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ABSTRACT 

A numerical scheme has been developed to solve the quasilinear 

form of the transonic stream function equation. The method is applied 

to compute steady two-dimensional axisymmetric solar wind-type 

problems. A single, perfect, non-dissipative, homentropic and 

polytropic gas-dynamics is assumed. The four equations governing mass 

and momentum conservation are reduced to a single nonlinear second 

order partial differential equation for the stream function. 

Bernoulli's equation is used to obtain a nonlinear algebraic relation 

for the density in terms of stream function derivatives. The 

vorticity includes the effects of azimuthal rotation and Bernoulli's 

function and is determined from quantities specified on boundaries. 

The approach is efficient. The number of equations and 

independent variables has been reduced and a rapid relaxation 

technique developed for the transonic full potential equation is used. 

Second order accurate central differences are used in elliptic 

regions. In hyperbolic regions a dissipation term motivated by the 

rotated differencing scheme of Jameson is added for stability. A 

successive-line-overrelaxation technique also introduced by Jameson is 

used to solve the equations. 

The nonlinear equation for the density is a double valued 

function of the stream function derivatives. The velocities are 

extrapolated from upwind points to determine the proper branch and 
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Newton's method is used to iteratively compute the density. This 

allows accurate solutions with few grid points. 

The applications first illustrate solutions to solar wind 

models. The equations predict that the effects of vorticity must be 

confined near the surface and far away the streamlines must resemble 

the spherically symmetric solution. Irrotational and rotational flows 

show this behavior. The streamlines bend toward the rotation axis for 

rapidly rotating models because the coriolis force is much larger than 

the centrifugal force. 

Models of galactic winds are computed by considering the flow 

exterior to a surface which surrounds a uniform density oblate 

spheroid. Irrotational results with uniform outward mass flux show 

streamlines bent toward the equator and nearly spherical sonic 

surtaces. Rotating models for which Bernoulli's function is not 

constant show the sonic surface is deformed consist ant with the 

one-dimensional theory. 



CHAPTER 1 

INTRODU CT ION 

We have developed a numerical scheme to solve the quasilinear 

form of the transonic stream function equation and apply the method to 

rapidly compute steady two-dimensional solar wind-type problems. In 

flows with spherical symmetry, the theory of the solar wind describes 

the expansion against the pull of gravity of an essentially static 

atmosphere to supersonic speeds. We show the more general two

dimensional axisymmetric problem can be characterized by a vorticity 

introduced by rotation and variations of Bernoulli's function and 

entropy. The stream function approach to these problems is a new and 

general way to extend the quasi one-dimensional theory developed by 

Parker(l9 58, 196 3). In recent years there has been interest in 

computing wind type flows from galaxies which are two-dimensional in 

nature (Bregman, 1978; Habe and Ikeuchi, 1980; Bardeen and Berger, 

1978) and we apply the method to these types of problems too. 

Because the use of the stream function reduces the four 

equations of mass and momentum conservation to a single second order 

partial differential equation, there is also a computational incentive 

to develop stream function algorithms. At the time we began, however, 

no technique was available to solve the transonic stream function 

equation. The availability of such a technique is important for it 

would enable the rapid and direct solution of rotational steady 

1 
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transonic flows. Therefore we present a method for solving the stream 

function equation in quasilinear form. Because this has not been done 

in detail in the past, our discussion will be not be limited 

specifically to the application of the wind problem. 

The stream function formulation and its numerical solution 

will be discussed in the first part of this work. After the technique 

described here was developed, Hafez and Lovell(1981) presented a 

successful stream function technique for solving external flows over 

bodies. Our approach differs from theirs. They solved their problem 

in a form 1I1hich explicitly conserved vorticity while w"e solve the 

quasilinear form. Also, the method they developed for computing the 

density from the stream function cannot be used for internal flows or 

the wind-type applications. Our method is simple, reliable, and can 

be used for such problems. 

For the second part we will solve a stream function 

formulation of some "wind" mode!!.. Numerical solutions of rotational 

and irrotational solutions for both "stellar" and "galactic" models 

will be presented to show the utility of using the stream function 

approach for the theoretical study of such problems. 

The use of the stream function represents a middle ground 

between two commonly used methods for solving steady transonic flows. 

First, time marching techniques for the Euler equations or Reynolds

averaged Navier-Stokes equations have been used effectively to solve a 

wide variety of transonic flows for many years. But time marching 

techniques are currently inefficient for computing steady flows 

(Lomax,1981). For many flows of interest, however, the potential 
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approximation is accurate and efficient relaxation techniques for 

solving the transonic potential equation have been developed in the 

past ten years. (See, for example, Ballhaus, Jameson and Albert, 1978; 

Schmilovich and Caughey, 1981.) Nevertheles s, the presence of 

vorticity produced by shocks or introduced by "swirling" (Batchelor, 

1967) motions in axisymmetric flows invalidates the potential 

approximation. The attraction of the stream function approach is that 

the rapid relaxation techniques developed for the transonic potential 

equation could be used without the restrictive assumption of 

irrotationality. 

The stream function has not been used for transonic 

computations, however, for two reasons. First, the stream function 

equation is of mixed type. That is, it is elliptic in subsonic flows, 

hyperbolic in supersonic flows, and parabolic at the sonic line. 

Systematic: iterative methods to .solve mixed-type equation·s were not 

fully developed until the early 1970' s. Second, and in recent years 

most important, systematic methods for computing the density from the 

stream function derivatives were not recognized. 

Through work on the potential equation, the solution of mixed 

type equations is now routine. The breakthrough for solving such 

equations came from Murman and Cole(l971) who introduced type

dependent differencing schemes for the solution of the transonic small 

disturbance potential equation. In subsonic flows, standard central 

differences were used. In supersonic regions, however, the streamwise 

derivatives were upstream differenced. The shifting of derivatives 



4 

effectively added a dissipative term which stabilized the scheme. 

Jameson(1974) developed a method based on this idea that could be used 

for the full potential equation. He also analysed relaxation methods 

that could be used to solve the difference equations. 

applied these ideas to solve the stream function equation. 

We have 

The reason why the velocity potential and not the stream 

function has been used in the past 1.S because of the density problem. 

In the potential formulation, the density is defined uniquely by the 

gradient of the potential. The gradient of the stream function, 

however,. represents the mass flux and not the velocity. As a 

function of the mass flux the density is double valued. One value 

corresponds to supersonic flow, the other to subsonic. It is only 

now through this work and that of Hafez and Lovel1(981) that 

systematic methods for computing the density have been recognized. 

So it is not surprising that there have been few attempts to 

solve the transonic stream function equation. In three papers, 

Emmons(1944,1946,1948) did solve flows in ducts and over airfoils with 

a relaxation technique based on the recent work of Southwell(l940). 

Emmons' hand relaxation approach allowed him to circumvent the two 

major obstacles described above. But twenty years later, Allen and 

Sadler tried to develop a computer code based on Emmons' method and the 

supercritical flow results were unsatisfactory (Hall, 1981). 

A small disturbance stream function method for subcritical and 

supercritica1 flows over airfoils was published by Chin and 

Rizzetta(1979). The equation was formulated so that there was no 

ambiguity in the type of the equation and the density problem was 
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circumvented. The type dependent differencing scheme of Murman and 

Cole(1971) was used. Still, a method for solving the stream function 

equation for arbitrary flows did not exist. 

Finally, Hafez and Lovell(1981) have presented a general 

technique for solving the vorticity equation form of the stream 

funct~on equation. They computed flows about a cylinder and a 10% 

parabolic arc airfoil. Their results finally show that the use of 

the stream function can be a viable .technique. 

