a bounded and closed subinterval [a, b] of the real line. Spline functions are par-

ticularly useful in numerical interpolation and approximation [419–422] due to their

ability to “bend” around points while, maintaining a low degree for the polynomials

s(x) is made up with. Splines have become ubiquitous in computer graphics because

of the simplicity of their construction, their ease and accuracy of evaluation, and

their capacity to approximate complex shapes through curve fitting and interactive

curve design [419, 423–426]. Implementations on specialized hardware of algorithms

on splines have been proposed as well [352,353,427].

An example of a spline function defined on the interval [2, 9] is shown below:

s(x) =





5/2 − (x − 3) if x ∈ [2, 9/2),
1 − (x − 9/2) + 16/25(x − 9/2)2 if x ∈ [9/2, 7),
5/2 + 11/5(x − 7) − 8/5(x − 7)2 if x ∈ [7, 9].

A plot of s(x) is shown in Figure A.1. As we can see from Figure A.1, the function

s(x) is continuous over the interval [2, 9], even though higher continuity might break

down at x = 9/2 and x = 7 [424].

A.2 Definition of Spline Space

Consider a bounded and closed interval [a, b] and k points t1, . . . , tk such that a <

t1 < t2 < · · · < tk−1 < tk < b. Let m be a positive integer—called order—and

consider a vector m = {m1, . . . , mk} of positive integers such that 1 6 mi 6 m for
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0 2 9 x

s(x)

Figure A.1. Plot of the spline function s(x) for x ∈ [2, 9]

i = 1, . . . , k. The integers m1, . . . , mk are called multiplicities. Let M =
∑k

i=1 mi and

define the knot vector as the set ∆ = {w1, . . . , w2m+M} of 2m + M numbers (called

knots) such that

• w1 6 w2 6 . . . 6 w2m+M−1 6 w2m+M ;

• wm = a and wm+M+1 = b;

• {wm+1, . . . , wm+M} = {t1, . . . , t1︸ ︷︷ ︸
m1 times

, . . . , tk, . . . , tk︸ ︷︷ ︸
mk times

}.

We define the set of B-spline basis functions

B =
{
Ni,m(x), for i = 1, . . . ,m + M

}
,

according to the recurring formula [421,423,424]

Ni,n(x) =
x − wi

wi+n−1 − wi

Ni,n−1(x) +
wi+n − x

wi+n − wi+1

Ni+1,n−1(x), (A.1a)

for n = 2, . . . ,m, where

Ni,1(x) =

{
1 if wi 6 x < wi+1,
0 otherwise.

(A.1b)

Notice that (A.1a) can yield the quotient 0/0; we define this ratio to be 0. A plot of

the B-spline basis functions in B for a simple case is shown in Figure A.2.



357

1

0 2 6 8 x

Ni,m(x)

Figure A.2. Plot of B-spline functions N1,m(x), . . . , N7,m(x) for x ∈ [0, 8], with
m = 4, k = 2, m = {1, 2}, and ∆ = {0, 0, 0, 0, 2, 6, 6, 8, 9, 10, 11}

A.3 Properties of Spline Functions

A fundamental result in the theory of spline function is that the vectors Ni,m(x) for

i = 1, . . . , m+M are linearly independent, thus B = {Ni,m(x), for i = 1, . . . , m + M}
forms a basis for a vector space U of dimension dim(U) = m + M [424, 428]. From

this, it makes sense to consider linear combinations of the functions in B:

s(x) =
m+M∑

i=1

ciNi,m(x), (A.2)

for some coefficients c1, . . . , cm+M . Furthermore, from the definition of B-spline basis

Ni,m(x) in (A.1) we see that each Ni,m(x) is piecewise polynomial of degree at most

m− 1. From (A.2), we find that s(x) itself is a piecewise polynomial function. Other

fundamental results that follow from (A.1) are listed below.

