LEARNING TO RECOGNIZE AGENT ACTIVITIES AND INTENTIONS

by

Wesley Nathan Kerr

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2010
As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Wesley Nathan Kerr entitled Learning to Recognize Agent Activities and Intentions and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy.

Date: 10 August 2010

Paul R. Cohen

Date: 10 August 2010

Niall Adams

Date: 10 August 2010

Ian Fasel

Date: 10 August 2010

Stephen Kobourov

Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

Date: 10 August 2010

Dissertation Director: Paul R. Cohen
STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

SIGNED: Wesley Nathan Kerr
ACKNOWLEDGEMENTS

I thoroughly enjoyed the time I spent in graduate school primarily because I worked with exceptional people. There are many people that I would like to thank and acknowledge for their support over the past few years.

First among them is my advisor, Paul Cohen. I cannot begin to describe how incredible it was to work in Paul’s lab these past five years. I will simply say that Paul is one of the most intelligent men I have ever met and it was a privilege to have him as a mentor.

Special thanks goes to Niall Adams for the hard work he put in making this dissertation what it is. He helped edit some of the earliest drafts and shaped some of the final experiments. Niall was a helpful mentor throughout my career and genuinely concerned about making my research excellent.

Thanks goes to Stephen Kobourov and Ian Fasel for their contributions to my dissertation and for being part of my committee. I enjoyed our conversations and look forward to future collaborations.

Growing up, my grandmother would remind me that “behind every great man there is a great woman.” I do not claim to be a great man, but I can say that I have a great woman. My wife Nicole had the hardest job of all since she had to live with me while I was working on my dissertation. Her patience with me is admirable and her unwavering support is truly commendable.

There are several people I would like to thank from my time at USC. First among them are my office mates, Shane Hoversten and Daniel Hewlett. I thoroughly enjoyed our conversations, even though we did not always agree. I would also like to thank you both for being friends and making me look back fondly at our time together at USC. Down the hall from my office were two other good friends who would help bring a lighter side to my life as a graduate student. Many thanks to Martin Michalowski and Matt Michelson for always being up for a game of FIFA and a chance to relax.

I would like to thank the other graduate students from Paul’s lab: Daniel Hewlett, Derek Green, Antons Rebguns, Jeremy Wright, Nik Sharp, Anh Tran. I will cherish the conversations that we shared in the lab and at the bar.

Finally, a special thanks goes out to Lupe Jacobo and Rhonda Leiva for your hard work ensuring that I would finish my dissertation in a reasonable time frame.
DEDICATION

Dedicated to Mom and Dad for their patience and support these last seven years.
TABLE OF CONTENTS

LIST OF FIGURES ... 8

LIST OF TABLES ... 10

ABSTRACT ... 12

CHAPTER 1 INTRODUCTION .. 13
 1.1 Motivation .. 13
 1.1.1 Intention .. 14
 1.2 Problem .. 16
 1.3 Overview .. 22

CHAPTER 2 RELATED WORK .. 23
 2.1 Activity Recognition in Robots and Softbots 23
 2.1.1 Intention .. 25
 2.2 Computational Approaches .. 26
 2.2.1 Pattern Mining ... 26
 2.2.2 Multivariate Time Series Classification 28
 2.2.3 Univariate Time Series Classification 30
 2.3 Remarks ... 31

CHAPTER 3 REPRESENTATION ... 32
 3.1 Qualitative Sequences ... 33
 3.1.1 Event Sequences ... 34
 3.1.2 Relational Sequences ... 36
 3.2 Real-Valued Variables ... 39
 3.2.1 Preparation .. 39
 3.2.2 Symbolic Conversion ... 42
 3.2.3 Shape Conversion .. 43
 3.3 Wrapping Up .. 45

CHAPTER 4 LEARNING AND INFERENCE 47
 4.1 Sequence Similarity .. 47
 4.1.1 Needleman-Wunsch Algorithm 49
 4.1.2 Optimizations ... 52
 4.2 Signatures .. 52
TABLE OF CONTENTS – Continued

4.3 Visualizing Signatures ... 55
4.4 Finite State Machines .. 58
 4.4.1 Signatures for Generalization 61
4.5 Inferring Hidden State .. 65
4.6 Wrapping Up ... 67

CHAPTER 5 RESULTS .. 69
 5.1 Data Collection .. 69
 5.1.1 Wubble World .. 70
 5.1.2 Wubble World 2D ... 71
 5.2 Classification .. 74
 5.2.1 Wubble World .. 75
 5.2.2 Wubble World 2D ... 77
 5.2.3 Discussion .. 78
 5.2.4 Learning Rate .. 79
 5.3 Heat Maps .. 80
 5.4 Recognition .. 83
 5.5 Inferring Hidden State .. 85
 5.6 Wrapping Up ... 89

CHAPTER 6 APPLICATIONS TO DATA MINING 91
 6.1 Datasets .. 91
 6.1.1 Handwriting .. 92
 6.1.2 ECG .. 93
 6.1.3 Wafer .. 93
 6.1.4 Japanese Vowel ... 93
 6.1.5 Sign Language ... 94
 6.2 Classification .. 95
 6.2.1 k-NN Classifier .. 95
 6.2.2 CAVE .. 99
 6.3 Wrapping Up ... 102

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 104
 7.1 Future Work ... 105
 7.2 Final Remarks ... 107

REFERENCES .. 109
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Heider and Simmel frame</td>
<td>14</td>
</tr>
<tr>
<td>1.2</td>
<td>Sample PMTS for jump over</td>
<td>18</td>
</tr>
<tr>
<td>1.3</td>
<td>Five examples of the activity approach</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>Allen Relations</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagram of common terms</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Example sequences for each representation</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>The bit array for an approach episode</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Compression process for CBA representation</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>The CBA representation for an approach episode</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Speed time series</td>
<td>40</td>
</tr>
<tr>
<td>3.7</td>
<td>The effects of smoothing</td>
<td>41</td>
</tr>
<tr>
<td>3.8</td>
<td>Speed time series with SAX symbols</td>
<td>44</td>
</tr>
<tr>
<td>3.9</td>
<td>Speed time series as SDL symbols</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>An alignment between two sequences</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Sample heat map with marked heat indexes</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Heat maps for an approach episode</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>An example of the activity approach marked as sequence of states</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>An example of the conversion from a CBA into a FSM</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>The complete FSM for each approach episode in Figure 1.3</td>
<td>62</td>
</tr>
<tr>
<td>4.7</td>
<td>Mapping from mutiple sequence alignment to original episode</td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>A general FSM for the approach activities in Figure 1.3</td>
<td>66</td>
</tr>
<tr>
<td>5.1</td>
<td>Screenshot of the Wubble World 2D simulator</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>K-Folds partitioning</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>Learning curve of the CAVE algorithm generated by presenting labeled training instances one at a time to corresponding signatures</td>
<td>80</td>
</tr>
<tr>
<td>5.4</td>
<td>Heat maps for jump over and jump on aligned with a signature for jump over</td>
<td>81</td>
</tr>
<tr>
<td>5.5</td>
<td>The heat map for an approach episode aligned with the signature for jump over</td>
<td>82</td>
</tr>
<tr>
<td>5.6</td>
<td>Recognition results</td>
<td>86</td>
</tr>
<tr>
<td>6.1</td>
<td>Classification accuracy for each representation after shuffling</td>
<td>97</td>
</tr>
<tr>
<td>6.2</td>
<td>Difference in performance for ablation study</td>
<td>99</td>
</tr>
</tbody>
</table>
LIST OF FIGURES – Continued

6.3 Classification accuracy for each activity for different settings of the exclusion percentage.

.. 101
<table>
<thead>
<tr>
<th></th>
<th>Table Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Fluent representation of an episode of approach.</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>SAX breakpoint lookup table</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Similarity table for sequence alignment</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>The signature constructed from the first four examples in Figure 1.3.</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Signature update example</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Sample signatures for each sequence representation</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Rewriting the signature as a multiple sequence alignment</td>
<td>64</td>
</tr>
<tr>
<td>5.1</td>
<td>Wubble World dataset statistics</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>Wubble World 2D dataset statistics</td>
<td>74</td>
</tr>
<tr>
<td>5.3</td>
<td>Classification results for Wubble World</td>
<td>76</td>
</tr>
<tr>
<td>5.4</td>
<td>Wubble World confusion matrix</td>
<td>77</td>
</tr>
<tr>
<td>5.5</td>
<td>Classification results for Wubble World 2D</td>
<td>78</td>
</tr>
<tr>
<td>5.6</td>
<td>Classification results after shuffling sequences</td>
<td>79</td>
</tr>
<tr>
<td>5.7</td>
<td>Classification performance when some of the propositions are unobservable.</td>
<td>87</td>
</tr>
<tr>
<td>5.8</td>
<td>Inferred relations for the chase activity</td>
<td>88</td>
</tr>
<tr>
<td>5.9</td>
<td>Overlap between α most frequent unobservable relations from the ww dataset.</td>
<td>89</td>
</tr>
<tr>
<td>5.10</td>
<td>Overlap between α most frequent unobservable relations in ww2d signatures</td>
<td>89</td>
</tr>
<tr>
<td>6.1</td>
<td>Handwriting dataset statistics</td>
<td>92</td>
</tr>
<tr>
<td>6.2</td>
<td>Electrocardiogram dataset statistics</td>
<td>93</td>
</tr>
<tr>
<td>6.3</td>
<td>Wafer dataset statistics</td>
<td>93</td>
</tr>
<tr>
<td>6.4</td>
<td>Japanese vowel dataset statistics</td>
<td>94</td>
</tr>
<tr>
<td>6.5</td>
<td>Auslan dataset statistics</td>
<td>95</td>
</tr>
<tr>
<td>6.6</td>
<td>Percent correct with a 10-NN classifier from a 10-fold cross validation classification task.</td>
<td>96</td>
</tr>
<tr>
<td>6.7</td>
<td>A two-way analysis of variance for dataset by representation shows one main effect and no significant interaction effect.</td>
<td>96</td>
</tr>
<tr>
<td>6.8</td>
<td>Best classification accuracy for several of our datasets.</td>
<td>96</td>
</tr>
<tr>
<td>6.9</td>
<td>Classification accuracy without SDL variables</td>
<td>98</td>
</tr>
<tr>
<td>6.10</td>
<td>Classification accuracy without SAX variables</td>
<td>99</td>
</tr>
<tr>
<td>6.11</td>
<td>A three-way analysis for the data shown in Figure 6.2.</td>
<td>100</td>
</tr>
</tbody>
</table>
LIST OF TABLES – Continued

6.12 The classification results for the CAVE classifier on six different representations. Results are reported from a 10-fold cross validation classification task. .. 100
6.13 A two-way analysis of variance for dataset by representation shows two main effects and a significant interaction effect. 100
6.14 Pruning sensitivity results ... 102
Psychological research has demonstrated that subjects shown animations consisting of nothing more than simple geometric shapes perceive the shapes as being alive, having goals and intentions, and even engaging in social activities such as chasing and evading one another. While the subjects could not directly perceive affective state, motor commands, or the beliefs and intentions of the actors in the animations, they still used intentional language to describe the moving shapes. The purpose of this dissertation is to design, develop, and evaluate computational representations and learning algorithms that learn to recognize the behaviors of agents as they perform and execute different activities. These activities take place within simulations, both 2D and 3D. Our goal is to add as little hand-crafted knowledge to the representation as possible and to produce algorithms that perform well over a variety of different activity types. Any patterns found in similar activities should be discovered by the learning algorithm and not by us, the designers. In addition, we demonstrate that if an artificial agent learns about activities through participation, where it has access to its own internal affective state, motor commands, etc., it can then infer the unobservable affective state of other agents.
CHAPTER 1

INTRODUCTION

Humans are very adept at recognizing the activities that they participate in, as well as the activities they observe other humans performing. For those of us who drive into work, we must recognize when another driver is merging into the lane we currently occupy, otherwise we could end up in an accident. When we attend a football game and have to sit in the top few rows of the stadium, we can still make out what is going on, even though from that height the players on the field are nothing more than blobs of color. It also seems as though we are not restricted to recognizing the activities performed by other humans. For instance, Heider and Simmel (1944) showed that human subjects observed a diverse set of activities when the scene contained only a few geometric primitives (i.e. circles, squares, and triangles) moving around on a white background (Figure 1.1). Subjects reported witnessing scenes in which the geometric primitives were said to be fighting, chasing and fleeing, and celebrating. Our ability to interpret the activities in such a limited scene makes one believe that we could build a machine that could learn to recognize activities as well. The purpose of this dissertation is to design, develop, and evaluate computational representations and algorithms that are able to recognize the activities agents perform.

1.1 Motivation

Humans are capable of recognizing many different activities and are not restricted to human-human interaction or event animate-animate interaction. Often they involve animate and inanimate entities, such as a child kicking a soccer ball, or something as menial as eating dinner. Newtonson (1973) demonstrated that subjects shown short films of human behavior agreed with others on where the boundaries of an activity
occurred. Activities are perceived as discrete, with beginnings and ends, so although people experience the world as a continuous flow of information, humans parse and extract distinct activities. Furthermore, the activities and their boundaries are very similar across different individuals.

Previous research has demonstrated that subjects who are shown animations consisting of nothing more than simple geometric shapes perceive these shapes as alive, having goals and intentions, and even interacting in social relationships such as chasing and evading (Heider and Simmel, 1944; Blythe et al., 1999). For example, subjects in the classic Heider and Simmel study were shown a two minute video containing nothing more than a circle, two triangles (one large and one small), and a few rectangles, yet the subjects consistently labeled the larger triangle as a bully who constantly chased and harassed the smaller triangle and circle (Heider and Simmel, 1944). A single frame from the original study is replicated in Figure 1.1.

![Figure 1.1: Single frame from a similar animation to the original Heider and Simmel animation.](image)

1.1.1 Intention

Baldwin and Baird (2001) argued that we care little for the behavior exhibited by animate entities in motion, and we are most interested in the underlying intentions of the animate entities. Imagine that one is born with the ability to recognize patterns in movement, but one is unable to discern any purpose behind these patterns. For this individual, there is no difference between a playful shove from a friend or a shove from someone wishing to cause harm to the individual. It is the shover’s intentions
that help determine the appropriate response. In general, humans appear to be very good at inferring others’ intentions, so good, in fact, that we tend to infer intentions often when there are none.

When human subjects ascribe intentions to geometric primitives like those shown in Heider and Simmel’s research (see Figure 1.1), the question is which information guides the process? Blythe et al. (1999) designed a task in which two adult subjects each controlled his/her own artificial agent (a bug-shaped cursor) via a mouse. Each subject was instructed to perform an activity, such as chase, flee, and fight. The patterns of motion made by each participant were recorded and analyzed by computational algorithms. There is no mechanism to record the intentions of the bug-shaped cursor, but the subject acted with intent. Blythe et al. (1999) demonstrated that just the actors’ patterns of motion in animations provide sufficient information to classify their activities by the intentions of the subject controlling the agent. In fact, the researchers’ classification algorithm outperformed human subjects on the same task.

The heuristic algorithm Categorization by Elimination (CBE) developed by Blythe et al. mapped patterns of motion onto class labels for intentional states; however, this mapping does not improve its understanding of intentional states. One of Heider and Simmel’s subjects described the larger triangle in Figure 1.1 as “blinded by rage and frustration”; however, the CBE algorithm could not replicate a similar description. Algorithms that classify activities by patterns of motion understand physical activities but not their internal motivations (such as rage or frustration), even if these words are provided as episode labels. So how might we design algorithms capable of inferring intentional states?

In both the Heider and Simmel animations and the animations developed by Blythe et al., subjects were only allowed to observe a subset of the features that are available, i.e. positions, velocities, sizes, colors, etc. Both sets of animations were designed to evoke the intentional state of entities within the animations, but in neither case were the entities in the animations endowed with beliefs, desires, and intentions. Subjects observing the animations could not directly perceive the
affective state, motor commands, or the beliefs and intentions of the actors or controlling entities in the animations, yet they inferred affective states and described them with intentional language.

We think humans infer affective states given non-affective observables such as positions and velocities by calling on their own affective experiences. Observables cue, or cause to be retrieved from memory, representations of the activity that include learned affective components, which are inferred or “filled in” as interpretations of patterns of motion or other non-affective observables.

1.2 Problem

The problem addressed by this dissertation is to develop algorithms capable of recognizing and classifying activities after only seeing a few episodes of the activity. In addition, once the activity is correctly identified, there should be a mechanism to infer the internal states of the agent performing the activity. For demonstrative purposes, we focus on a single activity and highlight the different challenges that we will face. We will be working with multivariate time series. A multivariate time series (MTS) is a collection of random variables whose values are sampled over time at the same intervals. Often, the values sampled in a MTS are real-valued, yet the representations outlined in Chapter 3 operate on propositional data. We define a propositional multivariate time series (PMTS) to be an MTS in which all of the variables are propositions, and in Chapter 3 we outline a process to convert from MTS into PMTS. A propositional variable can either be true or false at any moment in time and can change value multiple times within a PMTS. A contiguous period of time during which the propositional variable is true is called a fluent. Specifically, a fluent is a tuple containing three elements: the name of the proposition, the time at which it becomes true, and the time at which it becomes false. A collection of fluents constitutes an episode, and instances of an activity are represented as episodes.

To illustrate, we use data from the Wubble World simulator. Wubble World is a virtual environment with simulated physics, in which softbots, called wubbles,
interact with objects (Kerr et al., 2008). Wubble World is instrumented to collect distances, velocities, locations, colors, sizes, and other sensory information and represent them with propositions such as $\text{Above}(\text{wubble}, \text{box})$ (the wubble is above the box) and $\text{PVM}(\text{wubble})$ (the wubble is experiencing positive vertical motion).

Figure 1.2 shows an episode for the activity *jump over*. In this example, the grey boxes are fluents and correspond to intervals during which the proposition is true. As mentioned earlier, some of the variables are internal to the agent performing the activity, e.g. the propositions $\text{Forward}(\text{agent})$ and $\text{Jump}(\text{agent})$ correspond to unobservable motor commands that the agent performing the activity can execute. We separated the sample episode into phases in order to highlight some of the structure present\(^1\). Any episode generated by an artificial agent jumping over a box begins with an interval in which the box starts out in front of the agent, whereby the agent moves more or less quickly towards the box. At some point, which will vary between episodes, the agent will perform the jump action. Despite variations, the activity jumping over a box contains a common pattern of intervals: the agent moves towards the box (phase I), jumps upwards (phase II), moves above the box (phase III), falls towards the ground (phase IV), and finishes on the ground behind the box (phase V).