The applications with which we demonstrate our scheme are 

quite different. They are characterized by the smooth acceleration 

of a uniformly subsonic flow to a uniformly supersonic one. Flows in 

two-dimensional nozzles or ducts with no back pressure are 

representative examples. One-dimensional models for the ablation of 

hydrogen pellets in plasmas show an acceleration from subsonic to 

supersonic flow due to a combination of geometric expansion and 

external heat addition(e.g. Parks and Turnbull, 1978). Similarly, in 

the solar wind, the effects of gravity and the geometrical expansion 

of the streamlines combine to create an effective nozzle through which 

the gas is accelerated to supersonic speeds. 

The mathematical theory of the spherically symmetric solar 

wind assuming a polytropic gas was developed by Parker(l958) well 

before satellite measurements confirmed its existence. Since then, 

the model has been refined with the addition of the effects of 

magnetic fields, viscosity, and heat conduction. Reviews of the 
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theory and observations are numerous so we only point out the books by 

Parker(1963) and Hundhausen(1972). 

In its simplest one-dimensional form, the solar wind theory 

reduces to an examination of Bernoulli's equation and the conservation 

of mass. This is a convenient form in which to examine the problem, 

for the value of Bernoulli's constant determines the existence and 

position of a sonic transition. As Parker(1963) has shown, the same 

ideas extend to more than one dimension. 

The problem with the quasi one-dimensional results of Parker 

comes from the fact that the streamlines are not in general known. 

Consequently, two or three-dimensional problems have been examined in 

a number of ways. Pneuman and Kopp(1971), for instance, assumed a 

magnetic field distribution and assumed the streamlines followed the 

field lines. The flow properties along each streamline were 

computed. From them, the current was found. Finally, Ampere's law 

derived a new field configuration. This procedure was iterated until 

the field no longer changed. Perturbation methods have also been 

used. Siscoe and Finley(1969), for instance, linearized the 

equations about the spherically symmetric solutions to obtain latitude 

variations of the solar wind. Finally, time dependent relaxation 

processes represent the most general approach. While most place 

their boundaries in the supersonic regions as Pizzo(1978,1980,198l) 

does, some, such as Endler(1971) have computed transonic flows. 

The same basic theory would apply to the expansion of gas from 

a galaxy. The major difference between galactic models and the 
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stellar ones is that for the former the sources of mass are 

distributed in volume. One dimensional models of "galactic winds" can 

be found in Burke(l968), Johnson and Axford(l971), Holzer and 

Axford(l970) and Ipavich(l975). Time dependent calculations have 

been made by Mathews and Baker(l971). 

The theory of two-dimensional axisymmetric flow from non-

spherical objects such as disks is not well developed. Bardeen and 

Berger(l978) assumed self-similarity and computed flows from disk 

galaxies. They placed an inflow boundary beyond the source region so 

the problem was much like a .solar wind flow. Admittedly, the self

similarity assumption was quite restrictive but they were able to find 

transonic solutions. Unlike the spherically symmetric flow, the 

transonic flow varied continuously with changes in the velocity with 

which the gas was em it ted. Unfortunately, solutions did not exist 

within a cone about the symmetry axis. 

Two studies which use time dependent methods have been 

published. The first was that of Bregman(1979) who used a '~luid in 

Cell" (FLIC) method developed by Black and Bodenheimer(l975) to solve 

the flow from a distributed gas source representing a galaxy. Models 

which had an inflow boundary beyond the source region were solved for 

galactic winds by Habe and Ikeuchi(l980) using a first order method 

called the "beam scheme" (Van Albada, Van Leer, and Roberts, 1981; 

Sanders and Prendegrast, 1974). 

By using the stream function formulation we take a new and 

different approach which is used for both the solar and galactic wind 

problems. It is important because it also allows for the extension of 
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the ideas of the one-dimensional theory to two dimensional 

axisymmetric flows. In particular, the one dimensional theory accounts 

only for variations in the magnitude of the total enthalpy. Through 

the stream function formulation, this and the effects of tr,-,o 

dimensional variations can be studied. The effects of rotation and 

vorticity also appear explicitly. We feel that this important 

information is missed in the earlier studies by using the primitive 

variables. 

Our stream function formulation also has the advantage of 

solving the steady problem directly. First, solutions can be found 

much more rapidly than with a time dependent approach. On a more 

fundamental level, the boundary conditions are more clear and are 

motivated by the theory of second order partial differential 

equations. For time dependent techniques, the proper specification of 

boundary conditions requires considerable care. (See, for instance, 

Oliger and Sunstrom, 1978.) For two-dimens ional flow s, three 

quantities are required to be specified at the inflow and none at the 

outflow for the "wind" problem. The results of Habe and 

Ikeuchi(980) are particularly suspect because, according to their 

paper, only the two conditions of temperature and density were 

specified along the inflow boundary. 

Finally, our approach to the applications will be exploratory 

in nature. We solve two-dimensional irrotational and rotational solar 

wind flows which both show the performance of the numerical technique 

and which present examples of the two-dimensional characteristics 
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which can be inferred from the stream function equation. For galactic 

models we present examples of flows from uniform density oblate 

spheroidal bodies. The parameters which are used are chosen for 

convenience and not for any particular physical reason. Consequently, 

no inferences will be made regarding observational implications. 

Outline 

The plan of this work is to present in Chapter 2 the basic 

gas-dynamics equations and from them derive the stream function 

equations for the steady transonic flow problems. Other aspects of 

the formulation such as the vorticity, the double valued density 

function, and the mathemati~al properties of the equations are also 

discussed in Chapter 2. In Chapter 3 the numerical technique used to 

solve the equations is developed. 

Up to this point the presentation is fairly general. The 

applications are then examined in Chapter 4. The fir-st section 

introduces the one-dimensional theory of wind-type problems. In the 

second, the solar wind problem is extended to two-dimensional 

axisymmetric flows. Solutions to such problems are shown in the third 

section. The final section covers briefly an extension to non-radial 

gravitatiollal forces and non-spherical sources - galactic wind models 

- for which no one-dimensional theory exists. 



CHAPTER 2 

THE STREAH FUNCTION FORNULATION 

In this chapter we formulate the steady rotational transonic 

flow problem in terms of a stream function. Because transonic 

computations with the stream function have not yet been discussed in 

detail, the approach will be fairly general. For the most part, the 

results will be independent of the specific applications to be 

considered in Chapter 4 or of computational considerations discussed 

in Chapter 3. The goal is to present a self-contained derivation and 

analysis of the gas-dynamics and stream function equations to form a 

basis for the numerical solution of particular flow proble~s. 

We begin in section 2.1 by presenting the gas physics and 

equations which will be assumed throughout this work. The discussion 

is limited to axisymmetric flows in section 2.2 where we define the 

stream funCtion and derive the equations it must satisfy. In section 

2.3 the vorticity is derived in a form consistent with the stream 

funct~on formulation. The difficulty with using the stream function, 

however, comes from the computation of the density. In section 2.4 

we discuss the nature of the density function computed in terms of the 

stream function. The mathematical properties of the stream function 

equations are discussed in section 2.5. Particular attention will be 

paid to those properties which will influence the development of 

10 
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numerical methods. Finally, in section 2.6 we discuss the boundary 

conditions to be used for the stream function. 

2.1 Gas Dynamics Equations 

The basic gas dynamics equations which will be used throughout 

the following chapters are collected here. For the stream function 

formulation is is most convenient to use concepts of vorticity and 

Bernoulli's eq'uation than to be limited to the conservation form of 

the Euler equations. The flows that we consider occur in an open 

region ~CR3 exterior to a closed surfaceS. Completely enclosed by 

Swill be a source of gas and gravity. (See figure 2.1.) All gas in 

~ will result from flow out of S which will be called the "base". 