Non-negativity:

Ni,m(x) > 0, ∀x ∈ (wi, wi+m) and wi < wi+m. (A.3a)

The interval [wi, wi+m) is called support of Ni,m(x).

Local support:

Ni,m(x) = 0, ∀x 6∈ (wi, wi+m) and wi < wi+m. (A.3b)
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Partition of unity:
m+M∑

i=1

Ni,m(x) = 1, ∀x ∈ [a, b]. (A.3c)

The properties listed above can be used to prove a few more results about splines.

For example, by (A.3a) and (A.3c), the spline function s(x) is a convex hull [424] of

the coefficients c1, . . . , cm+M that appear in (A.2). In other words:

min{c1, . . . , cm+M} 6 s(x0) 6 max{c1, . . . , cm+M},

for all x0 ∈ [a, b]. The statement above can be further refined by using (A.3b). If

x0 ∈ [w`, w`+1), then only N`−m+1,m(x0), . . . , N`,m(x0) are non-zero and (A.2) can be

rewritten as

s(x0) =
∑̀

i=`−m+1

ciNi,m(x0), (A.4)

which allows us to write

min{c`−m+1, . . . , c`} 6 s(x0) 6 max{c`−m+1, . . . , c`}.

These results can be used to derive a fast and stable algorithm for the evaluation of

s(x) at any point x = x0. Indeed, from (A.4), we see that if x0 ∈ [w`, w`+1) then

only m B-spline basis functions need be calculated to obtain the value s(x0). Such

B-spline basis functions can be evaluated using the recursive definition of (A.1). If

m were 1 then, by (A.1b), only N`,1(x0) would be non-zero. More precisely:

Ni,1(x0) =

{
1 if i = `,
0 otherwise,

for all x0 ∈ [w`, w`+1). If m were 2, we can use (A.1a) and the B-spline basis func-

tions Ni,1(x0)—which we just calculated—to evaluate N`−1,2(x0) and N`,2(x0). This

procedure repeats according to the following triangular scheme:

0 . . . . . . . . . 0 N`,1(x0) 0
0 . . . . . . 0 N`−1,2(x0) N`,2(x0) 0
. . . . . . . . . . . . . . . . . . . . .
0 0 N`−m+2,m−1(x0) . . . . . . N`−1,m−1(x0) 0
0 N`−m+1,m(x0) . . . . . . . . . N`,m(x0) 0

(A.5)
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The pseudocode for an algorithm for the evaluation of s(x) at x = x0 is shown

below. The algorithm starts by performing a dichotomic search to first identify the

value of ` such that x0 ∈ [w`, w`+1). The special case x0 = wm+M+1 is handled

separately. Once the value of ` is determined, the algorithm uses the triangular

scheme outlined above and calculates N`−m+1,m(x0), . . . , N`,m(x0). Finally, the sum

in (A.4) is evaluated. It can be shown [424] that divisions by zero are correctly

handled by the algorithm below.

if x0 = wm+M+1 then

` = m + M
else

ninf = m
nsup = m + M + 1
` = b(ninf + nsup)/2c
while x0 < w` or x0 > w`+1 do

if x0 < w` then

nsup = `
else

ninf = `
end if

` = b(ninf + nsup)/2c
end while

end if

N`,1 = 1
for n = 2 to m do

v = 0
for i = ` − n + 1 to ` − 1 do

d1 = x0 − wi+1

d2 = wi+n − x0

α = Ni+1,n−1/(d1 + d2)
Ni,n = v + d2α
v = d1α

end for

N`,n = v
end for

s = 0
for i = ` − m + 1 to ` do

s = s + ciNi,m

end for

return s
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From the pseudocode shown above, we see that the calculation of s(x0) requires

a total of O(m2) floating-point operations. The parameter m is usually small, for

example, m 6 10. Therefore, the algorithm above provides a fast way to calculate

s(x0). The algorithm can also be modified so that it uses only a one-dimensional

array with m entries: this is accomplished by overwriting rows while executing the

triangular scheme pictured in (A.5) [423]. We finally note that the algorithm is

stable, as the N`−m+1,m(x0), . . . , N`,m(x0) are obtained by repeatedly forming convex

combinations [423].