We assume that the episodes of an activity, such as *jump over* or *jump on*, have some common structure. More colloquially, the fluents in similar episodes tell the same story with minor variations. Thus, one may classify episodes by their constituent patterns of fluents. This is not the only way to do it, however: a cleaning agent might classify cleaning episodes by the objects it interacts with, such as pots and pans, rather than what was done with the pots and pans. However, our focus here is classifying episodes by patterns of fluents. Figures 1.3(a)-(e) shows four episodes of the activity *approach*. In each episode the triangle represents the agent performing the approach, and the blue box represents the target of the approach. The PMTS for each approach is presented next to the corresponding visual

\(^1\)We do not put any effort to discovering these phases in this dissertation, but in Chapter 7 we discuss possible ways to discover phases.
Figure 1.2: An example PMTS for the activity *jump over*. The activity is subdivided into subregions for descriptive purposes.

schematic. Every example shares a common set of propositions, although not every proposition becomes true in every episode. For instance, the visual schematic for the approach in (a) does not contain a wall or a second box; therefore, these propositions never have the opportunity to become true. For the sake of brevity, we have omitted additional variables that may also be necessary for classifying episodes of *approach*, like internal desires and goals.

The purpose of this dissertation is to design, develop, and evaluate computational representations and learning algorithms that learn to recognize the activities agents perform. The activities take place within simulation, either 2D or 3D. They range from actions the agent is trying to perform, like jumping over blocks, to more
Figure 1.3: Five different visual and PMTS representations of the activity *approach*. Each example contains a red triangle approaching a blue square.

intentional actions such as chasing down another agent. In either case, some set of variables will be provided as input to the algorithms that we develop. Some variables are properties of the agents performing the activity; for example, we may be interested in the location of an agent, the current heading of the agent, and the velocity and speed with which the agent moves. Other variables that we may be interested in concern the relations between multiple agents participating in the activity. The list of relations includes the distance between the two agents, the relative
position of two agents, and the relative velocity of the two agents. Each observation is real-valued, but we shall later see that we can convert these numbers into binary propositions with a straightforward algorithm discussed in Chapters 3 and 6.

Our goals in this work are to add as little hand-crafted knowledge as possible to the representation of episodes discussed in future chapters and to produce algorithms that perform well over a variety of different activity types. Any patterns found in episodes for similar activities should be discovered by the learning algorithm and not by us, the designers. By different activity types, we mean activities outside the domain of agent interactions, for example, another activity might involve recognizing a subject’s handwriting or recognizing an abnormal heartbeat.

Performance is measured on three different tasks: classification, inference, and recognition. In a classification task, the agent is presented with an episode it has never encountered before and needs to produce the correct activity label to describe the corresponding activity. The inference task requires the agent to infer the state of internal variables over the course of the activity on the basis of previously observed and labeled data. In inference, we are given the observable variables in the episode and must correctly infer the internal state of the agents participating in the activity. Inference can only be achieved if the agent can correctly classify episodes. The last task is recognition, and it involves watching the state of the world change over time and determining whether or not an activity has occurred. This task is intrinsically harder than classification since the boundaries of an activity are not marked.

Some challenges are illustrated by the examples of approach activities introduced in Figure 1.3. First, episodes have different durations. In each example in Figure 1.3 the agent is moving forwards towards the block and at some point, stops performing the action \(\text{forward}(\text{agent})\), while inertia continues moving the agent forward until it comes to a stop in front of the box. Visually, this corresponds to a common pattern, highlighted in red in Figure 1.3, that differs in duration for each episode.

A second challenge is to determine which of the many propositions are irrelevant to the activity taking place. Sometimes examples of an activity contain additional propositions, such as \(\text{turn-left}(\text{agent})\) and \(\text{turn-right}(\text{agent})\) in example (d).
These propositions are considered noise in the context of a specific activity; whereas, the remaining propositions aid classification algorithms. Another example of irrelevant propositions is found in Figure 1.3(b). It just so happens that as the agent is approaching the box, it also is approaching a wall behind the box. The variable \texttt{distance-decreasing(agent,box2)} is not critical to a semantic interpretation of \textit{approach} and will only serve as a distraction in the classification task.

Even after determining which propositions to attend to, we still need to determine which fluents, if any, are important. It may be necessary to filter noisy fluents, or it may just be the case that a certain fluent does not contribute anything to a semantic interpretation of the activity. Consider the sample activity in Figure 1.3(e). The agent must move around a wall that is blocking its path to the block it is approaching. Unlike the example in Figure 1.3(d), the agent moves parallel to the wall and the distance to the block is not decreasing. Once the agent navigates around the wall, then the distance begins decreasing again. In this example, there are two fluents in which the proposition \texttt{distance-decreasing(agent,box)} becomes true. None, one, or both of these fluents may help in the classification and prediction tasks presented earlier.

In the coming chapters we will describe the CAVE algorithm, designed to classify and visualize episodes. CAVE is trained to classify activities through supervised learning with labeled episodes, such as instances of aggressive agents bullying smaller agents. Visualization produces a descriptive image of the sometimes complex interactions between fluents. An agent built with CAVE learns to classify activities by first performing them itself. Therefore, it has access to both observable aspects of activities such as motion, and private aspects such as intentions, emotional states, and motor commands. It can also use observations of other agents to retrieve activities from memory and project the hidden or private aspects of these activities onto other agents.
1.3 Overview

The rest of this dissertation is organized as follows. Chapter 2 provides a literature review of previous relevant work done in artificial intelligence and data mining. Chapter 3 details the representations designed to aid in the recognition of activities. Chapter 4 details several learning and visualization algorithms the work directly with the representation described in the preceding chapter. Chapter 5 provides empirical results on several tasks within our agent base simulations. Chapter 6 provides a deeper analysis into the representations and algorithms within the agent based simulations and across multiple datasets. Chapter 7 discusses avenues for further research and draws some final conclusions.
CHAPTER 2

RELATED WORK

We divide this chapter into two sections. The first section highlights previous research that addresses the same type of problem addressed by this dissertation, specifically developing algorithms that learn to recognize the activities of agents in simulators or robots in the real world, or reasoning about how humans learn to recognize activities. The second section focuses on data-mining methods that perform classification on univariate and multivariate time series without specifically addressing activity recognition.

2.1 Activity Recognition in Robots and Softbots

There is a very similar line of research performed on robots that examine several different methods by which a robot could learn to recognize activities. Firoiu and Cohen (1999) describe a system composed of HMMs each trained on a batch of robot episodes. The robot represents its experiences with the HMM and learns the number of hidden states within the HMM via HMM state splitting. The focus of the research seems to be more about how to redescribe the multivariate time series as a set of logical variables rather than about learning a set activities in this environment.

In (Oates et al., 2000), the authors perform an experiment in which time series recordings are made of the sensors of a Pioneer-1 robot performing different actions. The resulting time series are clustered using Dynamic Time Warping as a distance metric between the time series. Although they do not explicitly model entire activities, the authors show that the clusters found by agglomerative clustering match those constructed by an expert. Similarly in (Rosenstein and Cohen, 1999) the authors propose to cluster the sensor recordings for a mobile robot. In this instance, they first look for abrupt changes within sensor values as indication
that an event has occurred, and after finding events they cluster the time series to generate signatures for the interaction.

More recently, Crick and Scassellati developed a system for recognizing activities and simultaneously the intentions of the actors, all from a folk physics-based interpretation of position and motion (Crick and Scassellati, 2008, 2010). This work is an extension of previous work where the authors developed a system that could correctly identify which player was “it” in a game of tag (Crick et al., 2007). They found that when the robot was able to participate in playground games (like tag), then it could recognize the intentions of other agents towards itself much more quickly than if it was simply a passive observer. This was because it was able to test its hypotheses about the other agents intentions towards it by approaching them. The work primarily focuses on playground games such as tag and keep away. It is unclear how the folk physics-based interpretation of intentions would extend to activities with inanimate objects.

Pautler et al. (2009) propose a similar folk physics-based interpretation of intention. In addition to recognizing intentions, the authors also focus on developing agents capable of extracting explanations for these intentions. Explanations are generated when the agent’s assumptions about the environment are violated and other agents are not acting in accordance to their perceived intentions. In both (Crick and Scassellati, 2010) and (Pautler et al., 2009), the ability to recognize intentions and the set of intentions that can be recognized are built into the agent, therefore no learning that occurs. The method of inferring intention proposed in this dissertation assumes that the agent learns about intentions of others by first experiencing those intentions.

Breazeal et al. (2005) describe an implementation of facial imitation, which is much more focused than general activity learning, but they have similar motivations that guided the implementation. First, they argue that robots need to infer the mental states of others in order to interact with them in a humanlike way, and they believe that this will come from the observable behavior, as we noted in Chapter 1. They also propose that one way infants learn is through imitative behavior. In our
terms, this would seem to be a way to generate more examples of an activity.

2.1.1 Intention

The notion of intention and recognizing the mental states of others is a becoming a very popular topic for research. How does one infer the intentions of another? We can take into account the age, sex, facial expressions, posture, communication (in all forms), and the social context, but as Heider and Simmel have shown, we do not need all of this information in order to make decisions about the intentions of an animate agent. Sometimes, just movement information is enough. In Blythe et al. (1999), human subjects controlled simulated insects on networked machines to perform a variety of activities. Activities ranged from behaviors like chase and flee to complex mating rituals that had one insect attempting to court another. The authors trained a three-layer neural network to classify the activities based on observable information, such as relative distance between the insects, relative velocity, absolute velocity, relative heading, etc. The trained neural network and heuristic based algorithm outperformed human subjects on a classification task. Intention was not explicitly modeled in this system even though they system could detect it through motion cues. In a followup study, Barrett et al. (2005) provide results that suggest that our ability to infer the intentionality of agents (even simple triangles) appears as young as 4 years of age, and we become more adept at it as we age. Given a forced choice task with similar behaviors to the original study, subjects correctly identified the right behavior in 80% of the samples.

Baker et al. (2009) demonstrate that goal inference can be accomplished by Bayesian inverse planning. If we assume that planning models how an agent’s intentions causes its behavior, then an observer can infer the agent’s intentions given the observational behavior by inverting the planning process. Furthermore, the learned Bayesian model accords well with human judgments of the intentions of a simple goal seeking agent.

Recent research has proposed the mirror neuron system within humans as a neural mechanism for recognizing and understanding the intentions of other peo-
ple (Iacoboni et al., 2005; Agnew et al., 2007). Although we do not claim that an agent augmented with the representations and learning algorithms described in this dissertation understands intentions in the same way that humans do, both lines of research propose a mechanism by which one agent understands the intentionality of another by relating the observed actions with one’s own previous memories and internal states. We will see this trend again when we discuss the algorithm for inferring intention in Chapter 4.

2.2 Computational Approaches

2.2.1 Pattern Mining

People have tried to solve many tasks that require as input multivariate time series. Some of the earliest work set about trying to extract common patterns or rules from propositional multivariate time series (PTMS). Most of this research focuses on extracting temporal patterns that occur with frequency greater than some threshold, also known as support. Temporal patterns are commonly described using Allen relations (Allen, 1983). Allen recognized that there is only a small set of relationships that two propositional intervals can be in, see Figure 2.1. The Allen relation between two intervals is determined by the intervals’ start and end times.

In temporal pattern mining research, there are several critical choices that researchers must make in order to find interesting patterns. First they must decide on a measure that determines what makes one pattern better than another (often called support). Secondly, researchers must select a representation of the temporal relationships between propositions. Any representation must solve two problems: First, a pattern consisting of 3 or more intervals can be represented as compositions of Allen relations in several ways (e.g., we could say meets(a, (during(b, c))) or during(meets(a, b), c)). A canonical form is desired, and is provided by several researchers (Winarko and Roddick, 2007; Höppner, 2001b). Second, a representation should capture all the Allen relations that exist between propositions. A sentence such as during(meets(a, b), c) does not say whether c occurs during a, b or both,
though one of these must be true.

Kam and Fu (2000) present an interesting canonical form, based on right concatenations, for compositions of three or more fluents. However, this representation does not capture all the Allen relations in a composition. In the algorithm presented by Kam and Fu, the frequency of the pattern was used to decide whether or not a pattern was interesting. The algorithms presented in (Cohen, 2001; Cohen et al., 2002; Fleischman et al., 2006) admitted a larger set of possible patterns than Kam and Fu, but lacked a canonical representation of patterns. This research focuses on extracting patterns that are determined to be statistically significant through hypothesis testing. This is the only work we know of relating support for a pattern to evidence against the null hypothesis that no pattern exists. Other research (Höppner and Klawonn, 2002; Winarko and Roddick, 2007) uses a matrix representation that captures all \(\frac{k(k-1)}{2} \) pairwise Allen relations between \(k \) intervals, and again uses frequency to determine the support of a pattern. In Höppner and Klawonn (2002), support is defined as the frequency within a sliding window, ensuring a degree of locality between the internal relationships of the pattern, whereas in Winarko and Roddick (2007) the support metric is similar to Kam and Fu (2000).
Papapetrou et al. (2009) propose a set of relations different from Allen relations that afford more flexible matching between the input and relations. Essentially Allen relations like the meets relation are relaxed to have fuzzy boundaries so that one interval can end within ϵ of another interval beginning and it still be considered meets. The mining algorithms rely on support, but the authors present different methods to add constraints in order to speed up pattern generation and ignore patterns that are not interesting.

Wu and Chen (2009) present an extension pattern mining problem so that datasets can contain both point events and events with duration (intervals), called a hybrid temporal pattern mining problem. Issues arise when one tries to extend the pattern mining algorithms outlined earlier to handle point based events, and similarly it is non trivial to extend algorithms capable of handling point based events, but not interval events, e.g. Apriori (Agrawal and Srikant, 1994). The authors extend the set of relations that occur between two events (point and interval) because Allen relations only considers interval events. The algorithm to mine patterns extracts patterns with a support metric similar to those seen before.

Most of the representations and algorithms used are an extension of the Apriori (Agrawal and Srikant, 1994) algorithm that performs a bottom up extraction of patterns, and none of the work cited above focuses on classifying episodes. On its own finding a large pattern in a set of episodes recorded from the same activity does not tell one how to distinguish one activity from another, which is something that we desire. We do not perform any pattern mining, via the methods outlined above, in this dissertation, but previous work in this area influenced design decisions. For instance, we treat all multivariate time series as propositional multivariate time series. This allows us to describe patterns in the PMTS as a collection of Allen relations.

2.2.2 Multivariate Time Series Classification

Batal et al. (2009) proposed a method for classifying multivariate propositional time series. The authors first extract large patterns from the time series with methods
similar to those just discussed, but these patterns are based on a subset of the original Allen relations, specifically \textit{before} and \textit{overlaps}. The complete set of large patterns is pruned by hypothesis testing to generate a subset of patterns that will serve as a binary feature vector. Each training episode results in a single binary feature vector such that each value is true when the corresponding pattern is found within the episode and false otherwise. The feature vectors and class labels are used to train a traditional classifier (e.g. SVM). One problem with this approach is that the classifier must be completely retrained whenever new training episodes are acquired.

Kadous and Sammut (2005) present a multivariate classification algorithm that operates on real valued time series and learns metafeatures to augment the original data. Features cited as metafeatures include local maxima and gradient information. These augment the original data with propositional features. A traditional classifier is trained on all of the time series information, the original data and the metafeatures. The rules generated from the classifier provide some insight into the decisions made by the classifier.

Weng and Shen (2008) propose to use two-dimensional singular value decomposition (2dSVD) as a tool for classifying multivariate time series. The authors treat the MTS as a large two-dimensional matrix where each row is a different variable and the columns correspond an observation at some specific moment in time. A feature matrix is obtained for each MTS and during classification a nearest-neighbor classifier selects the class label for the most similar feature matrix. Other researchers have preferred to classify time series by working directly on the original time series without performing any transformations (Oates et al., 2000; Großmann et al., 2003; Yang and Shahabi, 2007, 2004; Morse and Patel, 2007).

Another commonly used statistical approach to classification of multivariate time series is to train hidden Markov models (HMM) (Nathan et al., 1995; Lee and Xu, 1996). HMMs have proven useful for speech recognition, as well as for classifying words in American Sign Language (Starner, 1995). A commonly cited problem with HMMs though is that the structure must be specified \textit{a priori}. There have been
some approaches to help mitigate this problem; for instance, (Firoiu and Cohen, 1999) present a state splitting algorithm that attempts to learn the structure of the HMM by greedily reducing the size of the resulting representation.

Gesture recognition in both 2D and 3D is a classification problem that involves multivariate time series. In (Bobick and Wilson, 1995), the authors present algorithms that reduce a multivariate time series into a single sequence of states and then they employ a dynamic programming solution to find the distance between two gestures.

2.2.3 Univariate Time Series Classification

There is far more research dealing with classification/clustering/indexing of univariate time series than there is with multivariate time series. Within this research there are several different problems being addressed. Some researchers focus on developing new distance metrics to compare univariate time series, while others focus on reducing the amount of data used in comparisons. In addition, some researchers examine ways to convert real-valued time series into symbolic sequences.

There are several different distance metrics for comparing two real-valued univariate time series, and each of these has many extensions. One of the most straightforward is the longest common subsequence (LCS) algorithm. LCS provides a mechanism to align two time series that may suffer from translational shift (one starts later than the other). It relies on dynamic programming to find the largest subsequence that is common between the two time series. One common way to do this is to begin with real-valued time series, convert them into a symbolic form, then use LCS as a distance metric to compare them (Devisscher et al., 2008; Balasko et al., 2006; Wang et al., 2005). Some authors use LCS on the original, unaltered time series by thresholding the equality operator when comparing two values in the sequence (Vlachos et al., 2002, 2006; Buzan et al., 2004). Similarly, Chhieng and Wong (2007) propose an extension to the string edit distance that relies on the distance between two points influencing the cost matrix setup by LCS and string edit distance.
Another popular distance metric for comparing two univariate time series is dynamic time warping (DTW). As the name implies, dynamic time warping was designed to handle translational shifts in time and was originally created for speech recognition (Sakoe and Chiba, 1978). One benefit of dynamic time warping is that it can work directly on real-valued time series. Berndt and Clifford (1994) present early results demonstrating the feasibility of DTW on univariate time series and provide initial evidence that once DTW extracts patterns from the time series, then we can construct higher order rules to describe transitions between the patterns. Other researchers have used and extended DTW in order to perform classification on univariate and multivariate time series (Oates et al., 1999; Keogh and Pazzani, 2001; Fu et al., 2008).

Most of the work on classification of time series data has focused on real valued time series. In (Lin et al., 2003), the authors propose a new way to convert real-valued time series into symbolic time series and demonstrate that even with a naive distance calculation between symbolic time series, they are still able to generate good results. Balasko et al. propose a way to convert a univariate time series into a symbolic sequence and then perform sequence alignment in order to gather more insight about the processes generating the time series (Balasko et al., 2006). The authors do not perform a classification task and instead focus on understanding the underlying process generating the time series.