We first make a number of commonly used simplifications to the 

gas physics. First, we assume a flow composed of a single, perfect, 

and non-dissipative gas. For the convenience of not having to specify 

an extra set of parameters for the entropy, the flow is assumed to be 

homentropic. The assumption that the gas is polytropic with index1 

will crudely take into account. effects of heating and thermal 

conduction. Self gravitation of the gas should be negligible and 

will be ignored. We do, however, allow for the sources and hence the 

gas, to rotate about some axis through S . 

Under the assumptions above, the steady gas flow in ~ is 

described by the Euler equations 
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Fig. 2.1 The basic flow geometry --- Gas flows out of the three 
dimensional surface S which completely surrounds a source of gas and 
gravity. 
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V·p~ = 0 (2.1) 

V·pM + "VP + p'ii'tIJ = 0 (2.2) 

(2.3) 

Where P is the densitY,Tis the velocity, P is the pressure and <I> 

is the gravitational potential. The overbar notation indicates a 

dimensional quantity. 

Before proceeding further, equations (2.1) - (2.3) will be 

scaled. Let <1>0 = GM/L where M is the source mass, L is a 

characteristic length. Let Pobe a characteristic density. With 

these, define 

P =p /p 0 

~ =R/ (<1>0) 1/2 

<l> =¢ / <1>0 

'ii' = Lv 

Then equations (2.1)-(2.3) will appear just as they do above but 

without the overbars. 

Since the flow is non-dissipative and steady (but not 

necessarily irrotational) Bernoulli's equation can be used to rewrite 

the conservation form above to a form which will be more useful later. 

Using the vorticity 

equation (2.2) can be written in non-conservation form as 

1 
2 

'ii'q2 - ~ x ~ + ~ 'ii'p + 'ii'<I> 
P 

o 

(2.4) 

(2.5) 
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where a 2 = ( a p lap )8 = 'YP Ip = ao 2 p'Y-1 is the square of the scaled 

sound speed. lnt egrating (2.5) along a stream line gives Bernoulli's 

equation 

H (2.6 ) 

where H, which may vary between stream lines, ~s the Bernoulli 

function. For the special case where 'Y = l, i.e. the flow is 

isothermal, Bernoulli's equation becomes 

+ <I> = H (2.7) 

Rearranging (2.5), it can be seen that 

.9,.XJ;. =VH (2.8) 

which is Crocco's theorem in homentropic flow (Batchelor, 1967 p. 

160). If the flow was not assumed to be homentropic, the right hand 

side of eqn. (2.8) would be modified by subtracting TV8 where T is the 

temperature. Thus, eq. (2.1) - (2.3) can be rewritten as 

V·p.9,. = 0 (2.9a) 

1 \7q2 + a 2 ~ + V( <1>- H) = 0 (2.9b) 
2 p 

1 q2 + L + <1> = H (2.9c) 
2 'Y -1 
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2.2 The Stream Function 

The basic idea behind using a stream function is to define a 

function such that the continuity equation (2.9a) is identicallY 

satisfied. In 2-dimensional or axisymmetric geometries this can be 

done with a single scalar function ljJ • Consistent with the 

applications we wish to consider later, we will assume S and all flow 

parameters are cylindrically symmetric about some axis which will 

correspond to the rotation axis for rotating problems. 

To allow for the computation of flows in complex geometries, 

we will first make our definitions in a general curvilinear coordinate 

system. Let the vector x i =(x 1 ,x 2 ,x 3 ) be a fixed cartesian 

coordinate. To take advantage ofaxisymmetry choose a curvilinear 

coordinate system given by yi=(yl,y2,y3) so that the y2=0 axis 

corresponds to the symmetry axis. The y3 axis is chosen as the 

azimuthal angle about y2 so there are no variations in the y3 

direction. This effectively reduces the problem to two dimensions in 

Using the Einstein summation rule, define the metric of the 

transformation between xi and yi by 

g .. 
1J 

and the Jacobian by g = det(gij) = J2. 

(2.10) 

Without los s of generality, 

we can require orthogonality between the y3 and the other axes so that 

g3j=0, j :/:3. Call the contravariant velocity vector Vi. Then 

equation (2.9a) becomes 
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(2.11) 

Let 1j! (yi) be the stream function defined through the relations 

(2.12) 

Then, interpreting the derivatives in the sense of distributions, 

1j! identically satisfies eq. (2.11). 

The momentum equations (2.9b) ar e next reduced to a single 

second order partial differential equation for 1j! • One approach is 

to form a combination of the yl and y2 components of the equations 

(2.5). This is straightforward for viscous flows and other cases, 

say, where magnetic fields are present. For polytropic gases an 

easier formulation is through the vorticity equation (2.4). The y3 

component of the vorticity is 

(2.13) 

where Vi = gijvj are the covariant velocity components. Substituting 

for VI and V2' 

(2.14) 

Substituting the definitions eqns. (2.12) into eqn (2.14) gives the 

stream function equation 
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(Z.15) 

Since the problems in Chapter 4 will involve flows where 

spherical and oblate spheroidal coordinates are natural, we will 

actually compute later in an orthogonal coordinate system yi=(X,Y,CP) 

where the metric tensor reduces to the diagonal g. ·=h·· Z= h·Z. For l. J l.l. l. 

example, a stretched spher~cal coordinate system could be given by the 

transformation 

x = F(X)cos(T(Y))sin(CP) 
y F(X)cos(T(Y) )cos(cp) 
z = F(X)sin(T(Y)) 

(Z.16) 

where F(X) and T{Y) are the radial and latitudinal stretching 

functions, respectively. 

In orthogonal coordinates the continuity equation can be written 

in terms of the physical velocity components (u,v,w) as 

Leading to the definitions 

ljiX = - phlh3v 

ljiy = PhZh3u 

And the vorticity equation becomes 

o (Z.l7) 

(Z.18) 
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(2.19) 

In the following discussions, we will refer only to the orthogonal 

case. 

For reasons discussed in section 3.1 the quasi1inear form of 

eq. (2.19) which does not explicitly contain density derivatives is 

used in the computations. By definition, quasi1inear means that the 

equation is linear in the highest derivatives of ljI and the 

coefficients of those derivatives are functions of position and lower 

order derivatives only. Equation (2.19) can be written in quasi-

linear form by expanding the derivatives and substituting for the 

dens ity der iva tives us ing Bernoulli's equa tion. If we define A = 

The logarithmic density derivatives are obtained by differentiating 

Bernoulli's equation. Let Q2 = u2 + v2 be the square of the velocity 

component in the (X,Y) plane. Then 

d(logp) = ___ l ___ (H'dljl - __ 1 __ (d(AljIX)2 + d(BljIy)2)- d~ - ~dw2) (2.21) 
aLQ2 2p2 2 

where the prime denotes differentiation with respect to the argument. 

Substituting for (logp)x and (logP)y , rearranging and multiplying by 

the factor p(a2 - Q2)h3 yields the quasi1inear form 



(a2 - u2)1/Ixx -

hI2 

2ll.Y.WXY + (a2 - v2 )1/Iyy 
hIh2 

- Pvh3 [(!:Dx<u2 

hI hI 
- a2) + (~)X(a2 - 2u2 - v2) - (~)xa2] 

h2 h3 

+ puh3[(~)y(a2 - u2 - 2v2) + (h2)y(v2 

h2 hI h2 
- a2) - (h3)ya

2
] 

h3 

- pvh3[~x + 1 (w2)X - HI1/IX]+ puh3[~y 
hI 2 h2 

+ t (w2)y - H11/Iy] 

p(Q2 - a2)h31;;3 
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(2.22) 

From the derivation, then, we see that this quasi-linear form is 

obtained from the vorticity equation multiplied by P(a2 - Q2)h3. 