A.4 Derivative of a Spline Function

By direct differentiation of (A.2):

d

dx
s(x) =

m+M∑

i=1

ci

[
d

dx
Ni,m(x)

]
,

where [423,429]

d

dx
Ni,m(x) = (m − 1)

[
Ni,m−1(x)

wi+m−1 − wi

− Ni+1,m−1(x)

wi+m − wi+1

]
.

Substituting and performing some manipulations

d

dx
s(x) =

m+M∑

i=1

(m − 1)ci

[
Ni,m−1(x)

wi+m−1 − wi

− Ni+1,m−1(x)

wi+m − wi+1

]
=

=
m+M∑

i=1

ci
m − 1

wi+m−1 − wi

Ni,m−1(x) −
m+M∑

i=1

ci
m − 1

wi+m − wi+1

Ni+1,m−1(x) =

=
m+M−1∑

i=1

ci+1
m − 1

wi+m − wi+1

Ni+1,m−1(x) −
m+M−1∑

i=1

ci
m − 1

wi+m − wi+1

Ni+1,m−1(x) =

=
m+M−1∑

i=1

c′i+1Ni+1,m−1(x),

where we have defined

c′i+1 =





(m − 1)
ci+1 − ci

wi+m − wi+1

if wi+1 < wi+m,

0 otherwise.
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The calculation above shows that the derivative of a spline function of order m is

another spline function, but of order m − 1.

A.5 Spline Curves and Spline Surfaces

Consider the B-spline basis B = {Ni,m(u), for i = 1, . . . ,m + M} associated to the

knot vector ∆ = {w1, . . . , w2m+M} and let Ri = (Xi, Yi) for i = 1, . . . , m + N be 2D

points. We can consider the two spline functions defined as follows

sX(u) =
m+M∑

i=1

XiNi,m(u), sY (u) =
m+M∑

i=1

YiNi,m(u),

for u ∈ [a, b]. We define a 2D spline curve above as

s(u) =

(
sX(u)
sY (u)

)
=




m+M∑

i=1

XiNi,m(u)

m+M∑

i=1

YiNi,m(u)




, u ∈ [a, b].

In compact form, we can express the 2D spline curve as

s(u) =
m+M∑

i=1

RiNi,m(u), u ∈ [a, b].

The construction above can be extended to the 3D case—and in general to the ND

case—by simply allowing the points R1, . . . ,Rm+M to be 3D (or ND) points.

To define 3D surfaces, we will consider two B-spline bases

Bu =
{
N

(u)
i,mu

(u), for i = 1, . . . ,mu + Mu

}
,

Bv =
{
N

(v)
i,mv

(v), for i = 1, . . . , mv + Mv

}
,

associated to knot vectors ∆u and ∆v, respectively. Consider a grid of 3D points

Ri,j = (Xi,j, Yi,j, Zi,j) for i = 1, . . . ,mu +Mu and j = 1, . . . , mv +Mv. Then we define
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the spline surface s(u, v) as

s(u, v) =




sX(u, v)
sY (u, v)
sZ(u, v)


 =




mu+Mu∑

i=1

mv+Mv∑

j=1

Xi,jN
(u)
i,mu

(u)N
(v)
j,mv

(v)

mu+Mu∑

i=1

mv+Mv∑

j=1

Yi,jN
(u)
i,mu

(u)N
(v)
j,mv

(v)

mu+Mu∑

i=1

mv+Mv∑

j=1

Zi,jN
(u)
i,mu

(u)N
(v)
j,mv

(v)




,

with u ∈ [au, bu] and v ∈ [av, bv].