2.3 Remarks

In this chapter, we could only scratch the surface on a large and diverse field. For a thorough survey of temporal pattern mining and classification work see (Mitsa, 2010; Galushka et al., 2006; Liao, 2005).
In this chapter we outline the representations that will be used throughout the dissertation. Recall that we are working with multivariate time series (MTS) in which all of the variables are propositions, called PMTSs, and that PMTSs can be decomposed into episodes that are collections of fluents (see Figure 3.1). Each fluent is a tuple containing a proposition and the times at which the proposition becomes true and false. A proposition can become true (and false) multiple times within an episode, and each of these instances is represented as a separate fluent. Episodes and their constituent fluents have different durations, start times, end times, and propositions, so our representation of episodes must accommodate and generalize over these variations (see Figure 1.3).

Figure 3.1: Common terms that will be used throughout the dissertation.

In Section 3.1, we define two classes of representation each focusing on different aspects of the original PMTS representation. The representations differ in the information that they retain. Many of the variables in the multivariate time series
explored in this dissertation are real-valued. To accommodate this type of variable, we introduce a process to convert the range of real-valued variables into a set of propositional variables in Section 3.2.

3.1 Qualitative Sequences

All of the representations that we outline here convert from a PMTS into a sequence of tuples. The tuple is composed of a label (often referred to as the symbol) and the fluents that participated in the label’s construction. Often in the presentation of our sequences the fluents are ignored to present a concise view of the sequence. Sequences have a rich history in the data mining literature with applications in everything from biological sciences to natural language processing. Representing a PMTS as a sequence of tuples whose labels can be compared as symbols allows us to make use of prior research and we will demonstrate that these representations perform well in a variety of data mining tasks. Thus the contributions of this dissertation are not restricted to insights about recognizing activities, but include methodology useful for multivariate time series data mining (see Chapter 6).

We propose two classes of representation, event and relational sequences. Multiple sequence representations will be defined within each of these classes, each more complex than the last, constructed from more or less of the information in the original PMTS. In particular one might attend only to the start times or end times of fluents, or to both start and end times. As we shall see in Chapters 5 and 6 different representations lead to better performance at different tasks.

A single example, shown in the top half of Figure 3.2, illustrates different features of all of the sequences that we propose. The example is one of our original episodes of the activity approach and is reproduced from Figure 1.3(a). The PMTS as a collection of fluents is shown in Table 3.1. As stated earlier a fluent is a tuple, so the assertion \((\text{forward}(\text{agent}) \ 0 \ 11)\) means that proposition \(\text{forward}(\text{agent})\) was true in the discrete interval \([0,11]\).
Table 3.1: Fluent representation of an episode of *approach*.

<table>
<thead>
<tr>
<th>Fluents</th>
</tr>
</thead>
<tbody>
<tr>
<td>(forward(agent) 0 11)</td>
</tr>
<tr>
<td>(distance-decreasing(agent, box) 1 20)</td>
</tr>
<tr>
<td>(speed-decreasing(agent) 11 20)</td>
</tr>
<tr>
<td>(collision(agent, box) 20 21)</td>
</tr>
</tbody>
</table>

3.1.1 Event Sequences

There are only two types of events that occur for propositions in PMTS; the first is the instance of a proposition becoming true, and the second occurs when a proposition changes from true to false. We construct three kinds of event sequences: those composed entirely of start events (i.e. the proposition becoming true), those composed entirely of end events (i.e. the proposition becoming false), and those composed of a mix of start and end events. Multiple simultaneous events are sorted by proposition name.

Figure 3.2 contains three event sequences each representing the same episode shown in the upper half of the figure. One sequence corresponds to start events, another to end events, and the final example includes both start and end events. In Figure 3.2, we ignore the constituent fluents for a tuple in the sequence, since it is not difficult to determine which fluent an event corresponds to. The sequences corresponding to start and end events in Figure 3.2 are identical, but that will not generally be the case.

Sequences of start events and sequences of end events will always have the same length as the number of fluents in the original episode, and the alphabet of symbols in the sequence and the set of propositional variables are one and the same. These sequences ignore one of the endpoints for each fluent, yet as we will see in Chapters 5 and 6, still provide a good representation for classifiers to perform well at classification tasks.

Sequences composed of both start and end events are slightly more complex than sequences of only one type of event. The set of symbols that can occur in
the sequence is twice the size as the set of propositions, one symbol per proposition for when it turns on (+) and one symbol per proposition for when it turns off (−). Additionally, they will always be twice as long as the number of fluents in the episode for the same reason. The resulting sequence for the episode in Table 3.1 is shown in the lower half of Figure 3.2

<table>
<thead>
<tr>
<th>Visual Schematic</th>
<th>PMTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>collision(agent.box)</td>
</tr>
<tr>
<td></td>
<td>distance-decreasing(agent.box)</td>
</tr>
<tr>
<td></td>
<td>distance-decreasing(agent.box2)</td>
</tr>
<tr>
<td></td>
<td>distance-increasing(agent.box2)</td>
</tr>
<tr>
<td></td>
<td>distance-stable(agent.box2)</td>
</tr>
<tr>
<td></td>
<td>forward(agent)</td>
</tr>
<tr>
<td></td>
<td>speed-decreasing(agent)</td>
</tr>
<tr>
<td></td>
<td>turn-left(agent)</td>
</tr>
<tr>
<td></td>
<td>turn-right(agent)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qualitative Sequences</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Sequences</td>
<td>Relational Sequences</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
</tr>
<tr>
<td>f(a)</td>
<td>f(a)</td>
</tr>
<tr>
<td>dd(a,b)</td>
<td>dd(a,b)</td>
</tr>
<tr>
<td>sd(a)</td>
<td>sd(a)</td>
</tr>
<tr>
<td>c(a,b)</td>
<td>c(a,b)</td>
</tr>
<tr>
<td>dd(a,b)</td>
<td>dd(a,b)⁺</td>
</tr>
<tr>
<td>sd(a)⁻</td>
<td>sd(a)</td>
</tr>
<tr>
<td>c(a,b)⁺</td>
<td></td>
</tr>
<tr>
<td>c(a,b)⁻</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Key |
|-----------------------|-----------------------|
| c(a,b) | collision(agent.box) |
| dd(a,b) | distance-decreasing(agent.box) |
| dd(a,b)₂ | distance-decreasing(agent,box2) |
| di(a,b₂) | distance-increasing(agent,box2) |
| ds(a,b₂) | distance-stable(agent,box2) |
| f(a) | forward(agent) |
| sd(a) | speed-decreasing(agent) |
| tl(a) | turn-left(agent) |
| tr(a) | turn-right(agent) |

Figure 3.2: The upper half of the figure is replicated from Figure 1.3(a) and shows an example of the approach activity. Underneath are all of the different sequence representations for the example episode.
3.1.2 Relational Sequences

Relational sequences are composed of relationships between the fluents in an episode. The most simple relationships contain two fluents, and can be described by the well-known Allen relations (Allen, 1983). Allen recognized that, after eliminating symmetries, there are only seven relationships between two fluents, shown in Figure 2.1.

Allen relations capture all of the ordering relationships between the endpoints of two fluents, but they do not easily extend to relationships between three or more fluents. One way to describe all of the relationships between \(n \) fluents is to maintain a \(n \times n \) table of Allen relations, such that each row and column corresponds to a single fluent from the PMTS and each cell stores the Allen relation between two fluents (Winarko and Roddick, 2007; Höppner, 2001a).

Alternatively, we could represent the original propositional data like the entries in the upper half of Figure 3.2 as a bit array in which each row represents a logical proposition, each column represents a moment in time, and each cell contains 1 or 0 depending on whether the corresponding proposition is true or false at that moment. The corresponding bit array for the approach example in Figure 3.2 is shown in Figure 3.3.

<table>
<thead>
<tr>
<th>Collision (agent, box)</th>
<th>00000000000000000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance decreasing (agent, box)</td>
<td>01111111111111111110</td>
</tr>
<tr>
<td>Forward (agent)</td>
<td>11111111111000000000</td>
</tr>
<tr>
<td>Speed decreasing (agent)</td>
<td>00000000000000000000</td>
</tr>
</tbody>
</table>

Figure 3.3: The bit array for the approach example in Figure 3.2

A related data structure, the compressed bit array (CBA), provides a canonical representation of the complex patterns found in the PMTS. If we will be satisfied with an ordinal time scale for patterns — a scale that preserves the order of changes to a proposition’s status but not the durations of fluents — then we can compress the bit array by removing identical consecutive columns, as shown in Figure 3.4. The purpose of this compression is less to save space than to produce an abstraction of the bit array in which patterns of changes that are identical but for their durations...
are represented identically. The CBA corresponding to the dynamics in Figure 3.3 is shown in Figure 3.5.

![Figure 3.4: Discarding all but one of identical columns (shown shaded) in a bit array produces a compressed bit array (CBA).](image)

```
collision(agent, box)          0001
distance - decreasing(agent, box) 0110
forward(agent)                1100
speed - decreasing(agent)     0010
```

Figure 3.5: The CBA representation for the approach example in Figure 3.2

It is important to note that the CBA representation conserves all of the Allen relations present in the original PMTS. There is a direct mapping from the CBA representation to the table representation outlined earlier, but we prefer the CBA representation because it is easier to visualize the interactions between the propositions. The compressed bit array can be used to represent relationships between an arbitrary number of fluents, known as the order of the CBA. CBAs generated from pairs of fluents correspond directly with the Allen relations, and for simplicity, we write these CBAs with the corresponding Allen relations.

In the previous discussion we described how to represent relations between fluents, but not how to construct sequences from these relations. Now we present an algorithm for generating an order k relational sequence from a PMTS composed of the fluents \mathcal{F}. Here we define k to be the number of fluents that participate in each relationship varying from $2 \ldots |\mathcal{F}|$. The first step is to enumerate all of the k-combinations of fluents, of which there are $\binom{|\mathcal{F}|}{k}$. A k-combination of fluents from \mathcal{F} is a set of k distinct fluents from \mathcal{F}. Next the fluents in each k-combination are sorted in order to generate a canonical representation of the CBA. Ordered fluents, also
known as *normalized* fluents, are sorted according to earliest start time (Winarko and Roddick, 2007; Höppner, 2001a). If two fluents start at the same time, they are further sorted by earliest finish time, and if the start and end times are identical, then they are sorted alphabetically by proposition name. A canonical representation of CBA ensures that we only work with one, not many, representations. Each k-combination is a subset of the original set \mathcal{F}, and can be written as a bit array. Furthermore, this bit array can be compressed into a CBA via the process described earlier. Finally, a tuple, containing the CBA as the label (or symbol) and the k fluents that participate in the CBA, is appended to the sequence.

At this point, we have a sequence of tuples, one for each k-combination of fluents. The tuples in this sequence lack any canonical order since until now they have just been added to the sequence when they are discovered. As mentioned previously, we hypothesize that activities have temporal order to them, and the resulting sequence should try to preserve as much of that order as possible. Therefore, the tuples are sorted by the earliest finishing CBA first, determined from the original fluents stored as part of the tuple. Ties are broken by the earliest start time, then by individual fluent start and end times, and if all other tie breakers fail we sort by proposition names.

A qualitative sequence of CBA tuples can be shortened by defining a window that determines how close any two fluents must be to consider one before the other. This is known as the *interaction window*. There are two reasons why one might define an interaction window. The first is that interactions between propositions that are far apart in an activity are meaningless, and the second is that relational sequences tend to be quite long and the interaction window is a heuristic to generate smaller sequences. The interaction window is defined as follows. Assume that we have two fluents $(p_1 s_1 e_1)$ and $(p_2 s_2 e_2)$ such that p_1 and p_2 are proposition names, s_1 and s_2 are start times, e_1 and e_2 are end times, and $e_1 < e_2$. The two fluents are said to interact if $s_2 \leq e_1 + w$ where w is the interaction window. If we set $w = 4$ for the Allen sequence in Figure 3.2, then we would remove the relation (forward(agent) before collision(agent,box)) ((f(a) before c(a,b))) and
end up with a sequence with one less relation. The interaction window applies to all of fluents within a CBA, and if any fluent is further than the interaction window from all of the other fluents, then the CBA is disregarded.

Qualitative sequences reduce multivariate propositional time series to one-dimensional sequences of relations between propositions. Sequences lose information about the duration of the individual intervals, but retain information about the start and end times of each interval relative to another, and preserve the temporal order of CBAs. Assuming no pruning from an interaction window, the maximum size of a sequence of order k CBAs generated from an episode containing n relations is $\binom{n}{k}$. Furthermore, if an episode has j propositions, then the alphabet size for the symbols in the sequence is at least $7 \times (j^2 - j)$. It can be more if a proposition turns on and off multiple times.

3.2 Real-Valued Variables

Variables within a time series often take on real values. Two such examples, common to the types of activities we are interested in, are the distance between two moving objects and the speed of an agent. In this dissertation, real-valued time series are converted into collections of propositional time series. We will illustrate how this is done with the time series called speed in Figure 3.6.

3.2.1 Preparation

We assume that there is error in the observations for our time series. This error could come from faulty sensor readings on a robot or inaccurate physics approximations in a simulated environment. If necessary, we first smooth the time series. Let X be a univariate time series and let x_i be one of the values of X. The smoothing process works by modifying each value $x_i \in X$, on the assumption that x_i has an error component that can be reduced by replacing x_i by a weighted average of x_i and its neighbors. The effect of the moving averages smoothing technique is reduced error so that sensors more closely approximate a smooth function. Although there are
Figure 3.6: A time series showing the speed of an agent. The dashed line is the smoothed version of the time series.

many ways to smooth univariate time series; Kalman filter (Kalman, 1960), kernel smoothing (Hastie et al., 2001), etc., in this dissertation we employ a single, simple technique. The moving averages smoothing algorithm is a type of mathematical convolution governed by a single parameter k (Tukey, 1977). A new smoothed time series is constructed by averaging all of the values within a sliding window of size $2k + 1$.

More precisely, given a univariate time series $X = x_1, x_2, \ldots, x_n$ and window size k, we produce a smoothed time series $Y = y_{k+1}, \ldots, y_{n-k}$ such that each value in Y is a weighted sum obtained by:

$$y_t = \frac{1}{2k + 1} \sum_{j=-k}^{k} y_{t+j} \quad t = k + 1, k + 2, \ldots, n - k.$$

This technique is known as a “moving average” because each average is computed by dropping the oldest value seen and including the next value. The average “moves” through the time series computing y_t until there are no new observations. Figure 3.6 demonstrates the effects smoothing the time series with a value of $k = 25$. The jittery behavior of the speed variable is clearly removed. Selecting the “correct” value of k hard. If k is too small then the jittery behavior remains, but if k is too large then the shape of the curve could be altered. Figure 3.7 contains the original
time series speed and three different values of \(k \), 5, 25, 100.

![Figure 3.7: The effects of the moving averages smoother on the original time series for speed with three separate values of \(k \).](image)

The second step in the preparation of each univariate time series is standardization. To standardize a time series, we first need to find the mean, \(\bar{x} \), and the standard deviation, \(s \), of the time series. We generate a new time series \(Z \), such that for each data point in the original time series we subtract the mean and divide by the standard deviation:

\[
z_i = \frac{x_i - \bar{x}}{s}
\]

Each value in the resulting time-series is known as a z-score and it indicates how many standard deviations above or below the mean the original observation was. The resulting time-series will have a mean of zero and a standard deviation of one.

Standardizing time series does not change their shape. If two series do not look like each other then standardizing them will not make them similar, and in this sense standardizing cannot do any harm – but standardizing does remove differences due to units of measurement. Standardizing two series makes them have the same mean, and expresses each in standard deviation units. For instance, if \(X \) and \(Y \) are two
series and \(x_i = my_i \) for all \(x_i \) and \(y_i \), then standardizing X and Y makes them identical.

3.2.2 Symbolic Conversion

Lin et al. (2007) present an algorithm, called SAX, for converting a univariate real-valued time series into a symbolic sequence. SAX produces a sequence of symbols, \(S \), given a series of z scores, \(Z \), obtained by standardizing a series of reals, \(R \). The distribution of values in \(Z \) is assumed to be Gaussian, or \(Z \sim N(0, 1) \). The claim by the SAX authors that all time series have a Gaussian distribution is clearly false, and it is unknown what effects this incorrect assumption has on performance. Nevertheless, SAX provides a convenient method to convert real-valued time series into symbols and overall performance is good, as seen in Chapters 5 and 6.

The SAX algorithm maps real values within intervals to symbols that identify the intervals. The number of unique symbols generated by the SAX algorithm is controlled by the parameter \(a \). Selecting \(a \) determines how to select breakpoints that divide the Gaussian distribution into \(a \) equally-sized areas. The assumption of a Gaussian distribution allows us to determine the values of the breakpoints by looking them up in a statistics textbook or in Table 3.2. We replace all of the values in the standardized time series smaller than the smallest breakpoint with the symbol \(a \). Next we replace all of the values in the time series that are smaller than the second smallest breakpoint with \(b \), and so forth until all numbers are replaced with symbols. The resulting SAX sequence is shown at the top of Figure 3.8 for \(a = 3 \), and the bottom half presents the original time series with the breakpoints in place.

The authors of the algorithm further show that the distance between two symbolic sequences generated using SAX provides a lower bound on the distance between the original two time series. This proof is an extension of the one that was generated for the authors’ dimensionality reduction technique called PAA. We depart from the original SAX algorithm at this point since we do not perform any dimensionality reduction on our time series. Dimensionality reduction makes sense when all of the
variables in a multivariate time series are sampled the same number of times, at the same sampling rate, and are all real-valued. The time-series datasets we will explore in this dissertation do not necessarily satisfy these requirements. In particular, we mix propositional variables, symbolic variables, and real-valued variables all within the same dataset, so if we were to do dimensionality reduction on the real-valued time series, then we would need to perform some sort of dimensionality reduction on the propositional and symbolic time series. This is not a straightforward problem.

Each real-valued variable is converted to a symbolic sequence by applying the SAX algorithm to it. Furthermore, we create a new variable for each unique symbol in the SAX sequence by appending the symbol to the original variable name. For instance, in Figure 3.8 every location that SAX outputs the symbol a, the variable $(speed \ a)$ would be true. In total, we create a new propositional variables in the PMTS, where a is the number of unique symbols generated by the SAX algorithm. Each new variable is true at every time point that the corresponding SAX symbol occurs in the symbolic sequence.

3.2.3 Shape Conversion

One potential problem for the SAX representation is that rate of change information between the breakpoints is lost from the original time series. When generating
symbols, the SAX algorithm relies entirely on which two breakpoints the recorded value occurs between. Some derivative information is preserved by observing the transitions between these symbols, but the question remains though as to whether or not derivative information between the breakpoints is useful to the tasks outlined in Chapter 1.