2.3 Vorticity 

The four equations represented by eqn. (2.9a) and (2.9b) have 

now been reduced to a single second order partial differential 

equation for 1/1. In the process, a new quantity - the vorticity - has 

been introduced. How 1;;3 and the azimuthal velocity ware computed is 

discussed in this section. The advantage of the stream function 

formulation' and of solving the steady problem in particular is that 1;;3 

and ware determined by H(1/I) and a new quantity c(1/I) which are 

specified on boundaries only. Batchelor(l967, p. 543), for example, 

computes these for i.ncompressible flow. 

First, because of the axisymmetry, we can derive a relation 

for w along each streamline. The third component of Crocco1s 

equation, eq. (2.8) is 



u 1;2 - v 1;1 = 0 

From the definition of the vorticity 

_1_. (h3w)X 
hlh3 

1;2 _1_ (h3w)y 
h2h3 

Substitute these into eq. (2.23) to obtain 

o 
so that 

where c is a function constant along streamlines. 
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(2.23) 

(2.24) 

(2.25) 

(2.26 ) 

To get the 

vorticity, the first component of Crocco's equation (2.8) is 

v1;3 - w1;2 = ~ H'(w)wX 
hI 

(2.27) 

Substitute for 1;2, wand v using (2.24), (2.26), and (2.18) to obtain 

(2.28) 

2.4 The Density Function 

The major source of difficulty in using the stream function 

formulation is thE computation of the density which must be obtained 

from Bernoulli's equation. Se1ls(1968) studied the problem much as we 

do here. In terms of the stream function the density can be expressed 

through 
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p1-l = ~ (H - ¢ - ~(c/h3)2) - 1-] «~X/hlh3)2 + (~y/hlh3)2) (2.29) 
ao 2 2p2 

To examine the properties of this equation let 

The function f is proportional to the mass flux. Then 

p (2.32) 

The most important result is that for f less than some critical value 

the density is double valued. Figure 2.2 shows an example of the 

density versus f for four values of 1 with H* chosen so that the 

maximum value of p =1. 

The maximum flux point - the turning point when the density 

becomes single-valued - corresponds to a 2 = Q2. In terms of the 

equation 

o 

the minimum (ap/af)-l 

derivative is 

p1-l + £ - H* 

2p2 
(2.33) 

o corresponds to the turning point. The 

(2.34) 

Not only does the turning point occur at a 2 = Q2, the upper branch 

corresponds to elliptic, flows and the lower to hyperbolic flows. 
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Fig. 2.2 The density as a flmction of mass flux for four values of Y 
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The choice of branch at a particular point in space must be 

made by considering other conditions. In particular, the fact that 

expansion shocks violate the entropy condition (see Lax,1973, for 

example) means a jump from the upper to the lower branch cannot be 

allowed • Also, shocks must satisfy the Rankine-Hugoniot relations. 

. For practical considerations, the necessity of choosing between two 

branches of the non-linear algebraic equation (2.32) can be avoided by 

realizing that the density is a single-valued function of th-a speed Q2 

(2.35) 

and the difficul~y is shifted to finding Q2 ,·conditions on which are 

imposed by the Rankine-Hugoniot relations at shocks and by continuity 

elsewhere. 

2.5 Mathematical Properties 

The two most important properties of equations (2.19) and 

(2.22) that should be discussed are their mixed type and their weak 

solutions. Both look much like their counterparts for the 

conservative and quasilinear potential equations. The potential 

equation, however, expresses the mass conservation equation and the 

potential identically satisfies the vorticity equation. The stream 

function equation expresses the vorticity equation and identically 

satisfies the continuity equation. Even so, in smooth flow the 

equations for the potential and the stream function have similar 

properties. The fact that the required shock conditions are 

different, though, will indicate that facts associated with the 
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solution of the potential equations do not necessarily relate to the 

stream function equations. 

Type of the Stream Function Equation 

Both equations (2.19) and (2.22) are of mixed type depending 

upon the magnitude of the velocity in an azimuthal plane. According 

to the theory of second order partial differential equations in two 

variables (see Courant and Hilbert, 1962) the type of a differential 

operator of the form 

Lu = (X,y)EV C R2 (2.36) 

where uEC2(V) and a,b,cECO(V) is determined by the number of real 

characterist1cs. The slopes of these characteristics are given by 

ac)l/2 (2.37) 
a 

Equation (2.36) is hyperbolic if there are two real characteristics, 

parabolic if there is one, and elliptic if there are none. It is 

within this framework that we analyse eq. (2.19) and (2.22). 

For simplicity, choose cylindrical coordinates in which to 

work. The highest order terms of eq. (2.22) are 

so the characteristic slopes are 

s±= -uv ± (Q2 _ a2)1/2 

u2 - a2 

(2.38) 

(2.39) 
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The type of the operator does not necessarily change when the flow is 

subsonic or supersonic. Rather, it is dependent upon the magnitude 

of the projected speed Q2 = u2 + v2• 

The characteristics for the vorticity equation are identical 

to those of the quasilinear form. The highest order terms are 

(2.40) 

so the characteristic slopes ~±are just tho se in equation (2.39). 

Finally, we note that the characteristics of the stream 

function equations represented in eq. (2.39) are the same as those of 

the potential equation because the coefficients are the same. The 

importance of this is that the numerical schemes for solving the 

potential equation in hyperbolic regions can also be used for the 

stream function equations. 

Weak Solutions 

If one extends the class of allowable:: solutions to 

discontinuous flows, care must be taken to choose only the proper weak 

solutions. For gas dynamic flows these are solutions whose 

discontinuities satisfy the Rankine-Hugoniot relations. (See, for 

example, Courant and Friedrichs, 1948.) For illustration we will now 

work in two-dimensional cartesian coordinates to show what weak 

solutions are satisfied by the ~tream function. 
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The important gas dynamic discontinuities are shocks. Let 

s(x,y) denote the shock slope (dy/dx)shock. Then integrating eqns. 

(2.1) and (2.2) gives the shock jump conditions (Hafez and Lovell, 

1981 ) 

[pu]t; + [pv] = 0 

[pu2 + p]s + [puv] = 0 

[Pv2 + p]s + [puv] = 0 

(2.41) 

where [.] denotes the jump in a quantity across a shoc~ The stream 

function was chosen to satisfy the continuity equation identically so 

the first relation is automatically satisfied. The second two can be 

expressed in terms of qt and qn' the velocity components normal and 

tangential to a shock, as 

[p qn2 + p] = 0 

[qt] = 0 

(2.42) 

(2.43) 

The normal momentum condition is satisfied by introducing a jump in 

the entropy across the shock. The second condition is implied by the 

vorticity equation (2.13). Integrating the general equation over a 

volume V across which runs a shock, 

(2.44) 

If H'(1)!), which is specified by boundary conditions, is continuous, 

equation (2.28) for ~3 shows the integrand is characterized by a jump 
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discontinuity along the shock. Thus, the associated jump condition is 

simply 

o (2.45) 

which expresses (2.43). 

Equation (2.19) by itself expresses this requirement since it 

is nothing more than a re-expression of the vorticity. No tice, 

however, that the quasi1inear equation can admit non-physical 

solutions. As an example, the two-dimensional cartesian form of the 

quasilinear equation is 

if the flow is irrotational. A solution of (2.46) on R2 is 

ljJ(x,y) bx 

p (x,y) ( P sub 

P sup 

x < Xo 

x > Xo 

(2.46) 

(2.47) 

where band Xo are constants. The densities P sub and P sup are chosen 

from the subsonic and supersonic branches of the density function, 

respectively. This solution corresponds to a uniform flow in the y-

direction with a "shock" which lies along a streamline. Since the 

pressure (through the density) is not continuous across the Xo 

stream line the solution does not represent a contact discontinuity. 

Furthermore, such a solution is rotational and does not satisfy eq. 