The definition of s(u, v) above also shows that the restriction of s(u, v) to u = u0

or v = v0 is a 3D spline curve. Indeed:

s(u0, v) =




sX(u0, v)
sY (u0, v)
sZ(u0, v)


 =




mv+Mv∑

j=1

[
mu+Mu∑

i=1

Xi,jN
(u)
i,mu

(u0)

]
N

(v)
j,mv

(v)

mv+Mv∑

j=1

[
mu+Mu∑

i=1

Yi,jN
(u)
i,mu

(u0)

]
N

(v)
j,mv

(v)

mv+Mv∑

j=1

[
mu+Mu∑

i=1

Zi,jN
(u)
i,mu

(u0)

]
N

(v)
j,mv

(v)




,

in which the quantities in [. . .] are the components of 3D points that define the spine

curve s(u0, v). Similarly,

s(u, v0) =




sX(u, v0)
sY (u, v0)
sZ(u, v0)


 =




mu+Mu∑

i=1

[
mv+Mv∑

j=1

Xi,jN
(v)
j,mv

(v0)

]
N

(u)
i,mu

(u)

mu+Mu∑

i=1

[
mv+Mv∑

j=1

Yi,jN
(v)
j,mv

(v0)

]
N

(u)
i,mu

(u)

mu+Mu∑

i=1

[
mv+Mv∑

j=1

Zi,jN
(v)
j,mv

(v0)

]
N

(u)
i,mu

(u)




.
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A.6 Interpolation with Splines

Consider a spline basis B = {Ni,m(x), for i = 1, . . . , m + M} defined on [a, b] along

with the set of spline functions

s(x) =
m+M∑

i=1

ciNi,m(x) (A.6)

spanned by the vectors in B. Let x1 < x2 < · · · < xm+M−1 < xm+M be m + M points

all in [a, b] and consider y1, . . . , ym+M data points. In an interpolation problem, we

want to find a spline function s(x) such that s(xi) = yi for i = 1, . . . , m + M .

Using (A.6), we can rewrite this set of conditions in matrix form as



N1,m(x1) . . . Nm+M,m(x1)
...

...
N1,m(xm+M) . . . Nm+M,m(xm+M)







c1
...

cn+M


 =




y1
...

yn+M


 ,

Or, more compactly,

Nxc = y,

where

Nx =




N1,m(x1) . . . Nm+M,m(x1)
...

...
N1,m(xm+M) . . . Nm+M,m(xm+M)


 ,

and

c =




c1
...

cn+M


 , y =




y1
...

yn+M


 .

We notice that Nx is a square matrix of size (m + M) × (m + M) and, if it were

invertible, we could obtain the coefficients c1, . . . , cm+M as

c = [Nx]−1 y.

In can be shown [430] that a necessary and sufficient condition for the existence and

uniqueness of the coefficients c1, . . . , cm+M can be written in terms of the knot vector

∆ = {w1, . . . , wm+M}:
wi 6 xi 6 wi+m,
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with equality allowed only if the knot in question has multiplicity m. The condition

above shows how to find the knot vector ∆ such that the interpolation problem has

a unique solution [424]. We further note that by (A.3b), each column of matrix Nx

has at most m non-zero entries, so Nx can be stored and inverted efficiently.

The case of spline curve interpolation can be handled similarly. For example,

consider 2D points Ri = (Xi, Yi) for i = 1, . . . ,m + N . We want to find a spline

function s(u) with components sX(u) and sY (u) such that s(ui) = Ri for some

u1, . . . , um+M in [a, b]. Given some arbitrary choice of u1, . . . , um+M (for example,

u1, . . . , um+M uniformly spaced in [a, b]; other choices are possible [424]), then the

interpolation problem is solved by performing two interpolations steps: one to find

sX(u) such that sX(ui) = Xi, and the other to find sY (u) such that sY (ui) = Yi. Both

steps are solved using the method discussed earlier. We notice that the matrix

Nu =




N1,m(u1) . . . Nm+M,m(u1)
...