To explore the possibility performance can be improved by including the derivative information, we implemented a subset of the original shape definition library (SDL) outlined in Agrawal et al. (1995), similar to André-Jönsson and Badal (1997). We do not need the full expressivity of the original library and only encoded a subset of the primitive symbols. Converting from a real-valued time series into symbols from our subset of SDL is accomplished in two steps. The first step is to find the first difference of the time series which is the series of changes from one time period to the next. For example consider the time series $T = \{1, 2, 4, 12, 10, 10, 8\}$. The first difference of T is the series $T^{(1)} = \{1, 2, 8, -2, 0, -2\}$. Next we encode each value in the first difference with a symbol from the set: *up, down, stable*. Up corresponds to positive values in the first difference, down corresponds to negative values, and stable means values that are approximately zero. In our example, the symbolic sequence would be $T_s = \{up, up, up, down, stable, down\}$.

As with the SAX algorithm, after running our SDL algorithm, we have a sequence...
of symbolic values. So, we create three new propositional variables in the PMTS, one for each variable and transition category label (up, down, stable). The new variables are true at every time point that they occur in the symbolic sequence. Figure 3.9 demonstrates the areas within the original speed time series that would be encoded with the same symbol. The light gray regions represent periods of time where the first derivative is stable, darker gray regions represent periods of time where the first derivative is less than zero, and the darkest gray regions represent periods of time where the first derivative is greater than zero.

![Figure 3.9: The time series for speed highlighted to show the symbols generated through the conversion to our SDL.](image)

The propositions constructed from the SDL conversion process aid performance on the tasks outlined in Chapter 1. An analysis is included in Chapter 6.

3.3 Wrapping Up

In this chapter we outlined our qualitative sequence representation for propositional multivariate time series. We provided additional algorithms for converting real-valued univariate time series into multivariate propositional time series. We can repeat this process for each real-valued variable within the original MTS. Depending on the selected SAX alphabet size, \(a \), each real-valued variable will result in \(a+3 \) new propositional variables in the final PMTS. Moving forward we explore how the
sequences will be used for recognizing activities.
Recall the purpose of this dissertation: to design, develop, and evaluate computational algorithms that are able to recognize the behaviors of agents as they perform and execute different activities. The previous chapter described the representations of activities that we will be working with. In this chapter, we focus on the algorithms that learn to recognize activities. The algorithms will be evaluated on two tasks: classification and recognition. In the classification task, we are given an unlabeled episode and must select the correct activity label, whereas in recognition we must find episode boundaries and then determine which episode occurs if one occurs at all.

To aid in both of these tasks, we describe and build an aggregate structure, called a signature, from episodes of an activity. Episodes of an activity are represented as sequences of tuples containing a symbol and the fluents that generated the symbol. At its core the signature relies on sequence alignment to find similar subsequences between it and another sequence. First we describe the process used to perform sequence alignment. Next we discuss a novel algorithm that builds signatures from episodes of an activity. Finally, we discuss several applications of signatures, such as visualization and online activity recognition.

4.1 Sequence Similarity

In Chapter 3 we described two families of representations each composed of sequences of tuples. Each tuple is an ordered list containing a label (symbol) and the set of fluents that participate in the label. In this section we ignore the fluents and focus on the labels. We would like to identify similarities between sequences that encode episodes from the same activity, for example we would like to identify the
similarities between the approach episodes described in Chapter 1. Furthermore, it would be beneficial to use that measure of similarity to capture the distance from one sequence to another. We would expect that episodes of the same activity have small distances whereas two sequences from different activities would have larger distances. A general solution to these tasks is to align the two sequences in such a way as to maximize the overlap between them (de Carvalho Junior, 2002). We choose to align the sequences because the tuples within the sequence are temporally ordered and set intersection or simply counting the overlap would not take into account this ordering.

We can easily visualize the alignment of two sequences by writing one sequence on top of the other, as shown in Figure 4.1. The top sequence in Figure 4.1 is the event sequence for the episode in Figure 1.3(c) and similarly the bottom sequence is the event sequence for the episode in Figure 1.3(d). Spaces are inserted into the top or bottom to break the sequences into smaller sequences so that the smaller sequences have matching symbols. The resulting alignment ensures that the two sequences are of equal length.

\[
\begin{array}{cccccccc}
 f(a) & dd(a,b) & dd(a,b2) & - & - & - & - & sd(a) & c(a,b) \\
 \uparrow & \uparrow & \uparrow & & & & & \uparrow & \\
 f(a) & dd(a,b) & dd(a,b2) & tr(a) & tl(a) & tr(a) & di(a,b2) & sd(a) & - \\
\end{array}
\]

Figure 4.1: An alignment between two sequences.

The objective of sequence alignment is to match as many symbols within the sequences as possible. In the example, four symbols match; each highlighted with a vertical bar. Spaces inserted into the alignment are represented as dashes. These spaces produce gaps in the sequences, yet they are necessary to produce a good alignment between the two sequences. Although not present in Figure 4.1 symbols are sometimes substituted for each other. Visually, this would correspond to one symbol being on top of another without a bar linking them. We can envision instances where substitution would be useful, say when an agent approaches two different boxes in separate episodes of approach. In this case, the propositions would almost completely match except for which box is being approached. Some of the
symbols in one episode could be substituted for others since the only differences are minor. In general, this dissertation does not explore potential applications of the substitution operator and effectively using the substitution operator is left for future work (see Chapter 7).

One way to formalize the alignment between two sequences is to count the number of operations necessary to transform one sequence into the other. These operations include: insertion, deletion, and substitution. Assume we have two aligned sequences X and Y; a gap in X corresponds to an insertion from Y into X, and a gap in Y corresponds to a deletion from X. Substitution involves replacing a symbol in one sequence with a symbol from the other sequence. The sequence of operations to perform in order to convert one sequence into the other sequence is known as the edit transcript. The sequence A can be converted into B in five steps: 1) insert $\text{tr}(a)$ after $\text{dd}(a,b_2)$; 2) insert an $\text{tl}(a)$ after $\text{tr}(a)$; 3) insert another $\text{tr}(a)$ after $\text{tl}(a)$; 4) insert $\text{di}(a,b_2)$ after $\text{tl}(a)$; 5) delete the final symbol $c(a,b)$.

There are many possible alignments between two sequences, and each alignment is scored according to the following procedure. Generally, we reward matches and penalize mismatches. In the previous example, if we set the cost of performing an operation (insertion, deletion) to -1, the cost of substitution to -1 and the reward for matching to 2, then the alignment score would be $4 \times 2 + 4 \times (-1) + 1 \times (-1) + 0 \times (-1) = 3$.

We define the similarity of two sequences to be the score for best alignment out of all of the possible alignments between the two sequences. The similarity of two sequences entirely depends on the amounts of rewards given for matches and the costs assigned to the different operators for mismatches.

4.1.1 Needleman-Wunsch Algorithm

Needleman-Wunsch (Needleman and Wunsch, 1970) is the standard algorithm for computing an optimal global alignment between two sequences. The algorithm computes the similarity of two sequences X and Y with lengths m and n respectively. The algorithm is based on dynamic programming, in that it builds up a complete
solution by examining and extending partial solutions. A partial solution involves finding an optimal alignment between subsequences of the original sequences, i.e. $X[1 \ldots i]$ and $Y[1 \ldots j]$.

The key recurrence in the sequence alignment problem is the observation that the optimal alignment between the sequences $X[1 \ldots m]$ and $Y[1 \ldots n]$ is decided by three values:

- the similarity of $X[1 \ldots m - 1]$ and $Y[1 \ldots n - 1]$ plus the cost of substituting $X[m]$ for $Y[n]$
- the similarity of $X[1 \ldots m - 1]$ and $Y[1 \ldots n]$ plus the cost of deleting $X[m]$
- the similarity of $X[1 \ldots m]$ and $Y[1 \ldots n - 1]$ plus the cost of inserting $Y[n]$

The cost of substituting $X[m]$ for $Y[n]$ is positive when the symbols match and negative when they do not. The largest of three values in the recurrence is the similarity score between X and Y. We can solve for the optimal similarity score by constructing a $(m + 1) \times (n + 1)$ table S. Each cell in the similarity table $S[i, j]$ represents the similarity score between subsequences $X[1 \ldots i]$ and $Y[1 \ldots j]$. Therefore $S[i, j]$ denotes the minimum number of operations needed to transform the first i symbols in X into the first j symbols in Y. Computing $S[m, n]$ will give the minimum number of operations to transform the sequences X and Y in their entirety. We can compute $S[m, n]$ by solving the more general problem $S[i, j]$ for all combinations of i and j. This is the standard dynamic programming solution and there are three components to the solution.

First we must establish some base conditions, $S[i, 0] = -i$ and $S[0, j] = -j$. These two base conditions capture the cost of inserting one complete sequence before an empty sequence. The zero length sequence implied by both base conditions restricts our choice of operations to insertion and deletion; either we insert the symbols into the empty sequence or delete all of the symbols resulting in an empty sequence.
Algorithm 1: SequenceAlignment

Input: sequences \(X, Y\) with lengths \(m, n\)

Output: \((m + 1) \times (n + 1)\) similarity table \(S\)

begin

for \(i=1\) to \(m\) do
\[
S[i][0] \leftarrow S[i - 1][0] + \text{ins}(X[i])
\]

for \(i=1\) to \(m\) do
\[
S[i][0] \leftarrow S[i - 1][0] + \text{del}(Y[i])
\]

for \(i=1\) to \(m\) do

for \(j=1\) to \(n\) do
\[
\text{diagonal} \leftarrow S[i - 1][j - 1] + \text{sub}(X[i], Y[j])
\]

\[
\text{left} \leftarrow S[i][j - 1] + \text{ins}(X[i])
\]

\[
\text{up} \leftarrow S[i - 1][j] + \text{del}(Y[j])
\]

\[
S[i][j] \leftarrow \max(\text{diagonal}, \text{left}, \text{up})
\]

end

Algorithm 1 provides the details for constructing the table \(S\). The functions \(\text{sub}(i, j)\), \(\text{ins}(i)\), and \(\text{del}(j)\) are the cost of substituting symbols \(X[i]\) and \(Y[j]\), inserting symbol \(X[i]\), and deleting \(Y[j]\) respectively.

The table \(S\) is filled by row from left to right. The first row and first column are filled in according to the base conditions, and the recurrence relation is used to fill the table one row at a time. The cell \(S[m, n]\) contains the optimal similarity score for the two sequences \(X\) and \(Y\). Table 4.1 contains the similarity table for the

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>θ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>f(a)</td>
<td>↑-1</td>
<td>↑-2</td>
<td>↑-3</td>
<td>↑-4</td>
<td>↑-5</td>
</tr>
<tr>
<td>2</td>
<td>dd(a,b)</td>
<td>↑-2</td>
<td>↑-1</td>
<td>↑-3</td>
<td>↑-4</td>
<td>↑-5</td>
</tr>
<tr>
<td>3</td>
<td>dd(a,b2)</td>
<td>↑-3</td>
<td>↑-0</td>
<td>↑-3</td>
<td>↑-4</td>
<td>↑-5</td>
</tr>
<tr>
<td>4</td>
<td>tr(a)</td>
<td>↑-4</td>
<td>↑-1</td>
<td>↑-2</td>
<td>↑-5</td>
<td>↑-4</td>
</tr>
<tr>
<td>5</td>
<td>tl(a)</td>
<td>↑-5</td>
<td>↑-2</td>
<td>↑-1</td>
<td>↑-4</td>
<td>↑-3</td>
</tr>
<tr>
<td>6</td>
<td>tr(a)</td>
<td>↑-6</td>
<td>↑-3</td>
<td>↑-0</td>
<td>↑-3</td>
<td>↑-2</td>
</tr>
<tr>
<td>7</td>
<td>dl(a,b2)</td>
<td>↑-7</td>
<td>↑-4</td>
<td>↑-1</td>
<td>↑-2</td>
<td>↑-1</td>
</tr>
<tr>
<td>8</td>
<td>sd(a)</td>
<td>↑-8</td>
<td>↑-5</td>
<td>↑-2</td>
<td>↑-1</td>
<td>↑-4</td>
</tr>
</tbody>
</table>

Table 4.1: The similarity table \(S\) with arrows for tracing optimal alignments. The optimal alignment is highlighted by the light gray squares.
example shown in Figure 4.1.

Any similarity table also encodes the information necessary to determine the optimal alignment. The optimal alignment is found by tracing a path in the table from the last position back to the first position. The value in $S[i, j]$ is determined by the values in three surrounding cells (the recurrence relation). For example, if $S[i, j] = S[i - 1, j] + \text{del}(Y[j])$, the trace reports a deletion of character $Y[j]$ and continues from cell $S[i - 1, j]$, represented with arrows in Table 4.1. It is possible to have more than one optimal alignment although our example only has one. All optimal alignments can be found by tracing back all possible optimal paths through the table S.

4.1.2 Optimizations

If we are only concerned with calculating the similarity score between two sequences, then we do not need to store the entire table in memory. The similarity score is stored in $S[m, n]$ and the trace is not necessary to determine the score. As mentioned previously, the score for any cell is determined by three other neighboring cells. As the algorithm progresses by row, we need to store the previous row in order to access two of the neighboring cells. The third neighbor is determined by the current row and is always the last value that we calculated. This reduces the space cost from $n \times m$ to $2n$. This optimization is necessary in order to calculate some distances between subsequences, because as we shall see in Chapters 5 and 6 we can generate quite long sequences.

4.2 Signatures

The similarity score provides a mechanism to compare two sequences, but ultimately we are interested in recognizing activities. We assume that we will have few to many episodes of an activity, all represented as qualitative sequences. Signatures are an aggregate structure constructed from examples of activities, designed to highlight frequently occurring subsequences common to a majority of the examples.
Let S be a set of qualitative sequences with the same activity label. We define the *signature* of the activity label, S_c, as an ordered sequence of *weighted* tuples. (The only difference between a signature and a qualitative sequence is these weights.) In the general case a single sequence can be considered a signature with each weight set to 1. The signature learning algorithm, CAVE, is an incremental algorithm, and works as follows: We select a sequence at random from S to serve as the initial signature, S_c, and initialize all of its weights to 1. The signature, S_c, is updated by combining it with the other sequences in S, processed one at a time. The order that the sequences in S are processed is generally random. From a cognitive science perspective, this just means that while learning about an activity, we cannot guarantee the order that we will receive training episodes. In Chapter 7 we suggest alternatives to processing sequences in a random order. A representative signature constructed from the first four instances in Figure 1.3 is shown in Table 4.2.

Two problems are solved during the processing of the sequences in S. First, the sequences are not identical, so S_c must be constructed to represent the most frequent symbols in the sequences. The weights in S_c are used for this purpose. Second, because a symbol can appear more than once in a sequence S_i, there can be more than one way to align S_i with S_c. These problems are related because the frequencies of symbols in S_c depend on how sequences are successively aligned with it.

Updating the signature S_c with a sequence S_i occurs in two phases. In the first phase, S_i is optimally aligned with S_c. The alignment algorithm, Needleman-Wunsch, penalizes candidate alignments for symbols in S_c that are not matched by symbols in S_i, and rewards matches. Both the cost of insertion and the reward for matching are determined by the weights stored with the signature as mentioned above. Table 4.3 shows the signature from Table 4.2 aligned with the start event sequence from the example in Figure 1.3(e). In the second phase, the weights in the signature S_c are updated. If a relation in S_i is aligned with one from S_c, then the weight of this relation is incremented by one (e.g., the $f(a)$ in Table 4.3). Otherwise the weight of the relation is initialized to one (e.g., $ds(a,b2)$ in Table 4.3) and it is
Table 4.2: The signature constructed from the first four examples in Figure 1.3.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>forward(agent)</td>
<td>4</td>
</tr>
<tr>
<td>distance-decreasing(agent, box)</td>
<td>4</td>
</tr>
<tr>
<td>distance-decreasing(agent, box2)</td>
<td>3</td>
</tr>
<tr>
<td>distance-stable(agent, box2)</td>
<td>1</td>
</tr>
<tr>
<td>turn-right(agent)</td>
<td>1</td>
</tr>
<tr>
<td>turn-left(agent)</td>
<td>1</td>
</tr>
<tr>
<td>turn-right(agent)</td>
<td>1</td>
</tr>
<tr>
<td>distance-increasing(agent, box2)</td>
<td>1</td>
</tr>
<tr>
<td>speed-decreasing(agent)</td>
<td>4</td>
</tr>
<tr>
<td>distance-increasing(agent, box2)</td>
<td>1</td>
</tr>
<tr>
<td>collision(agent, box)</td>
<td>3</td>
</tr>
</tbody>
</table>

Because the process of updating signatures does not remove anything from any of the sequences in S, signatures become packed with large numbers of symbols (propositions or Allen relations depending on the representation) that occur very infrequently, and thus have low weights. Heuristics help reduce the number of low frequency symbols occurring in each signature. We present one simple heuristic to clean up the signature: After updating the signature t times, all of the relations in the signature with weights less than or equal to n are removed. For example, we set $t = 10$ and $n = 3$, meaning that the signature is pruned of all relations occurring less than 4 times after a total of 10 training episodes. The signature is again pruned after 20 training episodes, and so forth. The effects of pruning are explored in Chapter 6.

In Table 4.4 we present signatures built from our examples of approach. Infrequently occurring symbols, or symbols seen fewer than three times, have been pruned from each of the signatures. The smallest signature is built from start event sequences, and the longest signature is built from sequences composed of both start and end events. In Figure 1.3 each example of approach has three red fluents corresponding to a shared pattern between the examples. This pattern is preserved in
Table 4.3: Updating the signature S_c. The leftmost column is the current signature (from Table 2). The second column is a sequence S_i (from Table 1). The third column is the optimal alignment of S_i with S_c. The final column is the weights of the updated signature.

each of the signatures in Table 4.4. Each symbol with a weight of five corresponds to some part of the original pattern, and only the signature constructed from CBAs captures the entire pattern outlined in red with a single symbol (in Table 4.4 it is the only CBA symbol with weight 5).

4.3 Visualizing Signatures

This section addresses two related challenges that remain after learning signatures for activities using the methods developed in the previous section. The first is how to visualize what CAVE has learned about activities, and the second is how to visualize why a new episode should be labeled with a particular activity. Both of these challenges are addressed by the visualization technique described next.
Table 4.4: Signatures generated from training over the examples shown in Figure 1.3. Each signature is trained on the example episodes in order, and then we pruned all of the symbols seen fewer than three times.

Examples of an activity can be visualized by laying out constituent fluents on a timeline; the signature of an activity, S_c, is not so easily visualized. Signatures are made not of fluents but of tuples containing a symbol that could be a proposition name (event sequence), an Allen relation between fluents, or CBAs. Moreover, signatures tend to be rather large until the low-weight symbols are pruned. Signatures do not represent any single example of an activity, but rather are an aggregate structure constructed from many examples of an activity. So signatures are too big to visualize easily.

However, it is relatively straightforward to visualize the fit between a sequence and a signature. Such a visualization shows whether the signature is a good fit to the sequence, and which fluents in the sequence contribute most to the fit.