(2.19). 
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Just because the quasi1inear form of the equation admits what 

appear to be non-allowed jumps does not mean that the form is not 

useful. The conservation law relates jumps in the velocities, not the 

stream function derivatives. One possibility to avoid solutions such 

as (2.47) is to compute u and v and hence p from the vorticity 

equation in such a way that (2.45) is satisfied. This problem is 

considered in more detail in section 3.1. 

2.6 Boundary Conditions 

The problems solved in Chapter 4 will require three types of 

physical boundary conditions. At the base, inflow conditions are 

specified. Since the computational mesh extends only a finite distance 

from the base, some outflow condition will be needed. The third type 

of condition must be supplied along symmetry boundaries. 

Mathematically, the choice of boundary conditions must be made 

consistent with the second order mixed-type nature of the stream 

function equation. In the absence of ~igorous theoretical results for 

this particular problem, we propose the use of the following boundary 

conditions. 

Suppose that the base S has both the rotational symmetry about 

the Y axis and a plane of symmetry perpendicular to that axis. Thus, 

only a quarter plane problem need be solved as shown in figure 2.3. 

By choice of the coordinate system (X,Y) the boundary curves Cl and C2 

lie along lines of constant X. The symmetry boundaries Sl and S2 lie 

on constant Y lines. The outer curve C2 is considered only because the 

computational mesh is finite. 
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Fig. 2.3 The two-dimensional quarter-plane problem --- C1 is the 
inflow boundary corresponding to the projection of S onto the (X,y) 
plane. C2 is the artificial outflow boundary. S1 and S2 are symmetry 
boundaries. S1 is the rotation axis for rotating flows. 
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The symmetry axes S1 and S2 must be streamlines. Thus, the 

boundary conditions 1jJ = constant are specified there. For 

convenience,1jJ = 0 along S1. The flow near the base, C1' is subsonic. 

Specifying either the normal derivative 1jJn or the function 1jJ is 

presumed to be acceptable. The first condition gives the tangential 

mass flux, while the second specifies the normal mass flux. For 

(2.48) 

while from specifying 1jJ, 

a1jJ1 = h2h3(PU) 
ay X=const 

We will specify the normal mass flux across C1· 

Finally, we comment on the conditions along C2 which is a 

fictitious boundary placed so that it is beyond the parabolic line. As 

such, no conditions should be specified along C2• Far away, however, 

the base must look like a point source and the streamlines must be 

radially symmetric. For the particular case of flow from a spherical 

body this will be discussed in detail in sec~ion 4.2. To specify this 

condition in the numerical -scheme should be consistent with the 

solution and not make the problem ill-posed. 



CHAPTER 3 

THE NUMERICAL METHOD 

As we have shown in the last chapter to compute with the 

stream function requires the development of two algorithms. The 

first must be a scheme with which to solve the mixed-type equation for 

the stream function itself (either 2.19 or 2.22). The second is to 

develop an algorithm to compute the density from the stream function 

derivatives using either eq. (2.29) or eq. (2.22). 

The solution of the mixed-type equations associated with the 

potential formulation is routine. Since the properties of the stream 

function equations are similar, the algorithms will also be similar. 

Differences can arise, however, in the choice of the equation and in 

the form of the dissipation added in the hyperbolic regions. In 

Section 1 we explain our choice of the quasilinear form (2.22). 

Next, in Section 2, we define the difference schemes for elliptic and 

hyperbolic regions and discuss the dissipation terms added to 

stabilize the latter. The discussion is completed in Section 3 where 

the relaxation schemes are presented. 

The next part of the chapter deals with the computation of the 

density. We have shown in Section 2.2 the advantage of first 

computing the speed from the stream function and then the density. In 

Section 3.4 we discuss in detail the Hafez and Lovell(1981) algorithm 

and show that it cannot be used without modification for some 

31 
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important applications. Also in Section 4 we present a simpler method 

that can be used for computing internal flows and, in particular, the 

flows which we have chosen for the applications. Finally, in section 

5 the problems used to test the code that was developed are reviewed. 

3.1 Choice of Equation 

We have chosen to solve the quasilinear form of the stream 

function equation, eq. (2.22) and feel that it is important to 

promote methods based on the quasilinear form in addition to the 

vorticity form. Our choice depends mostly on the fact that the 

numerical properties of the quasilinear form will more closely mimic 

the properties of the second order partial differential equation which 

must be used for analysis. This follows because, for the relaxation 

schemes commonly in use, the coefficients (particularly p) must be 

evaluated at a previous level of iteration. For the vorticity 

equation, information about the type and characteristics is implicit 

in the frozen density values; For the quasilinear form such 

information is explicit. The advantage shows up in the solution of 

the potential equation as greater reliability of the relaxation 

schemes for the quasilinear form over the conservation form (Yu, 

Seebass and Ballha'Us, 1978). Since we were testing a new formulation 

on problems not before solved in this manner, we felt that the need 

for reliability was the deciding factor. 

Though we will be computing 0111y smooth flows, supersonic 

flows are usually characterized by the presence of shocks. Some 

comment should be made about the use of the quasilinear form instead 
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of the conservation form in flows with shocks. The conservation form 

is used in the potential computations because it has the proper weak 

solutions. The same criteria does not necessarily apply to the stream 

function equations as we showed in Section 2.3. We mig h t e xp e c t , 

though, that because of the jumps in the first derivatives oft/! , the 

vorticity equation will give more accurate shock jumps. 

Nevertheless, we make an important point about shock fitting. 

Because of the extra effort required to compute the density in the 

stream function formulation over the potential formulation, the real 

advantage in computing discontinuous flows is to be able to include 

the vorticity introduced by the entropy jump across a shock. (See 

Hafez and Lovell(l98l) and Lin and Rubinov(l948)). To include this 

jump some sort of shock tracking must be made. In that case the 

shock might as well be fit exactly and the problem of weak solutions 

is side-stepped. 

Finally, we write down the equation in the form we actually 

use in computation. Because h3 -70 as the rotational symmetry axis is 

approached, we have found it is more accurate not to differentiate the 

h3 terms. We obtain the form below by substituting for l;; 3 and w from 

eqns. (2.28) and (2.26). 

L h2(At/!X)X«Pa)2_(Bt/ly)2) + ABt/!Xt/!y(hl(At/lX)Y + h2(BWy)X) 

+ hl(Bt/Jy)y«pa)2 - (At/!X)2) + G 

where G represents the lower order terms 

(3.1a) 



G = «pa)2 - (pQ)2)(AWX(h2)X) + Bwy(h1)Y) 

+ p2h2AWX(~X -c2(h3)X/h33) 

+ p2h1BWy(~y - c2(h3)y/h3 3) + p4a2J(cc l /h3 2 - HI) 

3.2 Differencing Schemes 
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(3.1b) 

For computational purposes, the unbounded region S"! exterior to 

the flow surface S described in section 2.1 is replaced by the finite 

The use of an arbitrary coordinate system (X,Y,~) and the 

axisymmetry easily allows us to map S"!o onto the rectangle 

(See figure 3.1.) We discretize R by the grid 

x = ilIX i 0,1,2, ••• ,1 

Y = jll Y j = 0,1,2, ••• ,J 

Furthermore, we use the freedom of the transformation to se t lIX = lIY = 

1 so that Xo = I and Yo = J. The discretization of any function 

F(X,Y) defined on R will be denoted by Fij = F(i,j). For any Fij 

define the difference operators 

DX+F" = 1.J 

DX-Fij = 

Fi+1,j - Fi,j 

Fij -Fi-1,j 

DXOFij = (Fi+1,j - Fi-1,j)/2 

DX2Fij = DX+DX-Fij = Fi+l,j - 2Fij + Fi-1,j 

Difference operators for the Y derivatives are defined similarly. 