...
N1,m(um+M) . . . Nm+M,m(um+M)




that we would need to find and invert is the same for both interpolations, and so its

inverse need be calculated only once. Notice that the choice of knot vector ∆ defines

the spline space. Therefore, different choices of ∆ will give different spline curves

s(u), all satisfying the interpolation conditions s(ui) = Ri [424].

For the case of spline surface interpolation, assume we have a grid of 3D points

Ri,j = (Xi,j, Yi,j, Zi,j) for i = 1, . . . ,mu + Mu and j = 1, . . . , mv + Mv. We want to

find a spline surface s(u, v) such that s(ui, vj) = Ri,j for i = 1, . . . , mu + Mu and

j = 1, . . . , mv + Mv. This condition can be rewritten as

mu+Mu∑

i=1

mv+Mv∑

j=1

ci,jN
(u)
i,mu

(ui)N
(v)
j,mv

(vj) = Ri,j,

for some coefficient vectors ci,j =
(
c
(X)
i,j , c

(Y )
i,j , c

(Z)
i,j

)
. Equivalently,

mv+Mv∑

j=1

di,jN
(v)
j,mv

(vj) = Ri,j, i = 1, . . . , mu + Mu, (A.7a)
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provided that

mu+Mu∑

i=1

ci,jN
(u)
i,mu

(ui) = di,j, j = 1, . . . , mv + Mv. (A.7b)

The equations in (A.7) show that the coefficients ci,j can be found by first solving a

set of mu + Mu 3D curve interpolations of the points Ri,j, as shown in (A.7a). All

these interpolations, which share the same matrix Nv, would give 3D coefficients di,j.

The coefficients di,j are then interpolated as shown in (A.7b). Again, this latter step,

requires a total of mv + Mv 3D curve interpolations, all of them sharing the same

matrix Nu.

A.7 Approximation with Splines

Suppose we are given N numbers x1 < x2 < · · · < xN−1 < xN in [a, b] and correspond-

ing data points y1, . . . , yN . In an approximation problem, we look for a spline function

s(x) that no longer necessarily satisfies the condition s(xi) = yi for i = 1, . . . , N . In-

stead, we look for the spline function that minimizes the quantity

ε =
N∑

n=1

[yn − s(xn)]2. (A.8)

We refer to this as a least-square fit of the data y1, . . . , yN at points x1, . . . , xN .

The necessity for an approximation occurs when the data set we have is very large

compared to the dimension of the spline space (N À m + M) or when the data are

noisy. In the latter case, a low-degree function that approximates the data often gives

good results. Another interpretation is that when N > m + M (i.e., the number of

data points exceeds the dimension of the spline space), the spline space might not

posses the “flexibility” necessary to actually interpolate the data points.

Assume s(x) has the form

s(x) =
m+M∑

i=1

ciNi,m(x). (A.9)
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We can substitute the expression above in (A.8), calculate the derivatives with respect

to each coefficient ci and set them to zero. This would give

m+M∑

i=1

ci

(
N∑

n=1

Ni,m(xn)Nj,m(xn)

)
=

N∑

n=1

ynNj,m(xn), j = 1, . . . , m + M .

In matrix form, we can write this as

Gxc = y′,

where

Gx =




∑N
n=1 N1,m(xn)N1,m(xn) . . .

∑N
n=1 N1,m(xn)Nm+M,m(xn)

...
...∑N

n=1 Nm+M,m(xn)N1,m(xn) . . .
∑N

n=1 Nm+M,m(xn)Nm+M,m(xn)


 ,

and

y′ =




∑N
n=1 ynN1,m(xn)

...∑N
n=1 ynNm+M,m(xn)


 .

We can express Gx as HT

xHx, where

Hx =




N1,m(x1) . . . Nm+M,m(x1)
...

...
N1,m(xN) . . . Nm+M,m(xN)


 .