We developed a heat map representation of the alignment between a sequence, S_i, and a signature S_c. The heat map is a rendering of the original example as a timeline with time flowing from left to right. Each proposition in the activity is given its own row and the fluents for each particular proposition are rendered where they occur in time. The color of the fluent conveys its importance; more important fluents are darker and have a higher heat index.

In the discussions of representations and the learning algorithms, we ignored the list of fluents attached to each symbol as part of the qualitative sequences. These
fluent: become {\text{important}} now as we discuss how to determine the heat index of a fluent. Let \(\rho_f = \{\tau_1, \ldots, \tau_N\} \) be a set of tuples in the sequence \(S_i \) that reference the fluent \(f \). When \(S_i \) is aligned with a signature \(S_c \), each tuple in \(\rho_f \) will either match a symbol in \(S_c \) or it will not. The heat index for a fluent \(f \) is the sum of the weights of the symbols in \(S_c \) that are matched by tuples in \(\rho_f \). The heat indexes for each interval in the original activity are normalized by the largest heat index ensuring that heat index values range from zero to one. The heat index of an interval determines its color in the heat map.

<table>
<thead>
<tr>
<th>Signature</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>((f(a) \ c \ dd(a,b2)))</td>
<td>((f(a) \ o \ dd(a,b)))</td>
</tr>
<tr>
<td>((f(a) \ o \ dd(a,b)))</td>
<td>((f(a) \ m \ sd(a)))</td>
</tr>
<tr>
<td>((f(a) \ m \ sd(a)))</td>
<td>((dd(a,b) \ f \ sd(a)))</td>
</tr>
<tr>
<td>((dd(a,b) \ f \ sd(a)))</td>
<td>((f(a) \ b \ c(a,b)))</td>
</tr>
<tr>
<td>((dd(a,b) \ m \ c(a,b)))</td>
<td>((dd(a,b) \ m \ c(a,b)))</td>
</tr>
<tr>
<td>((sd(a) \ m \ c(a,b)))</td>
<td>((sd(a) \ m \ c(a,b)))</td>
</tr>
</tbody>
</table>

Figure 4.2: A heat map generated from the approach signature trained on Allen relations and the Allen sequence for episode (a) in Figure 1.3. The heat index for each fluent is written on the fluent.

To illustrate why this is a good visualization technique, we present five heat maps, one for each sequence representation (event and relational) on a single example of approach. Each qualitative sequence is derived from the approach example shown in Figure 1.3(e), and the signatures for each representation come from Table 4.4. We chose this example because it highlights differences in the signatures that may not have been apparent before, specifically how each signature handles the proposition \(dd(a,b) \). This particular proposition is crucial to the activity of approaching a box. In Figures 1.3(a)-(d), the proposition \(dd(a,b) \) only becomes true once, meaning that once the agent starts towards the box, it does not falter. In Figure 1.3(e) it becomes true twice, because the agent must navigate around a wall that is blocking
its path. This proposition is significant because it is common to every example of approach, but in our example we have to distinguish between two fluents during which the proposition is true.

Figure 4.3 contains each heat map. The heat map for the start event sequence highlights the first fluent for proposition $dd(a,b)$ because this type of sequence focuses on start events and the first fluent happens to start when the rest of the examples normally start, see Figures 1.3(a)-(d). The heat map for the end event sequence shows that the alignment algorithm correctly identifies the second instance of $dd(a,b)$ which is expected since the proposition ends in the same order across the examples in Figure 1.3. The heat map for the event sequence composed of both start and end events highlights an interesting property of this type of sequence. We have seen that the first instance of $dd(a,b)$ is selected by the starts event sequence (indicated by high intensity in the heat map) and the second instance of $dd(a,b)$ is selected by the ends event sequence (indicated by high intensity in the heat map). Since start and end events are treated independently in the sequences of both starts and end events, we see that the intensity is spread between both $dd(a,b)$ fluents. Some intensity was assigned to the first fluent because the start event matched, and remaining intensity was given to the second fluent because the end event matched.

Our signatures are not perfect because some very intense fluents have no bearing on the activity approach, and are considered noise fluents. Only the heat map for the Allen relations representation correctly identifies the three fluents highlighted in the original example, see Figure 1.3.

4.4 Finite State Machines

The qualitative sequence representations described in Chapter 3 are certainly not the only way to represent propositional multivariate time series. Consider the first example of approach replicated in Figure 4.4. The example is segmented into a sequence of states such that each state is the current value of all of the propositions. One could say that there are four states in Figure 4.4, in which different subsets of
the propositions are true (e.g., $S_1 = \{ \text{forward(agent)} \}$) and represent the sequence as $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4$. A state in this sequence of states model is the same as a column from the CBA representation discussed earlier.

One way to use the sequences of states representation to recognize activities is to construct a finite-state machine (FSM) to act as a recognizer. FSMs are a common technique for modeling the behavior of a system and are represented by the tuple $(\Sigma, S, s_0, \delta, F)$ where: Σ is input alphabet, S is a finite number of states, s_0 an initial state, a δ is a non-deterministic state-transition function $\delta : S \times \Sigma \rightarrow \mathcal{P}(S)$, and F
is a set of final states. An example FSM is shown in Figure 4.5. The initial state is filled in light gray, and nodes surrounded in double circles indicate final states. Transitions are edges in the graph and are labeled with the input that induces the transition. In general, inferring a FSM from positive and negative examples is a known NP-complete problem (Gold, 1978), but we make no assertions about the optimality of this FSM.

The conversion from a CBA into a FSM is straightforward, and Figure 4.5 contains a CBA and the corresponding FSM. The input alphabet is a set containing all possible columns in the CBA. Recall that the length of a column in the CBA is equal to the number of propositions, therefore the size of the input alphabet is exponential in the number of propositions. In the example, the alphabet size is $2^4 = 16$ because we are only concerned with four of the propositions. The set of states includes a state for each column in the CBA, as well as a start state. Each state is identified by the column index as well as the column information. Since there are exponentially many different inputs, we define a partial transition matrix. The start state transitions to the state corresponding to the first column on input that matches the first column. From there each state transitions to itself on input that matches its corresponding column in the CBA, and each state transitions to the state corresponding to next column on input that matches the next column. Lastly, the final column in the CBA is added to the state of final states F. If we receive input in any state for which the transition is undefined, then we automatically transition back to the start state.

With the example in Figure 4.5 we can recognize the approach activity as long as it matches the example in Figure 4.4 exactly, but we know several more examples of the approach activity, specifically those from (b) to (e) in Figure 1.3. We can build a single FSM that accepts all of the examples by repeatedly converting from an example into the CBA representation and finally into to same FSM with a different branch from the start state. The resulting approach FSM can be seen in Figure 4.6. To conserve space, the states and transitions are labeled with the propositions that are true, and any other proposition not listed is assumed to be false. The result is
collision(agent, box) 0001
distance-decreasing(agent, box) 0110
forward(agent) 1100
speed-decreasing(agent) 0010

Figure 4.5: An example of the conversion from a CBA into a FSM.

not a novel or all that interesting representation, but it is one that will recognize a limited set of activities, specifically those that match a previously seen example. What this representation lacks is any ability to generalize beyond the episodes it is built from. Without additional knowledge, we do not know which propositions can be safely ignored, and thus are left with an over-specialized FSM. In the next section we discuss a mechanism to select propositions that are important and in addition determine when those propositions are important, so as to reduce the state space. Signatures constructed from qualitative sequences provide these mechanisms.

4.4.1 Signatures for Generalization

In this section we detail how a signature that maintains information about the original episodes can be manipulated in order to construct a finite state machine that generalizes better than the original.

Multiple Sequence Alignment

As discussed in previous sections, signatures are constructed from a set of qualitative sequences. The signature maintains weights corresponding to the number of times
Figure 4.6: The complete FSM for each approach episode in Figure 1.3.

that a symbol has been correctly aligned from the set of sequences. Another way to view signatures is as a greedy heuristic that produces candidate solutions to the multiple sequence alignment (MSA) problem. In the multiple sequence alignment problem, we are presented with three or more sequences, and the task is to optimally align all of the sequences with each other simultaneously. Finding an optimal alignment for n sequences has been shown to be a NP-complete problem (Wang and Jiang, 1994; Just, 2001), so for now we will be satisfied with signatures.

Signatures simply store the weight with each tuple in order to conserve space, but we could maintain a solution to the current multiple sequence alignment of the sequences encountered so far as a table. Each sequence would be given a row in the table and each cell would contain the tuple corresponding the the type of sequence (e.g. the name of a proposition for event sequences and the fluents that generated the event). Table 4.5 contains the multiple sequence alignment for the five examples from Figure 1.3. For demonstration purposes, we work with event sequences since they have a smaller alphabet and smaller sequence size, but we are not restricted to only event sequences. The sequences are aligned in order, so row one corresponds to Figure 1.3(a), row two corresponds to Figure 1.3(b), and so forth. The totals at
the bottom of the table correspond to the weights that would be stored as part of the signature (see Table 4.4).

Generalization

The signature and multiple sequence alignment table provide all of the information necessary in order to determine which propositions and fluents can be ignored. First we prune the multiple sequence alignment table by removing any columns from the table that occur fewer than \(n \) times. For example, the table in the upper half of Figure 4.7 contains the columns that occur three or more times in Table 4.5. All others have been pruned away.

Each column that remains after pruning contains tuples from the original sequences, and each tuple consists of a symbol and the fluents that caused the symbol’s generation. We can gather all of the fluents from a row in the MSA table (after pruning) and reconstruct part of the original PMTS. It is assumed that through the pruning process some of the fluents will be ignored. Figure 4.7 illustrates this idea. Each cell in the table links to the original fluent that generated it. Green indicates fluents that will are kept and the light blue fluents are ignored. In general, the set of fluents kept will be the original set of fluents, but more often will contain a subset of the original fluents. According to the signature, any fluents that are missing from the reconstruction of the PMTS can be ignored.

The next step is to generate a FSM like in Figure 4.6, but the CBAs that will be converted into the new FSM will be generated from pruned sets of fluents. An example of the generalized FSM is shown in Figure 4.8. Since we only keep a subset of the original fluents, each of the branches in Figure 4.8 tends to be shorter than its corresponding branch in Figure 4.6.

We also introduce a slight relaxation to the FSM representation outlined earlier. In all of the previous examples, the state and input specified which of the propositions must be true and which must be false. The relaxation that we propose is that any proposition not listed as part of the state is ignored, i.e. the proposition can be either true or false. The relaxed FSM (shown in Figure 4.8) will accept a more
Table 4.5: Rewriting the signature as a multiple sequence alignment.
4.5 Inferring Hidden State

In this section we revisit parts of the introduction in more detail. Specifically we address the claims that our representation allows inference about the states of the world that may not be observable. Based on previous research (Heider and Simmel, 1944; Blythe et al., 1999), researchers believe that humans infer affective states given non-affective observables such as position and velocities by calling on their own affective experiences. Observables cue, or cause to be retrieved from memory, representations of the activity that include learned affective components, which are inferred or “filled in” as interpretations of patterns of motion or other non-
affective observables. We propose augmenting the cognitive faculties of an artificial agent with the representations and algorithms discussed in this chapter and previous chapters so that it can learn to recognize its own activities and the activities of others.

Regardless of whether propositions are observable or not, they are treated the same by the representation and signature learning algorithm. We assume that all propositions will always be observable, but some episodes and qualitative sequences of episodes have observable and unobservable propositions depending on who is doing the observing. Assume that we have two agents in a simulation performing activities, \textit{agent}_1 and \textit{agent}_2. When \textit{agent}_1 performs an activity it observes all of the propositions, but if \textit{agent}_1 observes \textit{agent}_2 perform the same activity, \textit{agent}_1

Figure 4.8: A general FSM for the \textit{approach} activities in Figure 1.3
cannot perceive the motor commands, emotional state, and intentional states of agent\textsubscript{2}.

Our approach to inferring unobservable propositions is to have agents learn signatures of their own behaviors, in which these propositions are not hidden. Therefore, it has access to both observable aspects of activities such as location and motion, and private aspects such as intentions, emotional states, and motor commands. Then, when an agent observes another’s behavior, it matches the states of observable propositions to signatures of its own behavior, and uses these to infer the states of unobservable propositions in other’s behavior.

To illustrate, assume that the signatures in Table 4.4 were learned by an agent and the observed behavior of another agent does not include proposition \(f(a) \) since it corresponds to a motor command. Focusing on the signature from Allen relations, the first agent would infer that the following hidden relations containing \(f(a) \) must also be true: \((f(a) \text{ contains } dd(a,b2)) \), \((f(a) \text{ overlaps } dd(a,b)) \), and \((f(a) \text{ meets } sd(a)) \).

In general, signatures can contain many tuples constructed from hidden propositions. The most frequent of these tuples are the most likely to occur when observing other agents perform the same activity that the signature is trained on. Therefore, our agent selects the \(\alpha \) most frequently occurring tuples with symbols constructed from hidden propositions to be the inferred hidden state. In the previous example, if we were to set \(\alpha = 2 \), then we would remove the relation that occurs the least, in this case \((f(a) \text{ contains } dd(a,b2)) \).

4.6 Wrapping Up

In this chapter we described signatures, our aggregate structure that captures the most frequently occurring patterns in the episodes provided as training data. We rely on sequence alignment to find matching symbols in sequences generated from episodes in order to construct this structure. Signatures can be used to generate heat maps which are a convenient way to visualize the overlap between an activ-
ity and a specific episode. In online recognition of activities, signatures can be employed to select important propositions that helps generalize FSM recognizers constructed from training data. Finally, signatures contain the internal state that can be projected onto other agents when they are perform an activity.
CHAPTER 5

RESULTS

In Chapter 3 we presented a novel representation for episodes of an activity, and in Chapter 4 we introduced a new aggregate structure built from said episodes. In this chapter we turn our focus to the performance of the representations and algorithm. There are three tasks that evaluate performance; classification, recognition, and inference. Classification is a forced choice test in which we are presented with an episode and have to pick the correct activity label for that episode. In the recognition task, the boundaries of the episode are not known. A test instance may contain an episode for one, none, or all of the activities, and it is the job of the FSM recognizers to report when, if at all, the activity occurs. The final task involves inferring the internal state of agents participating in an activity. In this task, we assume that some of the propositions are unobservable during classification and we must first recognize what activity is taking place and secondly must infer the state of the unobservable variables. The experiments are performed on two different datasets, presented next.

5.1 Data Collection

We designed two simulation environments to collect episodes for different activities. One of the simulation environments is three dimensional and requires a human user in order to generate episodes for each activity, whereas the second simulation is two dimensional and the agents all have limited cognitive function so they can operate autonomously.
5.1.1 Wubble World

Wubble World (ww) is a virtual environment with simulated physics, in which softbots, called wubbles, interact with objects (Kerr et al., 2008). Wubble World is instrumented to collect distances, velocities, locations, colors, sizes, and other sensory information and represent them with propositions such as $\text{Above}(\text{wubble}, \text{box})$ (the wubble is above the box) and $\text{PVM}(\text{wubble})$ (the wubble is experiencing positive vertical motion). Wubble World was conceived as a language learning platform, wherein wubbles would learn the meanings of words through interactions with children (see Section 1.2).

We collected a dataset of different activities each of which consisting of several episodes, e.g. several episodes of a wubble jumping over a box, jumping on a box, approaching a box, pushing a box, moving around a box to the left, moving around a box to the right. Episodes were generated by manually controlling a wubble to repeatedly perform one of these activities. Each episode was unique, in that the wubble would start closer or farther from the box, move more or less quickly, and so on. There were 37 episodes labeled jump over, 20 episodes labeled jump on, and 25 episodes for each of the remaining activities.

Table 5.1 contains the average duration for the episodes broken down by activity. The duration is number of samples taken over the course of the episode sampled every 1/50th of a second. Most examples of the activities take roughly the same amount of time to complete on average, but moving around a box to the left and to the right take considerably longer than the others. The wubble moves slower in these activities to avoid collisions with the box. The average number of fluents in the approach activity is much lower than in the others. This probably has to do with the complexity of the activity approach, and that it is intrinsically part of each of the other activities.
Table 5.1: Average values for the episodes in the Wubble World dataset.

<table>
<thead>
<tr>
<th></th>
<th>Num Examples</th>
<th>Time</th>
<th>Num Fluents</th>
<th>Allen</th>
<th>CBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>approach</td>
<td>25</td>
<td>343.40</td>
<td>34.84</td>
<td>572.72</td>
<td>7,175.68</td>
</tr>
<tr>
<td>jump-on</td>
<td>20</td>
<td>436.90</td>
<td>80.45</td>
<td>1,356.70</td>
<td>27,531.75</td>
</tr>
<tr>
<td>jump-over</td>
<td>37</td>
<td>350.14</td>
<td>51.35</td>
<td>1,156.51</td>
<td>17,211.32</td>
</tr>
<tr>
<td>left</td>
<td>25</td>
<td>615.88</td>
<td>95.24</td>
<td>3,228.16</td>
<td>55,928.96</td>
</tr>
<tr>
<td>push</td>
<td>25</td>
<td>344.84</td>
<td>99.40</td>
<td>3,802.20</td>
<td>93,087.28</td>
</tr>
<tr>
<td>right</td>
<td>25</td>
<td>629.68</td>
<td>95.04</td>
<td>3,276.44</td>
<td>61,431.36</td>
</tr>
</tbody>
</table>

5.1.2 Wubble World 2D

Like Wubble World, Wubble World 2D (ww2d) is a virtual environment with simulated physics. The purpose of ww2d is to address some of shortcomings of Wubble World, specifically the wubbles’ lack of cognitive and emotional systems. The agents in ww2d are distinguished from wubbles because of these additional systems. Wubble World 2D was also designed to allow us to quickly create unique episodes for individual behaviors inspired by the the original movies that were part of the research conducted by Heider and Simmel (1944). A screenshot of the Wubble World 2D simulator is shown in Figure 5.1.

Figure 5.1: Screenshot of the Wubble World 2D simulator. The agent is the black and red circle, and it can interact with food (the Red Cross symbol), the soccer ball.
Agents in the \textit{ww2d} simulation are endowed with a cognitive system based on a blackboard architecture (Corkill, 1991). Every agent has a limited perceptual system comprised of a visual system with a 90° field of view and a limited range of sight, an auditory system that provides omnidirectional sensing with a limited range, and an olfactory system that is also omnidirectional and limited in range. Agents have a fixed amount of energy that can be replenished by consuming food scattered throughout the environment (indicated by the Red Cross symbol in Figure 5.1), and expend energy by “running” or by colliding with other agents. All agents have the ability to increase their speed in order to sprint, albeit for a short period of time since doing so will drain the agent’s energy. Lastly, agents also have a primitive two-dimensional computational model of emotion, inspired by the models found in (Breazeal, 2003; Masuch et al., 2006). One dimension, called \textit{valence}, loosely corresponds to the happiness of the agent. The second dimension, called \textit{arousal}, loosely corresponds to the excitement level of the agent. The emotional system is autonomic and over time tends towards a neutral emotional state.