In both elliptic and hyperbolic regions the operator L is 

approximated with second order centered differences. Denote Lh as 
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the discrete operator, ignore the (i,j) subscripts, and interpret all 

explicit derivatives as central differences. Then 

Lh = h2«pa)2 -·(B~y)2)DX-(Ai+l/2,jDX+~) 

+ AB~X~y(hlDyO(ADXO~) + h2DXO(BDyO~» 

+ hl«pa)2 - (A~)2)Dy-(Bi,j+l/2DY+~) + G 

(3.2) 

The derivatives of ~ in the lower order terms, G, are all approximated 

by central differences. Though not necessary, the metric 

coefficients and potential are all differentiated analytically. 

The difference molecule for Lh appears in figure 3.2. The 

coefficients A and B are defined between nodes while all other 

quantities are evaluated at node points. 

It is well known, however, that a Von Neumann analysis shows 

centered differences are unstable when used in a marching scheme in 

hyperbolic regions. To stabilize the scheme a dissipation term in the 

form of an artificial viscocity is added. We explicitly add to Lh a 

first order dissipation operator based upon the rotated difference 

scheme of Jameson(1974). 

The basic approach to adding the needed artificial dissipation 

is to locally rotate L to coordinate independent form. Jameson 

originally applied his scheme to the quasi-linear full potential 

equation but since the mathematical properties of the stream function 

equation are identical to those of the potential equation, the ideas 

will be the same. Let (s,n) represent the local streamwise and 

normal directions in an azimuthal plane. The principal part of L can 

be written in terms of these coordinates as 
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o a .. 
R· + 1 /2 . 1 , J 

a 

Fig 3.2 The computational molecule --- The stream function, 1jJ , is 
defined at mesh points (i,j). The coefficients A and B which come 
from the coordinate transformation are defined at half mesh values. 
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(3.3) 

which is explicitly hyperbolic when Q2>a2• If we as SUme th e 

coefficients are locally constant, the streamwise and normal 

derivatives are related to the coordinates (X,Y) by 

ljJss = 1-«u/hl)2ljJXX + 2uv/(hlh2)ljJXY + (v/h2)2ljJyy) (3.4) 
Q2 

ljJnn = 1-«v/hl)2ljJXX - 2uv/(hlh2)l)JXY + (u/h2)2ljJyy) (3.5) 
Q2 

The idea of the rotated differencing scheme is to upwind 

difference the X and Y derivatives occurring in the streamwise 

derivative (3.4) and central difference those in (3.5). For u,v>O, 

the upwind approximations to the second derivatives are approximations 

to 

Dx-Dx-ljJ ~ ljJxx ~Xl)Jxy~ 

Dy-Dy-ljJ ~ ljJyy ~yljJyyy 

DX-Dy-ljJ ~ ljJXY - ~X/2ljJXXY - ~Y/2ljJXyy 

(3.6) 

If the approximations of eq. (3.6) are substituted into (3.4) and eq. 

(3.5) and the result is then substituted into eq. (3.3), the use of 

rotated differencing is equivalent to ixplicitly adding the 

dissipative term 

~lilh202 (~X(u/hl)2ljJxxx + (3.7) 
h3 
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to the central difference operator Lh in eq. (3.7). We have defined]l 

= max(O,1-1/M2) and the derivatives are approximated by 

, - 2 
1/Ixxx '" DX DX 1/1 

1/Iyyy '" Dy -Dy21/1 

,I, _ 2 
'I'XXY '" Dy DX 1/1 

(3.8) 

1/Ixyy '" Dxony21/1 

A similar form"is derived for u>O,v<O which is the only other case to 

consider for the applications in Chapter 4. 

With the addition of the dissipation terms the treatment of 

the boundary conditions is not obvious. Along the mesh lines next to 

the symmetry boundaries the difference approxima tion for 1/1 yyy may 

require points outside the mesh. If the symmetry properties are used 

to eliminate the extra points the scheme is unstable. However, since 

the flow near the boundaries must be closely aligned with the grid, 

the contribution to this term will be close to zero. Therefore, near 

the boundaries the 1/1 yyy term is ignored. 

The implementation of the outer boundary condition also 

requires some comment. As pointed out in section 2.6, no physical 

condition should be specified. The difference equations, on the other 

hand, require additional data. We use the zeroth order extrapolation 

1/II,j = tPI-l,j which is an approximation to 1/1 X = O. Physically, this 

means that the streamlines are along the X coordinate lines. Sinc~ 

these lines are effectively radial far from the base for the problems 

we solve, this condition is at least consistent with the expected flow 

solutions (see section 4.2). 
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For those familiar with potential calculations, two 

interesting observations can be made. First, from eq. (3.3) the 

dissipative term effectively modifies the rotated differential 

equation to 

- v lJ!sss (3.9) 

which is equivalent to the equation solved by the potential 

formulations. 

Next, the form of, dissipation introduced by the rotated 

differencing scheme has an advantage over that used in potential flow. 

If the flow is aligned with the grid the dissipation term eq. (3.7) is 

identically zero. Then the results are second order accurate even in 

the hyperbolic regions. Results using the potential equation will 

always have first order truncation errors. 

3.3 Relaxation Method 

Because the difference operators for the stream function 

equation look just like those for the potential equation, the same 

relaxation schemes can be used. We chose the successive-line 

overrelaxation (SLOR) method used by Jameson (1974). The SLOR method 

is much slower than more recent techniques (see Ballhaus et. ale 1978) 

but is very reliable and does not require the sensitive adjustment of 

a number of parameters. 
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Let the superscript n denote the nth step of the iteration 

process. Define the correction cijn 

scheme can be formally written as 

¢ .. n+l _ ¢ .. n 
~J ~J • 

NC·· + WLh¢·· - 0 ~J ~J -

The relaxation 

(3.10) 

where N determines the type of relaxation scheme andw is a relaxation 

parameter. The matr ix N is cho sen to approximate Lh yet must be 

simple enough to invert easily (see Ballhaus et. al.,1978). When the 

operator is elliptic, N is similar to that derived for Laplace's 

equation. We use 

(h2«pa)2_(BWy)2)(-Ai+l/2,j - DX-Ai+l/2,j) 

+ AB¢XWy(hlDyOA + h2Bi_l,jTX-1DyO) 

+ wh1«pa)2 - (A¢x)2)(Dy-Bi,j+l/2Dy+»Cij + wLh¢ 

(3.11) 

o 

Where TX-1Cij is the unit shift operator in the X direction. The 

operator N approximates the highest order derivatives of L. The 

matrix inversion problem for solvi~g for C is NC = F which is a 

diagonally dominant tri-diagonal system. 

For the supersonic relaxation scheme to be stable, the 

marching direction is chosen to correspond to the flow direction. 

Following Jameson(1974) the operator uses the overrelaxation parameter 

w in such a way that the continuity of the representation of the y-

derivatives is maintained when the flow changes type. 

When L is hyperbolic we also use an N similar to that derived 

by Jameson(l974) by viewing eq. (3.10) as representing a time 
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dependent process where C = ~t~t. The rotated equation (3.3) is 

modified by adding time dependent terms like 

(3.iz) 

where a,b,c are coefficients whose properties must be determined. If 

the change of variable 

T - t - as/(M2 - 1) + bn (3.13) 

is made, eq. (3.1Z) is equivalent to 

which is a telegraph equation (Courant and Hilbert, 196Z). The 

marching direction fo·r the steady state flow is the streamwise, s. 

For the pseudo-time dependent relaxation process to be consistent, we 

require c = 0 and 

For convenience, define the factors 

Rs (1/M2 - 1)/(h1hZh3 3) 

Rn 1/(M2h33) 

(3.16) 

Using the above analysis as a guide, the iteration matrix we use for 

u,v > 0 is 
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(3.17) 

A similar form is used for v < O. To show how this relates to eq. 