If Hx has full rank, then Gx is invertible and we can compute c as [Gx]−1 y′.
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APPENDIX B

The Bootstrapping Method

Bootstrapping [431, 432] is a statistical method for assessing the accuracy of sample

estimates. Bootstrapping falls under the broad category of resampling methods, which

includes the jackknife [433] and the cross-validation [434] methods. The bootstrap

method is a nonparametric method in the sense that the data are not fit to a model—

such as a parametrized normal distribution—from which one or more parameters of

interest are calculated.

Assume that we are given N observed quantities x1, . . . , xN . These quantities can

represent the outcomes of an experiment repeated N times or could also be random

quantities obtained via simulation codes. Given x1, . . . , xN , consider an empirical

distribution on {x1, . . . , xN} for the random variable X such that

Pr(X = xn) =
1

N
,

for n = 1, . . . , N . Let X1, . . . , XN be random samples of X independently drawn

according to the probability distribution above and assume that r(X1, . . . , XN) is

some quantity of interest calculated from the set of N samples {X1, . . . , XN}. The

premise of the bootstrap method is that the actual distribution of r(. . .) is equal to

the empirical distribution of r(X1, . . . , XN) [431], in which samples X1, . . . , XN are

uniformly and independently drawn from {x1, . . . , xN}.
Assume now the process above is repeated M times. That results in samples

r1, . . . , rM of r(. . .). Then, we define the “accuracy” of the bootstrap estimate r̂ =

1
M

∑M
m=1 rm as the sample standard deviation sr of r1, . . . , rM :

sr =

√√√√ 1

M − 1

M∑

m=1

(rm − r̂)2.
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APPENDIX C

A Theorem on the Limit of the

Ratio of Two Functions

Theorem 1. Let f1 : R → R
>0 and f2 : R → R

>0 be functions such that

lim
x→+∞

f1(x) = `1, lim
x→+∞

f2(x) = `2,

where

0 < `1 < +∞, 0 < `2 < +∞.

Then

lim
x→+∞

f1(x)

f2(x)
=

`1

`2

.

Proof. By the definition of limit,

∀ε > 0 ∃M1,ε such that x > M1,ε ⇒ |f1(x) − `1| < ε.

Similarly,

∀ε > 0 ∃M2,ε such that x > M2,ε ⇒ |f2(x) − `2| < ε.

By setting ε′ = min{ε, `1/2, `2/2} > 0, there exists Mε′ = max{M1,ε′ , M2,ε′} such that

Mε′ > max{M1,ε, M2,ε},

and {
0 < `1 − ε′ <f1(x) < `1 + ε′

0 < `2 − ε′ <f2(x) < `2 + ε′

for all x > Mε′ . From bounds on f1(x) and f2(x) above we can calculate bounds on

the quantity f1(x)/f2(x) as follows:

`1 − ε′

`2 + ε′
<

`1 − ε′

f2(x)
<

f1(x)

f2(x)
<

`1 + ε′

f2(x)
<

`1 + ε′

`2 − ε′
.
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Subtracting `1/`2 yields:

−ε′(`1 + `2)

`2(`2 + ε′)
<

f1(x)

f2(x)
− `1

`2

<
ε′(`1 + `2)

`2(`2 − ε′)
.

Now set

ε′′ =
ε′(`1 + `2)

`2(`2 − ε′)
> 0 (C.1)

and note that

ε′′ >
ε′(`1 + `2)

`2(`2 + ε′)
> 0,

which allows us to write ∣∣∣∣
f1(x)

f2(x)
− `1

`2

∣∣∣∣ < ε′′. (C.2)

If, given ε′′ > 0, we solve (C.1) for ε′ and take

ε′ =
ε′′`2

2

`1 + (1 + ε′′)`2

<
ε′′`2

2

`1 + `2

,

then (C.2) is satisfied when x > Mε′ = max{M1,ε′ ,M2,ε′}, which concludes the proof

of the theorem.
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