Agents have competing goals, such as: \textit{wandering} around, \textit{pursuing} other agents, \textit{fleeing} from other agents, \textit{kicking} inanimate objects, \textit{eating} and \textit{defending} food, or \textit{sitting} idly waiting for something to happen to them. The decision making process and goal selection of an agent is guided by the sensory system as well as an arbiter that selects between competing goals. At every moment in time the arbiter determines the \textit{insistence} of each goal. The insistence of a goal is affected by the energy level, the arousal level, and valence of the agent as well as the currently perceived state of the world. For instance, if a smaller agent happens to be in front of an agent with bullying tendencies (an emergent feature), the bully will have a high desire to pursue the smaller agent. The arbiter carries out the goal with the highest insistence value. Goals are mapped into sequences of actions via a finite state machine (FSM). Once the agent has selected a goal to achieve, it initializes the corresponding prebuilt FSM and begins executing the commands that will achieve the goal. Some FSMs, such as fighting, are very complex since they involve tracking the opponent, whereas others, such as wandering, are very simple.
Like the original Wubble World, all of the interactions for an agent are recorded for post-hoc analysis. Each agent has its own unique view of the world based on its perceptual system. In WubbleWorld, wubbles had a global view of the world, but in \textit{ww2d} the agents have an egocentric view of the world, meaning that if the agent cannot sense an object, nothing is recorded. An egocentric view of the world helps focus the agent’s attention on the things within its sphere of influence and reduces the number of variables recorded at any one time. At every time step we record the current position, speed and heading of an agent, as well as the internal state of the agent consisting of its energy level, arousal, valence, active goal, and the active state of the executing FSM. For every other agent or object within our sensing area we record the relative position, relative velocity, distance, whether or not there is currently a collision between the agent and the object, and whether the object was seen, smelt, or heard.

We collected a dataset of episodes of agents in \textit{ww2d} performing several kinds of activities: \textit{chasing} another agent, \textit{fleeing} from an aggressor, \textit{fighting} with another agent, \textit{kicking} a ball, \textit{kicking} a static object, and \textit{eating} food to gain energy. Episodes are generated automatically by limiting the active goals of the agent to elicit the types of behavior we expected. Each episode was unique, in that the objects started in random locations and wandered different amounts of until they found an object of interest. We recorded 20 episodes for each activity. Table 5.2 contains the average statistics by activity for the episodes in the \textit{ww2d} dataset. Despite being 2D, the interactions and examples of activities were much more complex than activities in the original Wubble World. Variables are sampled every 1/80th of a second in \textit{ww2d}, much more frequently than in the Wubble World dataset. Each activity in \textit{ww2d} takes roughly the same amount of time to complete and more time is spent performing an activity in \textit{ww2d} than the activities from the Wubble World dataset. The number of fluents are varied across activities, with the simplest in terms of the average number of fluents activity being \textit{eating} and the most complex being when two agents \textit{fight}. The last two columns contain the average number of tuples in the Allen sequence and the CBA sequence respectively. The length of the Allen
sequences pushes the computational limits of the current system, and the sizes of the CBA sequences make it impossible at this time to do much with them. Chapter 7 will address how we plan to handle very long sequences.

5.2 Classification

The CAVE algorithm was evaluated on its ability to correctly classify episodes in Wubble World and Wubble World 2D. Classifying episodes is not trivial because the episodes share propositions and fluents. They all involved the same objects, movement, and similar perceptions.

Signatures learned by the CAVE algorithm function as classifiers as follows. Recall that $S = \{S_1, \ldots, S_k\}$ is a set of qualitative sequences with the same activity label; for example, all the sequences in S might be examples of jump over. Now suppose we have N sets of qualitative sequences, $\Sigma = \{S^1, S^2, \ldots, S^N\}$ each of which has a different activity label, and its own signature, derived as described in Chapter 4. A novel, unlabeled sequence matches each signature to some degree, determined by aligning it with each signature, as described earlier. The weights stored with the signature correspond to the costs for insertion and deletion operators. Not all tuples stored in the signature are used to determine the distance between the sequence and the signature. To avoid spurious results, we define the exclusion percent to be the minimum percentage of the training data in which a tuple must be successfully aligned in order to contribute to the sequence alignment. This parameter is explored more formally in Chapter 6. Finally, the novel sequence

<table>
<thead>
<tr>
<th>Activity</th>
<th>Num Examples</th>
<th>Time</th>
<th>Num Fluents</th>
<th>Allen</th>
<th>CBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ball</td>
<td>20</td>
<td>1,794.00</td>
<td>697.55</td>
<td>137,283.20</td>
<td>3,164,794.70</td>
</tr>
<tr>
<td>chase</td>
<td>20</td>
<td>1,454.15</td>
<td>366.55</td>
<td>41,906.10</td>
<td>934,204.90</td>
</tr>
<tr>
<td>column</td>
<td>20</td>
<td>1,642.85</td>
<td>637.25</td>
<td>125,309.90</td>
<td>4,424,164.90</td>
</tr>
<tr>
<td>eat</td>
<td>20</td>
<td>1,429.75</td>
<td>130.80</td>
<td>6,069.80</td>
<td>146,095.65</td>
</tr>
<tr>
<td>fight</td>
<td>20</td>
<td>1,549.50</td>
<td>1,319.65</td>
<td>527,603.75</td>
<td>12,835,156.20</td>
</tr>
<tr>
<td>flee</td>
<td>20</td>
<td>1,533.10</td>
<td>337.00</td>
<td>36,758.45</td>
<td>708,719.05</td>
</tr>
</tbody>
</table>

Table 5.2: Average values by activity for the episodes in the Wubble World 2D dataset.
is given the activity label that corresponds to the signature it matches best.

We contrast the performance of the CAVE algorithm with a k-nearest neighbor (k-NN) classifier using the same underlying representation of qualitative sequences (Wu et al., 2008). To select a class label for an episode, the k-NN classifier calculates the distance between the episode and all training episodes (across all class labels). Distances are determined by the similarity score outlined in Chapter 4, and as in the CAVE algorithm, more similar sequences have lower distances. The k-NN classifier selects the most frequently occurring class label among the k closest neighbors of an unlabeled episode, and for the dissertation we decided to explore two values of k. One of the values sets $k = 1$ and acts as a baseline for our algorithms. In this case the k-NN classifier selects the class label for a sequence that matches the sequence’s nearest neighbor, whereas in the CAVE algorithm we find the signature that best matches the sequence. We also run all experiments with a k-NN classifier with $k = 10$, and we prefer a weighted k-NN classifier because it weights each of the closest neighbors by the distance to the unlabeled episode, so that closer neighbors have more weight (Dudani, 1976). The class label with the most weight attached to it is the label given to an unlabeled episode. In principle, we could optimize the parameter setting for k, but that is not the primary concern here.

The performance of the CAVE algorithm and the k-NN classifiers is the average number of correctly classified episodes in a K-fold cross validation (Cohen, 1995, Chap. 6). Figure 5.2 illustrates the idea (albeit for only three folds). All of the episodes for an activity are shuffled and then partitioned into K different sets. One fold consists of selecting a set to be held aside as the test set while the remaining sets are used to train classifiers. After training, performance is measured on the test set and then both classifiers are reset. Each of the sets is selected to be the test set exactly once. These experiments set $K = 10$.

5.2.1 Wubble World

The performance of the CAVE algorithm and the k-NN classifier is the percent of correctly classified episodes in a 10-fold cross validation across 157 episodes and six
Figure 5.2: K-Folds partitioning into training and test sets. White boxes indicate training sets and the gray boxes represent the test set.

classes, shown in Table 5.3. We report average percent over the 10 folds M, and the standard deviation, SD. The k-NN classifier performs better than the CAVE classifier on all representations of the Wubble World data. The signatures for the CAVE algorithm were trained without pruning and a tuple must have been aligned in at least 50% of the episodes in order to be part of a classification.

<table>
<thead>
<tr>
<th></th>
<th>1-NN</th>
<th>10-NN</th>
<th>CAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>Event Sequence (starts)</td>
<td>96.67%</td>
<td>3.88</td>
<td>97.62%</td>
</tr>
<tr>
<td>Event Sequence (ends)</td>
<td>97.06%</td>
<td>3.13</td>
<td>96.90%</td>
</tr>
<tr>
<td>Event Sequence (both)</td>
<td>97.78%</td>
<td>2.87</td>
<td>98.12%</td>
</tr>
<tr>
<td>Allen Sequence</td>
<td>98.33%</td>
<td>3.75</td>
<td>97.03%</td>
</tr>
</tbody>
</table>

Table 5.3: Classification on the Wubble World dataset. Results are reported from a 10-fold cross validation classification task.

The majority of the classification errors made by the CAVE classifier on start event sequences involved mislabeling different activities as *approach*, shown in the confusion matrix in Table 5.4. The first thing to note is that all of the activities begin by doing what could be labeled as approach, for example when the wubble jumps over a box, it must first move towards the box. So, mislabeling different
activities as *approach* is not that surprising since it is very similar to the other activities. Additionally the signature for the *approach* activity is shorter than the signatures for the other activities. This means that most episodes align well with the signature for *approach* and since the distance function attempts to maximize the amount of weight accounted for by the sequence, approach tends to do well.

<table>
<thead>
<tr>
<th>Predicted</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>approach</td>
</tr>
<tr>
<td>approach</td>
<td>25</td>
</tr>
<tr>
<td>jump-on</td>
<td>17</td>
</tr>
<tr>
<td>jump-over</td>
<td>9</td>
</tr>
<tr>
<td>left</td>
<td>19</td>
</tr>
<tr>
<td>push</td>
<td>21</td>
</tr>
<tr>
<td>right</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 5.4: The confusion matrix for the CAVE classifier on start event sequences from the *ww* data.

The CAVE performance on Allen sequences is much higher than the others, and we shall see that this remains consistent for most of the datasets. We will have more to say on this in Chapter 6.

5.2.2 Wubble World 2D

In this section we present the performance of the CAVE algorithm and the *k*-NN classifier as the average number of correctly classified episodes in a 10-fold cross validation across 120 episodes and six classes, shown in Table 5.5.

Like before, the *k*-NN classifier performs as well or better than the CAVE classifier on all representations of the Wubble World 2D data, but this time across the board all representations and classifiers perform very well on the *ww2d* dataset. This is a surprising result considering that earlier we argued that the *ww2d* dataset is more complex. We explore *why* performance is so high in the following section.
<table>
<thead>
<tr>
<th></th>
<th>1-NN</th>
<th></th>
<th>10-NN</th>
<th></th>
<th>CAVE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Event Sequence (starts)</td>
<td>97.50%</td>
<td>4.03</td>
<td>98.33%</td>
<td>3.51</td>
<td>90.00%</td>
<td>6.57</td>
</tr>
<tr>
<td>Event Sequence (ends)</td>
<td>95.00%</td>
<td>7.03</td>
<td>96.67%</td>
<td>4.30</td>
<td>87.50%</td>
<td>9.00</td>
</tr>
<tr>
<td>Event Sequence (both)</td>
<td>96.67%</td>
<td>4.30</td>
<td>99.17%</td>
<td>2.64</td>
<td>92.50%</td>
<td>6.15</td>
</tr>
<tr>
<td>Allen Sequence</td>
<td>99.17%</td>
<td>2.64</td>
<td>99.17%</td>
<td>2.64</td>
<td>95.00%</td>
<td>7.03</td>
</tr>
</tbody>
</table>

Table 5.5: Classification on the Wubble World 2D dataset. Results are reported from a 10-fold cross validation classification task.

5.2.3 Discussion

Across the board k-NN has performed very well by making very few errors, but is this because of the qualitative sequence representations or for some other reason? Although the activities in Wubble World and Wubble world 2D share common propositions, there do exist propositions that occur only in certain activities. For example, in Wubble World the proposition $\text{Jump}(\text{wubble})$ only occurs in two activities, namely jump over and jump on, and furthermore, the proposition $\text{On}(\text{wubble,box})$ only occurs in jump on. Wubble World 2D is similar since other agents appear in episodes of chase, flee, and fight, but activities like eat and kick do not involve other agents only other objects. This makes classification easier since each classifier relies on these propositions in its distance metric.

Another issue worth considering is what role does the order of the tuples in the qualitative sequences play? We chose to use sequence alignment since we believe that the order in which events (or relations) occur matters. To help determine if order information is necessary for classification on these two datasets, we performed another classification experiment. This time the sequences were shuffled before any classification tasks were performed. By shuffling the sequences we reduce order information that is part of the sequences since the ordering information is the basis of classification. The results of this experiment are shown in Table 5.6. We can see that the order is not doing most of the work.

A closer inspection of the episodes reveals a possible cause for this behavior. Episodes that share a common label have a higher degree of overlap between the set
of propositions that become true within the episode on average, than episodes that do not share a common label. This means that even after shuffling, on average, the sequence alignment algorithm will be able to find some events that can be aligned. Since episodes with a common label have more chance for these events to align, they tend to be selected more frequently as nearest neighbors.

In general, all of the classifiers do very well at the classification task, but it is partially because classification is not very hard on these datasets.

<table>
<thead>
<tr>
<th></th>
<th>Wubble World</th>
<th>Wubble World 2D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-NN</td>
<td>10-NN</td>
</tr>
<tr>
<td>Event Sequence (starts)</td>
<td>74.47%</td>
<td>8.53</td>
</tr>
<tr>
<td>Event Sequence (ends)</td>
<td>78.50%</td>
<td>5.31</td>
</tr>
<tr>
<td>Event Sequence (both)</td>
<td>75.03%</td>
<td>9.01</td>
</tr>
<tr>
<td>Allen Sequence</td>
<td>84.08%</td>
<td>10.10</td>
</tr>
</tbody>
</table>

Table 5.6: Classification results after shuffling the sequences. Results are reported from a 10-fold cross validation classification task.

5.2.4 Learning Rate

Figure 5.3 shows a representative learning curve for the CAVE algorithm on Wubble World training data. Episodes were represented with Allen relational sequences, and signatures were learned for each activity one episode at a time. After presenting a single training example consisting of an activity label and sequence pair, we tested performance on the previous classification task.

The learning curve was generated by selecting five episodes from each type of activity to function as the test set. The remainder of the episodes were used as the training set to be presented one at a time to the signatures. In Figure 5.3 the x-axis is the total number of training instances seen, and the y-axis marks the percent correctly classified out of 30 episodes in the test set. The performance is averaged over 20 different randomizations of the test set and training presentation order.

As the graph indicates, the signatures learn to classify the episodes in the test set very quickly. Episodes in the test set are labeled with one of six possible class
Figure 5.3: Learning curve of the CAVE algorithm generated by presenting labeled training instances one at a time to corresponding signatures.

labels. After seeing 24 episodes (on average only four episodes per activity) the CAVE agent is able to classify almost 70% of the test set correctly. This suggests that the learned signatures quickly identify relations within the training episodes that allow the algorithm to correctly classify activities.

5.3 Heat Maps

In Chapter 4, we presented a mechanism to visualize signatures, called heat maps. The heat map representation highlights parts of an episode that align with a signature. Additionally, heat maps provide a way to visually illustrate differences between episodes with the same or different activity labels. Here we present three heat maps. Heat indexes are determined from a signature trained on relational sequences of jump over episodes. We generated a heat map for a jump over episode, a jump on episode, and an approach episode. In each heat map, time runs from left to right and darker fluents are aligned higher frequency tuples in the signature.

Figure 5.4(a) contains the heat map for the jump over episode. Looking at the darker intervals as we move from left to right, we see that the wubble starts out on the floor. From here the wubble begins moving forward while box0 is in front of it. After some period of time, the wubble jumps, as indicated by the proposition Jump(wubble). This results in the wubble moving upwards, towards
the ceiling, eventually passing above box0 before returning back to the ground. This explanation and highlighted area matches the description of *jump over* given in Chapter 1. Some intervals are white, and therefore uninteresting. These involve propositions like moving towards and away from walls and other blocks in the room. These can safely be ignored as they are not common to jump over episodes.

Contrast the heat map for the *jump over* episode with the heat map for the *jump on* episode in Figure 5.4. The heat map on the right is generated from one of the episodes labeled *jump on* aligned with the signature from the class labeled *jump over*. We expect to see some overlap between the signature and the episode since the *jump over* activity and the *jump on* activity start similarly, with the wubble on the ground, moving toward the box, before jumping into the air. The difference occurs towards the end of each episode. In the case of *jump over* the wubble lands back on the ground behind the box, whereas in the *jump on* activity the wubble lands on top of the box. Most of the intervals that occur at the end in Figure 5.4(b) cannot align with anything in the signature for *jump over* and are therefore white. The benefit of the heat map is that we can quickly see which parts of the episode
are shared with the signature for a class.

The final heat map comes from an approach activity, shown in Figure 5.5. In this example, there is far less overlap than in the previous examples since approach is more different from jump over than jump over is different from jump on. Most of the overlap between the jump over signature and approach sequence corresponds to the motion of the wubble, i.e. Forward(wubble) and Motion(wubble). This overlap occurs because both activities require that the wubble move forward. There is one surprise in Figure 5.5 though, and it comes from the proposition Towards(wubble,box4). This proposition is semantically unimportant to either activity but is highlighted by a large heat index because enough of the examples of jump over approach box4 while jumping over box0. Additional training data in which the wubble is not approaching box4 while performing jump over will reduce the heat index for this fluent.

![Figure 5.5: The heat map for an approach episode aligned with the signature for jump over.](image)

All of the example heat maps presented in this section were taken from the Wubble World dataset. Although we would like to show examples from ww2d, the images are just too large to fit onto a single page, and trying to do so will render the text unreadable making any meaningful interpretation impossible to convey. One such meaningful interpretation is that the heat maps for ww2d consistently highlight the internal state of the agent, such as the the agent’s goals, as the most frequently aligned fluents.
5.4 Recognition

In Chapter 4, we introduced a way to recognize activities as they occur by constructing a finite state machine (FSM) with states and transitions that match the training data. Signatures provided a way to selectively ignore some fluents and propositions and allows the FSM to generalize to unseen episodes of an activity. We present an experiment in which the FSMs described in Section 4.4.1 are used to recognize activities. The experiment demonstrates that the FSMs from Section 4.4.1 have higher recognition performance than FSMs induced directly from the training data.

The recognition task involves building a recognizer for each activity from training episodes. The remaining episodes, which are not part of the training set, become test episodes, and are “played” back to each FSM recognizer. Playing an episode involves constructing the appropriate state for each moment in time during the episode and updating the FSM accordingly. The recognizer either accepts or rejects the test episode. We measure three different values: true positives, false positives, and true negatives. True positives \(tp \) occur when a recognizer correctly accepts an episode. A false positive \(fp \) occurs when a recognizer accepts an episode with a different activity label, and a false negative \(fn \) occurs when the recognizer incorrectly rejects an episode. These values are used to compute precision, recall and the F-measure.