(3.12), consider DX-Cij as an approximation to 1JXt· The other space 

derivatives above are similarly related to derivatives of 1jJ. The 

first term of (3.17) can be expressed as an approximation to 

(3.18) 

which 1n turn is equivalent to 

(3.19) 

The second term is an approximation to 

(3.20) 

so that the conditions of equation (3.15) is met. This choice also 

leads to a diagonally dominant tri-diagonal matrix system if the 

relaxation scheme is marched in the streamwise direction. Though we 

have not found it necessary, an additional1jJ st term can be added so 

that the term does not vanish near the sonic line (see Jameson,1974). 

We allow the possibility of adding 

where £ is a small adjustable parameter. 
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3.4 Density Computation 

As emphasized before, the computation of the density from the 

stream function is not straightforward. Right now, no unique method 

is available to compute the density from the stream function 

derivatives in all flow problems. We discuss below two approaches. 

Both involve first computing the speed and then the density from 

Bernoulli's equation. We begin by analyzing in detail the clever 

method of Hafez and Lovell(1981). For reasons given below, thei r 

method cannot be used directly for internal flows or the problems 

solved in Chapter 4. Thus we present a simple method that has proved 

suitable for the flow problems in Chapter 4. 

Hafez(1979) and Hafez and Lovell(198l) use the vorticity 

equation (2.13) to compute one velocity component. In cartesian 

coordinates for irrotational flow, 

(3.22) 

The streamline slope is defined by 

s = dy = ~ = -~ (3.23) 
dx u lJ!y 

If we substitute for v in eq. (3.22) a single first order linear 

partial differential equation for u is obtained 

(3.24) 

Along a characteristic direction, z, the equation' is 



du = uy - sux 
dz 
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(3.24) 

So that the slope of the characteristics is given by 

-1= 4 
s tjJx 

(3.25) 

The ref 0 r e, be c au s e i;s = -1 The c h a r act e r i s tic s 0 f ( 3 .22) r un 

perpendicular to the streamwise direction. A well-po sed boundary 

value problem for the computation of u requires that u is specified 

along some non-characteristic curve. For external flows around bodies 

this is very convenient (see fig. 3.3a). The boundary data can come 

directly from the far-field flow condition and eq. (3.22) can be 

marched inwards towards the body. Once the component u is computed, 

v = -su provides the other component. Bernoulli's equation, then, 

direct ly gives p • 

For internal flows and those which we discuss in the next 

chapter, the required boundary data are not known (see fig. 3.3b). 

Some method of determining the wall velocity from other considerations 

must be developed. The method must also be able to insert properly a 

shock which can originate at the boundary. Because the data is known 

only at the inflow, a method which can use that data is more suitable. 

We propose a simple method which works in smooth flow or can 

be used in conjunction with shock fitting. In smooth flow Taylor's 

theorem is valid and the fluid speed at a particular point of the 

fluid can be determined numerically from that at an upstream point 

(X' ,Y') by 
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Fig. 3.3 Streamlines and the corresponding characteristics of equation 
(3.22) --- a) For an external flow. b) For an internal flow. 



Q2(X' ,Y') + (gQ2)ds + O(ds 2) 
ds 
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(3.25) 

where dQ2/ds = 9../ IIQII·I7 Q2. Effectively, the value of Q2 is 

obtained by extrapolating from the upstream direction. This value is 

substituted into eqn. (2.35) to choose an approximate value, ~,on 

the proper branch of the density function. Newton's method is then 

used on eq. (2.29) to get the value of p corresponding to the actual 

mass flux at a given point in the following manner. Let F(p) be the 

function on the right of eqn. (2.33). The proper value of pis the 

zero of F on a particular branch chosen as above. Newton's method is 

where 

and k is an iteration index. At the hyperbolic point, F' = 0 and eqn. 

(3.26) cannot be used. There, however, eqn. (3.27) can be used 

directly to get the density exactly which is 

p (f2/ (r-1) )1/ (r+1) 

3.5 Test Problems 

Before the results of any code can be accepted a substantial 

amount of testing must be done. In this section we describe some of 

the problems with which we tested the code based on the algorithms of 

this chapter. Most of the problems were derived from the one 

dimensional wind problems which are discussed in detail in the next 
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chapter. They included fully subsonic, fully supersonic and mixed 

wind type flows computed as one- and two-dimensional problems. 

The fully subsonic cases tested the subsonic difference 

scheme, the corresponding relaxation scheme and the density 

computation algorithm. The flows were irrotational of the type shown 

in figures 4.2 and 4.4. They were comput ed in both spherical 

coordinates and in the oblate spheroidal coordinate system described 

in section 4.4 for the galactic wind problems. The latter coordinate 

system allowed the solution of a two-dimensional flow for which the 

exact solution was known. Solutions on more than one grid were 

computed to show that asymtotic second order convergence was achieved. 

The fully supersonic problem which tested the supersonic 

relaxation and differencing schemes was the spherical expansion of a 

supersonic gas. The boundary condition at the inflow was formed by 

specifying the exact solution on th~ first two grid lines i = 0,1. 

The problem was solved in both spherical and oblate spheroidal 

coordinates. 

The transonic flows are discussed in detail in sections 4.1 

and 4.2. We mention here that in addition to those, the one-

dimenional transonic wind problem was also solved in oblate spheroidal 

coordinates. A strictly two-dimensional problem is discussed in 

section 4.2. 

All of the flows mentioned so far have been irrotational. To 

be sure the vorticity, H, and c were computed properly the 

incompressible problem discussed by Batchelor(1967, p. 545) was 
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solved. The problem is that of a swirling incompressible fluid in a 

right circular cylinder. In cylindrical coordinates (z,r,¢), the 

boundary conditions on ~, H, and care 

~o = ur2/2 

c = nr2 

H = u2/2 + n2r2 

The exact solution is ~= ~ o(r) and the initial condition was a 

perturbation of this. 

The test problems, then, using spherical, oblate spheroidal 

and cylindrical coordinate systems have also been used to test the 

coordinate transformations. Thus, along with the tests of the 

vorticity computation, the subsonic and supersonic difference and 

relaxation schemes, all parts of the code have tested out 

satisfactorily. 



CHAPTER 4 

APPLICATIONS 

We now apply the ideas of the previous chapters to a class of 

"wind" problems motivated by the one-dimensional solar wind theory 

developed by Parker(1963). The use of the stream function as 

described here is a new and different approach to solve the steady 

problem directly. It is far more informative than using the Euler 

equations because the effects of rotation, variation of H and the 

sources of vorticity are all explicit in the stream function equation. 

Because the problem ha.s not been approached in this way before, the 

emphasis here is to explore the types and characteristics of the 

transonic solutions rather than to solve a particular physically 

applicable problem. Most important, we present rotational and 

irrotational solutions which exhibit behavior suggested by the 

equations. 

In section 4.1 we describe in detail the I-D mathematical 

theory of the solar wind. The extension of the solar wind to two

dimensional problems is presented in section 4.2. Computations of 

solar type models using the technique described in the last chapter 

will be presented in section 4.3. In the last section we will give 

examples of application to models of oblate spheroidal galaxy models 

where the gravitational potential is no longer spherically symmetric. 

50 
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4.1 The Solar Wind Problem 

In order to understand the results of the following sections 

for two-dimensional axisymmetric flows it is first necessary to 

understand the one-dimensional theory in detail. In particular, 

experience has shown that many people do not appreciate the role of 

Bernoulli's constant in solar wind-type flows so it is important to 

reiterate the basic results. A general presentation of the theory of 

the solar wind for polytropic gases was written by Parker(1963). 

Parker's analysis centered on Bernoulli's equation. In this section we 

will mix the approaches of Parker(l963) and Holzer and Axford(l970) 

and look at the differential equations and Bernoulli's equation 

simultaneous ly. 