The precision of a recognizer is the the number of episodes correctly identified out of the total number of episodes accepted by the recognizer, and given by the formula:

\[
\text{Precision} = \frac{tp}{tp + fp}.
\]

A recognizer that only correctly accepts activities from its class will have a precision score of 1. A recognizer that accepts many more activities than it should will have a lower precision score, and precision scores range from 0 to 1. The recall of a recognizer is the number of episodes correctly identified out of the total number of episodes with the same class label, given by the formula:

\[
\text{Recall} = \frac{tp}{tp + fn}.
\]
Intuitively a recognizer can get a high recall by accepting every test episode hoping that it shares the same class label of the recognizer, but this will reduce the precision of the recognizer. Like precision, recall can vary from 0 to 1. Last is the F-measure (van Rijsbergen, 1979) which is the harmonic mean of precision and recall and also varies between 0 and 1:

\[
F\text{-measure} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}.
\]

Similar to classification, we perform a K-fold cross validation on the training data from ww and $ww2d$. This time we choose three values of K in order to vary the amount of training data, and thus affect what is learned by the signature. We exclude everything from the signature not seen in at least 80% of the training data, so if a signature is trained on 20 episodes, any tuples seen fewer than sixteen times are excluded from alignment. This is a very aggressive exclusion rate, but by excluding most of the lower frequency tuples away from the signature, we end up with a more general FSM recognizer.

We found that for the most part none of the recognizers built from just the training data ever accepted an episode that it had not been trained on. The exception to this is the FSM for approach because it is a simple activity that occurs as a component of the other activities. Without accepting a single episode from the test set we cannot calculate the precision, recall, or F-measure. So, instead we focus on the results generated by the signature based FSMs, presented in Figure 5.6. On the left hand side are the plots containing the F-measures for 2-fold, 6-fold, and 10-fold cross validations.

Overall it looks as though signatures constructed from event sequences ordered by end times of the fluents are the best at pruning the FSM recognizer, but signatures trained on sequences of Allen relations have high F-measures across most of the activities. One consistent activity across all the Wubble World data is approach. The F-measure consistently seems to be between 0.2 and 0.4 regardless of the sequence representation. Recall that the F-measure is the harmonic mean of precision and recall. The recall for the approach FSM is consistently high, but the precision is
always very low because the *approach* activity is performed whenever we do any of the other activities. All Wubble World activities involve approaching the box, and they differ in the interactions with the box. So, the FSM is not necessarily incorrect all of the time, but rather the other activities contain or are composed from an *approach* activity. Viewing an activity as composed of simple activities is an important ability of our system and we discuss possible extensions to handle hierarchical activities in Chapter 7.

FSM recognizers constructed from signatures trained on Wubble World 2D activities do not fare as well across the board. Across all of the representations 6-folds seems to produce the highest consistent F-measure. It appears as though Allen sequences do pretty well, and for 6 folds most of the activities can be recognized with F-measures around 0.8, which is very high.

In most of the representations, it does not appear as though more training data is helping the signature prune the FSM in order to get better performance. There are two ways to interpret this; first, signatures do not need many training instances before they successfully select which fluents can be ignored, and second the FSM recognizers can only perform so well on this task. We saw evidence that signatures need relatively few training instances before doing pretty well in Section 5.2.4, and in Chapter 7 we address potential shortcomings in the FSM representation by proposing alternative representations and learning algorithms for constructing more general recognizers.

5.5 Inferring Hidden State

The next experiment demonstrates how well signatures can be used to infer un.observable relations, e.g. relations that involve motor commands or propositions corresponding to internal cognitive state. We focus on sequences of Allen relations because the highest classification accuracy for the CAVE classifier came from signatures trained on Allen sequences. Signatures are built from sequences in which all of the relations are observable. There are two parts to this experiment. First
we test how well CAVE can classify episodes in which some of the propositions are unobservable. Second we test the signatures’ ability to infer unobservable relations
in the proper order from sequences in which they have been removed. This is a precision test.

<table>
<thead>
<tr>
<th></th>
<th>ww</th>
<th></th>
<th>ww2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Allen Sequence</td>
<td>95.40%</td>
<td>5.17</td>
<td>70.83%</td>
</tr>
</tbody>
</table>

Table 5.7: Classification performance when some of the propositions are unobservable.

Table 5.7 contains the classification accuracy of the CAVE classifier on a 10-fold cross-validation of the *ww* and *ww2d* datasets. Prior to testing each episode was stripped of unobservable propositions. In *ww*, the unobservable propositions correspond to motor commands such as \texttt{Jump(wubble)} and \texttt{Forward(wubble)}, and in *ww2d* the unobservable propositions correspond to the goals of the agent as well as the internal affective state of the agent, i.e. \texttt{valence(agent)}, \texttt{energy(agent)} and \texttt{goal(agent)}. The performance on *ww* datasets is relatively unaffected by the absence of internal propositions, but on the *ww2d* datasets it is a much larger problem. The signatures learned from the *ww2d* rely less on the environment variables, such as positions and distances, and contain many more unobservable propositions. Even though performance is affected, CAVE still performs above 70% accuracy.

The second part of the experiment is to see if the inferred relations from the signature can correctly capture the affective state, assuming that the episode has been classified correctly. We again use the cross-validation experiment design. We build signatures for each activity in each fold when all propositions are observable. From each signature we select the $\alpha = 10$ most frequent relations that contain at least one of the unobservable propositions as the inferred relations. We also preserve the order that relations occur within the signature so that the inferred relations can be treated just like a qualitative sequence. An example from the activity \textit{chase} is shown in Table 5.8. We can see that a large number of the inferred relations correspond to the current goals and states of the agent. Some subset of the inferred relations occur in each of the test sequences, so we measure the alignment between
the inferred relations and those in the test sequence. We expect that the most overlap will come from sequences that match the activity the signature was trained on.

<table>
<thead>
<tr>
<th>Inferred Relations</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>((novel(agent1 agent2) s (goal(agent1) PursueGoal)))</td>
<td>18</td>
</tr>
<tr>
<td>(((goal(agent1) PursueGoal) c (distance(agent1 agent2) 1)))</td>
<td>18</td>
</tr>
<tr>
<td>(((goal(agent1) PursueGoal) c (arousal(agent1) up)))</td>
<td>18</td>
</tr>
<tr>
<td>(((goal(agent1) PursueGoal) c (distance(agent1 agent2) down)))</td>
<td>18</td>
</tr>
<tr>
<td>(((goal(agent1) PursueGoal) c (energy(agent1) stable)))</td>
<td>18</td>
</tr>
<tr>
<td>(((goal(agent1) PursueGoal) c (valence(agent1) stable)))</td>
<td>18</td>
</tr>
<tr>
<td>(((state(agent1) charge) c (arousal(agent1) up)))</td>
<td>17</td>
</tr>
<tr>
<td>(((state(agent1) charge) c (distance(agent1 agent2) down)))</td>
<td>17</td>
</tr>
<tr>
<td>(((state(agent1) charge) c (energy(agent1) stable)))</td>
<td>17</td>
</tr>
<tr>
<td>(((goal(agent1) PursueGoal) c (heading(agent2) up)))</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 5.8: The top 10 inferred relations and their weights in the signature for chase trained on qualitative sequences of Allen relations.

Table 5.9 shows the results on the wW dataset and Table 5.10 contains the results on the wW2d dataset. The cells in each table contain the average amount of overlap between the most frequent relations in the signature and the actual hidden relations that occur in each episode from the test set. On average, 90% of the inferred relations from the jump on signature correspond to hidden relations in unseen jump on episodes. This means that, in expectation, if the agent were to correctly classify a jump on episode, then 90% of its inferred relations would be present in the episode.

What if the agent classifies an episode incorrectly? How will this affect the accuracy of inferred relations? Tables 5.9 and 5.10 shows the accuracy of inferred relations for all pairs of activities. Along the diagonal are cases where the classification of the activity is accurate, off-diagonal cases are incorrectly classified episodes. For example, if the agent classifies a push as an approach then only 51% of the inferred hidden relations will actually occur in the episode. (The fact that there is any overlap at all is due to the overlap between the activities: in both cases the agent approaches the box.)

This experiment confirms that if the agent can correctly classify the activity of
Table 5.9: A matrix showing the percent overlap between the α most frequent hidden relations in the signature and the hidden relations that exist in the test set, but are not observable in the ww dataset.

Table 5.10: A matrix showing the percent overlap between the α most frequent hidden relations in the signature and the hidden relations that exist in the test set, but are not observable for the $ww2d$ dataset.

5.6 Wrapping Up

In this chapter we focused on two datasets generated from virtual worlds. We showed that the CAVE algorithm can learn to classify and recognize activities with high accuracy in both of these domains. The question remains though if this is due to the representations and algorithms or because of the way that we encoded the sensors in the virtual worlds. In the next chapter, we explore this question
more thoroughly, and argue that the performance is due to the representations and algorithms and *not* specific to these virtual worlds.
CHAPTER 6

APPLICATIONS TO DATA MINING

The previous chapter demonstrates that the qualitative sequences and signature learning methods perform well at a variety of tasks, such as classification, inference, and recognition. In this chapter we extend the experiments to determine how well the sequences and signatures perform on other datasets. In all of the previous chapters, the data captured activities that software agents could perform in simulation. In this chapter we turn our attention to datasets generated from different processes. Furthermore, in the descriptions of the representations and algorithms there were unanswered questions. For instance, which of the two methods we use to convert real-valued time series into symbolic time series contributes more to the overall performance of the system. We address this question as well as others in this chapter.

6.1 Datasets

In addition to the Wubble World datasets, all experiments are carried out on five other times series datasets. We introduce the other datasets in order to show that the methods outlined in previous chapters will generalize and the results we showed in the previous chapter is not an artifact of the way we encoded the simulations. Some of the datasets are unique to this dissertation, e.g. the handwriting datasets, and the other are representative of real-world datasets. Other datasets were included that had similar properties to our simulation data. First they had to be multivariate, since our representations and learning algorithms rely on multivariate time series. Second, each dataset should capture some “activity,” for example in the handwriting data an activity occurs when the subject writes down a specific letter. An episode corresponds to a specific example of the letter written by a single person. The final
The property that we looked for is that there is difference between episodes of the same activity, i.e. every character written by a person is not exactly the same. Each of the datasets outlined here have all of these properties.

6.1.1 Handwriting

We created this dataset by collecting writing samples from three different subjects. Each subject, identified as \(HW_1 \), \(HW_2 \), and \(HW_3 \), contributed at least twenty examples of each character in the alphabet. The data was collected from a Wacom Intuos3 pen tablet with custom software that sampled the coordinate information of the stylus at regular intervals. Position information cannot be recorded while the pen is not in contact with the table, but we can record that the pen was picked up and where it was placed down next. Stroke information is important during the conversion from real-valued time series into our symbolic SDL language. The stroke provides markers so that the first difference is calculated correctly on the dataset. Table 6.1 contains the average number of examples and other specifics about the dataset for each subject\(^1\).

The training data for each subject is treated individually and we train signatures for each character, for each subject. This way the system learns to classify and recognize a specific subject’s writing style.

\(^1\)For \(HW_3 \), we were unable to recorded one example of the character 'p' as the result of user error during data gathering.

<table>
<thead>
<tr>
<th></th>
<th>(HW_1)</th>
<th>(HW_2)</th>
<th>(HW_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>21.00</td>
<td>23.00</td>
<td>21.96</td>
</tr>
<tr>
<td>Time</td>
<td>69.61</td>
<td>124.58</td>
<td>66.59</td>
</tr>
<tr>
<td>Fluents</td>
<td>33.02</td>
<td>38.04</td>
<td>32.52</td>
</tr>
<tr>
<td>Allen</td>
<td>304.76</td>
<td>389.23</td>
<td>310.35</td>
</tr>
<tr>
<td>CBA</td>
<td>930.03</td>
<td>954.30</td>
<td>931.09</td>
</tr>
</tbody>
</table>

Table 6.1: Average values for the episodes in the *handwriting* datasets.
Table 6.2: Average values for the episodes in the \textit{ecg} dataset.

<table>
<thead>
<tr>
<th></th>
<th>Num Examples</th>
<th>Time</th>
<th>Num Fluents</th>
<th>Allen</th>
<th>CBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{abnormal}</td>
<td>67</td>
<td>74.78</td>
<td>54.34</td>
<td>866.99</td>
<td>3,199.52</td>
</tr>
<tr>
<td>\textit{normal}</td>
<td>133</td>
<td>87.95</td>
<td>62.95</td>
<td>917.53</td>
<td>3,361.83</td>
</tr>
</tbody>
</table>

Table 6.3: Average values for the episodes in the \textit{wafer} dataset.

<table>
<thead>
<tr>
<th></th>
<th>Num Examples</th>
<th>Time</th>
<th>Num Fluents</th>
<th>Allen</th>
<th>CBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{abnormal}</td>
<td>127</td>
<td>137.99</td>
<td>66.57</td>
<td>965.45</td>
<td>3,736.33</td>
</tr>
<tr>
<td>\textit{normal}</td>
<td>1067</td>
<td>129.89</td>
<td>60.30</td>
<td>817.71</td>
<td>2,754.36</td>
</tr>
</tbody>
</table>

6.1.2 ECG

The electrocardiogram (\textit{ecg}) dataset contains measurements of cardiac electrical activity as recorded from two electrodes at standardized locations on the body during a single heartbeat, called lead0 and lead1 (Olszewski, 2001). The dataset was analyzed by a domain expert and a label of normal or abnormal was assigned to an episode in the dataset. Abnormal heartbeats are representative of a cardiac pathology known as supraventricular premature beat. Full details on how the dataset was gathered can be found in (Olszewski, 2001). Table 6.2 contains the averages for each label.

6.1.3 Wafer

The wafer (\textit{wafer}) dataset is a collection of time series datasets containing measurements from vacuum-chamber sensors during the etching process applied to a silicon wafer during the manufacture of semiconductor microelectronics (Olszewski, 2001). Like the \textit{ecg} dataset, each sample was analyzed by a domain expert and given a label of normal or abnormal. The average values for different features of the dataset are shown in Table 6.3. There are many more \textit{normal} episodes than there are \textit{abnormal} episodes in this dataset, but we shall see that it does not impact performance.

6.1.4 Japanese Vowel

This dataset was generated from nine male speakers uttering two Japanese vowels /ae/ successively (Kudo et al., 1999). The time-series are variable length ranging
Japanese Vowel

Num. Examples	71.11
Time	15.56
Fluents	137.39
Allen	8,123.85
CBA	295,862.28

Table 6.4: Average values for the episodes in the Japanese vowel dataset.

from 7-29 time steps and each point is a vector of 12 real-valued coefficients. There are 640 episodes in total across the nine speakers. Table 6.4 contains the average values for the episodes within this dataset. The episodes do not last very long, on average only 15.56 time steps, yet they generate sequences of Allen relations that are very long, on average containing over 8000 tuples. This is the most dense dataset that we have.

6.1.5 Sign Language

The final dataset consists of samples of Australian Sign Language (Auslan) signs (Kadous, 2002). There are 27 examples of each of 95 Auslan signs captured from a native signer using high-quality position trackers and instrumented gloves.

All samples were generated by a single signer and were collected over a period of nine weeks. A total of 2565 signs were collected with an average length of approximately 57 frames. The magnetic position trackers recorded the \((x, y, z)\) location of the hand relative to a point slightly below the chin, as well as the roll, pitch and yaw of the hand. The gloves recorded the bend position of each of the fingers. Each time series consists of 22 variables, eleven for each hand. The statistics for the episodes in this dataset can be seen in Table 6.5.

We were unable to build CAVE signatures from Allen sequences for each of the classes in this dataset, nor perform classification with a \(k\)-NN classifier, because we encountered memory limitations of the computers we were using to perform the experiments. We have several ideas for how to overcome these limitations and they are discussed in more detail in Chapter 7. Since we were unable to complete testing
Table 6.5: Average values for the episodes in the *Auslan* dataset.

<table>
<thead>
<tr>
<th></th>
<th>Auslan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num. Classes</td>
<td>95.</td>
</tr>
<tr>
<td>Num. Examples</td>
<td>27.00</td>
</tr>
<tr>
<td>Time</td>
<td>47.29</td>
</tr>
<tr>
<td>Fluents</td>
<td>257.43</td>
</tr>
<tr>
<td>Allen</td>
<td>24,594.60</td>
</tr>
<tr>
<td>CBA</td>
<td>1,013,926.47</td>
</tr>
</tbody>
</table>

on this dataset, it is often left out of our analysis.

6.2 Classification

In this section we examine the performance of the representations and algorithms on classification tasks. Experiments are performed on the two classifiers described in Chapter 5, namely a *k*-NN classifier and a CAVE classifier. We split the classifiers into separate sections because additional experiments are performed depending on the classifier.

6.2.1 *k*-NN Classifier

We begin by establishing a baseline for each of our datasets. We perform the same classification task, described in the previous chapter, on each dataset. The results for a 10-fold cross validation are shown for 10-NN in Table 6.6. In general, classification accuracy is above 75%, and for the Wubble World, handwriting, and wafer datasets we are performing well above 90% classification accuracy. The *k*-NN classifier performs the worst on the *vowel* dataset which may be attributed to the density of the data.

Based on the results in the Table 6.6, it does not appear to matter which representation we construct a sequence from. For a given dataset, 10-NN performs with roughly the same accuracy. This is confirmed with a two-way factorial analysis of variance with repeated measures (Table 6.7). We chose to use a repeated measures design since each dataset was evaluated via a K-folds cross-validation (Cohen,
starts & ends & both & Allen & CBA \\
\hline
& M & SD & M & SD & M & SD & M & SD \\
ww & 97.62 & 3.11 & 96.90 & 4.72 & 98.12 & 4.05 & 97.03 & 5.10 \\
ww24 & 98.33 & 3.51 & 96.67 & 4.30 & 99.17 & 2.64 & 99.17 & 2.64 \\
HW1 & 98.27 & 1.42 & 97.63 & 1.76 & 98.53 & 1.21 & 97.88 & 1.91 & 96.99 & 2.12 \\
HW2 & 98.85 & 1.38 & 97.88 & 1.32 & 98.65 & 1.33 & 98.21 & 1.47 & 95.83 & 1.29 \\
HW3 & 96.67 & 2.80 & 96.92 & 2.15 & 96.79 & 1.71 & 94.61 & 2.38 & 92.23 & 2.62 \\
Auslan & 84.07 & 1.76 & 83.28 & 2.23 & 84.88 & 2.22 & 84.88 & 2.22 & 84.88 & 2.22 \\
ecg & 82.65 & 7.75 & 81.07 & 9.38 & 81.07 & 8.89 & 83.65 & 8.46 & 83.12 & 7.60 \\
waffer & 97.15 & 2.03 & 96.99 & 1.54 & 97.40 & 1.88 & 97.74 & 1.27 & 97.57 & 0.84 \\
vowel & 71.91 & 3.89 & 72.97 & 5.14 & 76.72 & 3.83 & 76.07 & 5.96 \\
\hline

Table 6.6: Percent correct with a 10-NN classifier from a 10-fold cross validation classification task.

\begin{tabular}{|l|c|c|c|c|}
\hline
Source & df & F & p value \\
\hline
Dataset & 7 & 98.4444 & < 0.0001 \\
Representation & 3 & 0.1964 & 0.8989 \\
Dataset \times Representation & 21 & 0.3954 & 0.9967 \\
\hline
\end{tabular}

Table 6.7: A two-way analysis of variance for dataset by representation shows one main effect and no significant interaction effect.

The next thing to do is to place the results within some context. Table 6.8 contains the best published performance for datasets not constructed for this dissertation. The k-NN classifier is outperformed in the Auslan and vowel datasets, but performs as well or better on the ecg and waffer datasets.

\begin{tabular}{|l|c|c|}
\hline
Dataset & Performance & Citation \\
\hline
Auslan & 97.90% & Kadous and Sammut (2005) \\
vowel & 96.50% & Rodriguez et al. (2005) \\
ecg & 70.97% & Weng and Shen (2008) \\
waffer & 98.64% & Weng and Shen (2008) \\
\hline
\end{tabular}

Table 6.8: Best classification accuracy for several of our datasets.

In the previous chapter, we were able to show that classification on the Wubble World datasets was not a challenging problem since we could shuffle the order of the sequences and still perform quite well on the classification task. In Figure 6.1, we

\footnote{Auslan was not part of the analysis, nor was the CBA sequence representation.}
Figure 6.1: Classification accuracy across activity by each representation after shuffling the sequences before training and testing.

see the classification accuracy of our k-NN classifier on each dataset after shuffling the sequences prior to training and testing. For each dataset, the k-NN classifier is still able to classify with high accuracy when it is trained on sequences of the Allen relations. This is probably because Allen relations preserve order information, so even after shuffling we can only match Allen relations if two propositions occurred in the correct order in the same relationship. The k-NN classifier consistently performed very poorly on the handwriting data. This is expected since it contains the fewest variables (x and y) and each variable is guaranteed to occur in every episode regardless of the character being written.

Ablation Study

In Chapter 3, we presented two methods for converting real-time time series into symbolic time series. It was left as an open question which one of the two methods contributes more to the classification accuracy. In this experiment we compare the performance of our k-NN classifier in three different treatment conditions. The first treatment is when the classifier is trained on episodes containing only SAX variables. In the second treatment, the classifier is trained on episodes containing only SDL variables. The final treatment condition and results are shown in Table 6.6. The table contains the classification accuracy when both SAX and SDL variables are
present during training and testing. This type of experiment is sometimes called an \textit{ablation} experiment since we remove a component of the representation in order to evaluate its role (Cohen, 1995).

The results after removing all SDL propositions are shown in Table 6.9, and the results of removing the SAX variables are shown in Table 6.10. For the most part, SAX appears to be contributing more to our classification accuracy than the variables produced from the SDL conversion. Visually this can be confirmed by Figure 6.2. The bar plots correspond to the difference in performance between the \(k\)-NN classifier trained on sequences with both sets of variables and the performance of the \(k\)-NN classifier with the SAX (or SDL) variables. Lower bars are better since they represent a smaller difference in scores. The blue bars (corresponding to SAX variables) are much smaller than the red bars for the handwriting datasets and slightly smaller for the \textit{vowel} datasets. This trend is reversed for the \textit{ecg} dataset and SDL has a smaller difference. In the \textit{wafer} dataset both seem to contribute equally.

<table>
<thead>
<tr>
<th></th>
<th>\textit{starts} M</th>
<th>\textit{SD}</th>
<th>\textit{ends} M</th>
<th>\textit{SD}</th>
<th>\textit{both} M</th>
<th>\textit{SD}</th>
<th>Allen M</th>
<th>\textit{SD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{HW} (_1)</td>
<td>98.08</td>
<td>2.87</td>
<td>97.37</td>
<td>2.10</td>
<td>97.88</td>
<td>2.79</td>
<td>96.09</td>
<td>3.36</td>
</tr>
<tr>
<td>\textit{HW} (_2)</td>
<td>96.28</td>
<td>2.88</td>
<td>97.37</td>
<td>2.71</td>
<td>97.18</td>
<td>2.79</td>
<td>94.10</td>
<td>3.66</td>
</tr>
<tr>
<td>\textit{HW} (_3)</td>
<td>96.47</td>
<td>2.48</td>
<td>96.02</td>
<td>2.00</td>
<td>96.60</td>
<td>2.58</td>
<td>93.52</td>
<td>2.16</td>
</tr>
<tr>
<td>\textit{ecg}</td>
<td>73.91</td>
<td>9.85</td>
<td>75.51</td>
<td>7.76</td>
<td>73.43</td>
<td>7.06</td>
<td>70.06</td>
<td>10.86</td>
</tr>
<tr>
<td>\textit{wafer}</td>
<td>95.73</td>
<td>1.01</td>
<td>95.73</td>
<td>1.01</td>
<td>95.73</td>
<td>1.01</td>
<td>96.81</td>
<td>1.25</td>
</tr>
<tr>
<td>\textit{vowel}</td>
<td>62.85</td>
<td>6.90</td>
<td>65.44</td>
<td>6.35</td>
<td>63.48</td>
<td>5.62</td>
<td>64.39</td>
<td>5.19</td>
</tr>
</tbody>
</table>

Table 6.9: Classification results for the \(k\)-NN classifier when only the variables generated by the SAX process are available (SDL variables ablated).

We confirmed that SDL and SAX are significantly different with a three-way analysis of variance with repeated measures. The classification accuracy was the dependent variable and the factors were: the representation, the dataset, and the conversion method (SAX, SDL, or SAX+SDL). We found two main effects of conversion method and the dataset and a significant interaction effect between conversion method and activity (Table 6.11). Figure 6.2 captures this. SAX performs significantly better than SDL on the \textit{handwriting} and \textit{vowel} datasets, but significantly worse on the \textit{ecg} datasets, hence the significant interaction effect. Using both SAX
Figure 6.2: The difference in performance by representation and activity for the
\(k \)-NN classifier trained with episodes containing both SAX and SDL variables con-
tested with the performance for the \(k \)-NN classifier trained with episodes containing
only SAX (or SDL) variables.

and SDL seems like the preferred way to go since that conversion method signifi-
cantly outperforms either method individually.

Table 6.10: Classification results for the \(k \)-NN classifier when only the variables
generated by the SDL process are available (SAX variables ablated).

<table>
<thead>
<tr>
<th></th>
<th>starts</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M)</td>
<td>(SD)</td>
<td>(M)</td>
<td>(SD)</td>
<td>(M)</td>
<td>(SD)</td>
</tr>
<tr>
<td>(HW_1)</td>
<td>69.42</td>
<td>4.75</td>
<td>71.35</td>
<td>6.44</td>
<td>70.32</td>
<td>4.17</td>
</tr>
<tr>
<td>(HW_2)</td>
<td>74.68</td>
<td>3.20</td>
<td>72.44</td>
<td>6.13</td>
<td>76.35</td>
<td>4.35</td>
</tr>
<tr>
<td>(HW_3)</td>
<td>65.39</td>
<td>6.37</td>
<td>65.72</td>
<td>4.70</td>
<td>66.23</td>
<td>5.86</td>
</tr>
<tr>
<td>(ecg)</td>
<td>80.04</td>
<td>1.11</td>
<td>79.69</td>
<td>9.47</td>
<td>79.67</td>
<td>7.45</td>
</tr>
<tr>
<td>(wafer)</td>
<td>95.90</td>
<td>1.69</td>
<td>95.23</td>
<td>1.25</td>
<td>96.40</td>
<td>1.68</td>
</tr>
<tr>
<td>(vowel)</td>
<td>56.23</td>
<td>4.27</td>
<td>54.15</td>
<td>6.85</td>
<td>56.05</td>
<td>6.18</td>
</tr>
</tbody>
</table>

6.2.2 CAVE

In this section we explore different facets of the CAVE algorithms. First we look at
CAVE performance on the classification task across multiple datasets, the results of
which are shown in Table 6.12. In all of the datasets we held the exclusion percentage
at 50% to establish a baseline. Recall that the exclusion percentage determines the
minimum weight values for tuples in the signature for inclusion. Effectively, the
exclusion percentage ignores low weight tuples without pruning them. The best
classification accuracy across all of the datasets comes from the CAVE classifier
trained on sequences of Allen relations. This is confirmed with a post-hoc analysis
on a two-way analysis of variance with repeated measures, the results of which are shown in Table 6.13.

Table 6.12: The classification results for the CAVE classifier on six different representations. Results are reported from a 10-fold cross validation classification task.

In general, the performance of the CAVE algorithm when trained on sequences of Allen relations is worse than k-NN on the classification task. We will comment more thoroughly on this in Section 6.3.

Table 6.13: A two-way analysis of variance for dataset by representation shows two main effects and a significant interaction effect.
Sensitivity

In this section we present two sensitivity analyses of the CAVE classifier. In the first, we explore how classification accuracy changes as we modify the exclusion percentage. We select seven values of the exclusion percentage and run the same cross-validation task as before. Figure 6.3 contains the results of this experiment, and demonstrates that it is not possible to select a single exclusion percentage that will be optimal for all datasets and all representations. Selecting 50% to be the exclusion percentage seems to be a consistent choice based on classification accuracy across all activities for the Allen relations, which is confirmed by the analysis done earlier in Table 6.13.

The second sensitivity analysis explores the relationship between the pruning parameter and the time it takes to train a signature versus the performance of the signature. In Chapter 4 we outlined a method to prune the signature during learning in order to reduce the number of low frequency tuples in the signature. Pruning works as follows: after updating the signature t times, all of the relations in the signature with weights less than or equal to n are removed. In our experiment, we set $t = 10$ and $n = 3$, meaning that the signature is pruned of all relations occurring less than 4 times after a total of 10 training episodes. The signature is again pruned after 20 training episodes, and so forth.

There are two conditions in this test. In the first condition, pruning is turned
off and the signature grows as large as necessary. In the second condition the signature is pruned during training. In both conditions, we measured the time it takes to train a signature as well as the classification performance after training. The results are shown in Table 6.14. Pruning saves a significant amount of time during training without affecting performance.

<table>
<thead>
<tr>
<th></th>
<th>ww</th>
<th>HW₁</th>
<th>HW₂</th>
<th>HW₃</th>
<th>ecg</th>
<th>wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Pruning</td>
<td>19750.88</td>
<td>91.44</td>
<td>124.47</td>
<td>104.23</td>
<td>12262.75</td>
<td>486858.05</td>
</tr>
<tr>
<td>Pruning</td>
<td>8372.72</td>
<td>56.37</td>
<td>68.55</td>
<td>59.86</td>
<td>2288.15</td>
<td>28334.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ww</th>
<th>HW₁</th>
<th>HW₂</th>
<th>HW₃</th>
<th>ecg</th>
<th>wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Pruning</td>
<td>94.44</td>
<td>95.90</td>
<td>92.63</td>
<td>89.47</td>
<td>62.00</td>
<td>91.11</td>
</tr>
<tr>
<td>Pruning</td>
<td>94.65</td>
<td>94.29</td>
<td>91.09</td>
<td>89.34</td>
<td>61.92</td>
<td>89.43</td>
</tr>
</tbody>
</table>

Table 6.14: The top part of the table contains the average number of milliseconds required to train a signature from sequences of Allen relations. The bottom part contains the performance of the trained signatures in the two conditions.

6.3 Wrapping Up

There were a lot of results presented in this chapter so a recap is necessary. First we found that both methods of classification perform well on our datasets and real-world datasets generated by other authors. This result was tarnished slightly because we found that classification on these datasets was not as difficult a task as first envisioned. The classification accuracy of the k-NN classifier is independent of the representation, therefore we can minimize the time spent in the k-NN classifier by training it on event sequences rather than training it on relational sequences. This is a surprising result considering that we found that Allen relations perform significantly better than other relations for training signatures. In general, the k-NN classifier outperforms the CAVE classifier on the datasets presented in this dissertation. If we were only interested in classification, then k-NN would be the obvious choice since it performs better, but signatures do more than just classification, such
as inferring the hidden state and online recognition of activities. We answered the question of which method for converting from real-valued time series into symbolic time series is better for our applications, and it turns out that although SAX performs better than SDL on more datasets, the one clear choice is to use both. Lastly, the performance of the CAVE classifier is unaffected by pruning during training and the amount of time spent training can be significantly reduced.
CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The previous chapters describe novel representations and learning algorithms for recognizing the activities that agents participate in and observe taking place. A trained signature is able to identify when an activity occurs and can highlight what parts of the corresponding time series are important observable or not. We also found that signatures could be applied to more varied datasets that do not necessarily include activities in which agents participate.

This work makes several contributions. Among them is a new sequence based representation of multivariate time series. By transforming the time series into sequences, we benefit from previous research with applications in everything from biological sciences to natural language processing. We introduced two classes of sequences, one based on events such as a propositional variable becoming true or false and the other is based on the relationships between fluents.

Our work introduces a new aggregate structure called a signature that is useful in a variety of tasks. Signatures are trained on qualitative sequences and capture frequently occurring symbols in the sequence. When the sequences are constructed from events, then the symbols are simply names of propositions, but when the sequences are relational, then the symbol contains an Allen relation between two fluents or a CBA between multiple fluents. The feature of signatures we explore most in this dissertation is how it can be used as a classifier. We presented evidence that the CAVE classifier, which is constructed from the signatures representing different activities, performs very well at classification tasks, even in the absence of some propositions. Furthermore, signatures provide a mechanism for inferring relations and propositions that are only observable in certain occasions, for example, we cannot access the internal state of another agent while watching them perform an activity. Lastly, the signatures provide guidance on how to relax over-specified finite
state machines so that they can generalize to episodes not yet seen. Stored with each signature is the original training episodes, and after pruning the signature, we retain a subset of the original fluents for each episode, those that occur with the most frequency. From the remaining fluents we construct a FSM that recognizes episodes not yet seen.

7.1 Future Work

This dissertation presents important strides towards machine understanding of activities in simulated environments. Furthermore, it posits a mechanism that would allows an agent to reason about the intentions of other agents by using the premise that the other agents would behave as it does. However, there is still much work that needs to be done.

Currently we learn signatures of an activity in which all of the propositions are grounded to a specific entity in the simulation. For example, every episode presented as an example of the activity jump over contained the wubble interacting with the exact same box in the simulation. So, the proposition $\text{Above}(\text{wubble}, \text{box0})$ corresponds to precisely one box and currently, we would need to learn a different jump over signature for each box. Arguably one of the most important areas for future work is to develop signatures constructed from predicates instead of propositions. This would be a huge benefit because it would allow us to learn a single signature for the activity jump over and it would allow us to learn a different concept as well. We could also learn about the set of objects that the agent can jump over.

Another issue is that signatures are an atomic unit. There does not exist a way to describe an activity as a combination of multiple activities. For example, consider the approach activity that caused most of our trouble in Chapter 5. Each ww activity contained approach as a component to the activity and therefore each episode could be classified or recognized as approach. An extension to this work is to determine how signatures can be composed with other signatures in order to construct more complex signatures, thus providing support for hierarchical activities.
In Chapter 6 we investigated the performance of methods for converting real-valued time series into symbolic time series. We wanted to determine which allowed us to perform better at classification tasks. We found that the inclusion of both conversion methods resulted in the highest classification accuracy and that sometimes one contributed more than the other. In some of the datasets SAX performed better than SDL, and in others SDL performed better than SAX. The next step is to determine what features of a dataset predict which of these representations will work best. Additionally, these features may also help us predict performance as well. Regardless, these two conversion methods are certainly not the only possibilities. We mentioned that our time series do not conform to the assumptions of SAX, yet we still perform well at classification tasks, so we need to evaluate other methods, like Kohonen maps (Kohonen, 1995), and see if we can improve performance. Firoiu and Cohen (1999) provide an additional method to “smooth” time series by fitting lines piecewise to the time series. Further ablation experiments will determine the affect on performance due to different conversion methods.

One of the most critical parts of the representations and algorithms is sequence alignment. In this dissertation, we chose the brute force Needleman-Wunsch sequence alignment algorithm which stores a $O(nm)$ table where m and n are the lengths of the sequences (Needleman and Wunsch, 1970). One quick and necessary enhancement is to develop the system around Hirschberg’s algorithm which can find the optimal alignment in linear space (Hirschberg, 1975). More closely working with computational biologists and researchers who regularly employ sequence algorithms will help make the system overcome limitations on sequence length found in this dissertation.

The algorithms presented that relax specialized FSMs in order to accept more varied episodes can be improved. In general, finding a FSM with some small set of states that agrees with all of the training data is a hard problem, known to be NP-complete (Gold, 1978). So it remains to be seen how well we can do with the generalized FSMs. In addition, we have not explored how to learn the FSM transition probabilities in order to predict which states will come next. Transition
probabilities also provide a mechanism to estimate the probability of observing the activity given the current state. Another area to be explored within the recognition and our FSM representation is whether they can be used as part of the process that infers the internal state of other agents. The benefit of moving the inference process to the FSMs is that we can predict the current internal state of other agents as well as future states. Right now, we can just retroactively look at an activity that occurs and select a set of states that should have been true during the activity.

It has been observed that infants 14-15 months of age are more likely to imitate intentional behaviors, and in some cases, having observed a failed action, the infants will re-enact the successful version of the action if they have discerned the original intent. It is unclear how our signatures/recognizers handle this type of scenario. In terms of our FSM recognizers, we will develop a way to trigger when a recognizer has almost completed and flag the time series as a failed attempt at the activity the FSM is trained to recognize.

All of the training episodes for an activity contained just the activity and it always executed to completion. How does the system behave when these assumptions are broken? For example, dogs often chase each other through the house, and occasionally they stop mid chase by the water bowl in order to “refuel” before continuing the chase. In this episode, two separate activities occur and one interrupts the other. None of our datasets contained this type of episodic structure, so first we need to gather a dataset that does. Next we will train up signatures and see if classification performance is affected, and examine how the sequence alignment algorithm handles the interrupted activities.

7.2 Final Remarks

This dissertation represents an attempt to accomplish something that young children do with relative ease, recognize what they are doing and what those around them are doing. It is part of a shift in Artificial Intelligence, from highly trained sophisticated systems that perform at levels equivalent to human experts on a sin-
gle task, but can do little else, to unsophisticated systems that do lots of different things well, but is not an expert at any one task. This is one reason why we are not concerned that the representation and algorithms presented in this dissertation do not exceed the classification accuracy of every other algorithm in the field. These representations and algorithms afford so much more than classification and that makes them desirable.
REFERENCES

of the ICML/UAICOLT 2008 Workshop on Machine Learning for Health-Care Applications.