In spherically symmetric geometry, we choose the length scale 

ro as the base radius and the base density as Po' The equations (2.9) 

reduce to 

.!! .. J s2p u) 0 
ds 

1.!! .. ....<u2) + !!,2 dP - 1 = 0 (4.1) 
2 ds P ds s2 

1 u2 + a2 - 1- H 
2 'Y-l s 

where s = r/ro ' ¢ = -l/s , and u is the radial velocity. Bernoulli's 

constant is specified by the values at the base 

H = 1 u 2 
- 0 
2 

+ a 2 - 1 .:::.e-
'Y -1 

( 4.2) 
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Two physical constraints must be posed as boundary conditions. 

At the base, the pressure must be high and the velocity practically 

zero. This represents an effectively static atmosphere ("corona") 

where M «1. Next, as s~ oothe pressure must tend tow,ard zero, 

reflecting the fact that the gas expands into a vacuum. As we will 

see, these conditions profoundly influence the nature of the solutions 

to eqns. (4.1). 

Following Holzer and Axford, equations (4.1) can be rewritten 

as a single equation for the Mach number, M. The density derivative 

of the momentum equation can be eliminated using the continuity 

equation. Introducing the Mach number H = u/ a and using Bernoulli~ s 

equation to eliminate the sound speed derivative yields, for 1'> I, 

M2_1 dM2 = 1 + (1'-1)/2 M2[ZH - _1_ .L::2.1'] 
2M2 ds H + l/s s 2s2 l' - I 

(4.3) 

Because of the singularity at 1'= 1, the isothermal case must be 

treated separately. The sound speed for an isothermal flow is a 

constant and the differential equation for the Mach number is 

M2_1 dMZ = 1 
2M2 ds s [z - _1 1 

sa2 
(4.4) 

In form these equations are very much like those for a quasi 

I-dimensional duct with variable area, A(s). The right hand sides of 

(4.3) and (4.4) correspond to the dLogA/ds term. Conse quent ly the 

solutions will have properties very similar to the well known variable 
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area solutions. The most striking property is the possiblility of a 

smooth transition from subsonic to supersonic flow. 

We now qualitatively analyse eqns. (4.3) and (4.4) to show the 

possible types of solutions. From Bernoulli's equation the solution 

which satifies the boundary conditions will be determined. Starting 

with the simpler of the two, eq. (4.4), the equation has a critical 

point at 

At the critical p01nt either dM2/ds = 0 or M2 1 then 

l'Hopital's rule is used to show that 

lim dM2 = +l/(as 3/2) -- - c 
ds 

(4.5) 

For s > Sc 

{: 0 for M2 > 1 
dM2 (4.6) 
ds 

0 for M2 < 1 

and for s < Sc 

{: 0 for M2 < 1 
dM2 (4.7) 
ds 

0 for M2 > 1 

These observations lead to the solution diagram shown in figure 4.1. 

We identify five types of solutions to equation (4.4) on figure 

4.1. The boundary conditions are now used to eliminate all but one. 
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Fig. 4.1 Sketch of solutions of the spherical equations (4.3) and 
(4.4) --- The type IV solution which satisfies M « 1 at s eland the 
vanishing pressure at infinity is called a "wind". 
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Type I solutions are double valued and are not physically possible. 

The type III and V solutions are eliminated because they are 

supersonic as s~O; They violate the boundary condition at the base. 

This leaves the type II and IV solutions as candidates for the 

solution of the boundary value problem. 

Bernoulli's equation is now used to determ ine which of types II 

and IV satisfy the vanishing pressure requirement at infinity. 

the continuity equation, 

When substituted into Bernoulli's equation (2.7) 

1 M2 - log(u/uo ) - 2log(s) - __ 1 __ = ~ 
'2 sa2 a2 

For the type II solutions, u is small and asymtotically 

M2 IV exp(-s)exp(-(l/s - H» 

Then, since 

p Cexp( H/a2 - M2/2 ) 

where C is a constant, 

lim P = Cexp( H/a2 ) f 0 
s~ 00 

From 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

On the other hand, M2 ~ 00 on the type IV solution. Asymtotically, 



and 

M2 'V sLog(s) 

limp = 0 
s-+<» 
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(4.13) 

(4.14) 

Thus, the only solution which satisfies the boundary conditions is the 

transonic flow type IV. Following Parker, such a flow is called a 

"wind" • 

Equation (4.3) gives the behavior of the flow for 'Y > 1. 

The most important difference between the solutions of (4.3) and (4.4) 

is that the character of the flow depends upon H. If H < 0, then 

equation (4.3) has no critical point and the flow is gravitationally 

bound. Both the pressure and velocity must vanish at infinity, for 

if not, 

1 u2 + ~ < 0 (4.15) 
2 'Y-1 

as s -+"'. At the sun, the pres sure is so large that this is not the 

case. The case H o was proposed by Chamberlain(1960) as a possible 

model .for the solar coronal expansion. If H = 0, there is no critical 

point, dM 2/ds is monotonic, and the flow stays subsonic. 

Equation (4.3) does have a critical point and hence has 

solutions resembling those of eq. (4.4) if the following conditions 

hold: 

i) H > 0 

ii) 'Y < 5/3 

iii) 5 - 31 > 1 
4H('Y-l) 



The critical point occurs at 

Sc = 5 - 3'Y 
4H<r-l) 
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so that the third condition merely states that the critical point must 

occur beyond the base. 

For H > 0 the choice of solutions again depends on the boundary 

conditions and the only acceptable solution is the transonic one. If 

pin eqn. (2.6) is substituted for by eqn. (4.8) Bernoulli's equation 

for 'Y> 1 becomes 

1 u2 + 
2 

a 2 .=.e--
'Y-l 

(4.16) 

On the supersonic branch u is large and for large s the u 2 term and 

the -lis term balance. So, on that branch 

1 u 2 'V H + 1 
2 s 

which is effectively constant for large s andp-+ 0 as s-+«>. 

subsonic branch, however, u is small and thus 

(4.17) 

On the 

so u -+0 for large sand p-+co·nstant ';0. Thus, for 'Y> 1 we only 

accept the transonic solution. 

For po lytropic f low where 'Y> 1, then, we have shown tha t it 

is the value of H which must be specified if there is to be a wind. 

The isothermal results are misleading because in that case there is no 

restriction on H. 
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Because of the singularity at the sonic point equation (4.3) 

it is practically impossible to solve as an initial value problem 

starting at the base. The problem is ill-posed in the sense that 

small perturbations of the mass flux can cause large variations in the 

solution. Since the critical point is known the only effective way 

to solve for M2 is to start there and integrate in both directions. 

Bernoulli's equation, on the other hand, is not singular. It is 

possible to specify the parameters at the base and solve for the 

density following the procedure outlined in section 3.4. For a given 

set of parameters one must allow for the existence of an expansion 

shock at the critical point. The proper solution can then be obtained 

by varying the parameters until the expansion is smooth across the 

critical point. It does not appear that the first approach has an 

analogy in multi-dimensions; The second does. Once the streamlines 

are known, the approach in multidimensions is identical. The 

parameters at the base are then adjusted until the sonic transition is 

smooth. 

We now give an example of a solution to a particular solar 

wind model. The parameters H = .75, 'Y = 1.1 are chosen so the 

crit~cal point is at 'sc = 5.667. The quantity Po was chosen to give 

a small value of the mach number at the base. The mass flux was then 

changed until a smooth transonic profile was obtained. Figure 4.2 

shows the types of solutions as the mass flux is increased. Figure 

4.3 shows the wind solution for these parameters. Note particularly 
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.5 

s 

Fig. 4.2 Solutions of eqn. (4.4) for five mas s fluxes --- To comput e 
the wind solution, the mass flux is raised until a smooth transonic 
flow is found. 
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Fig. 4.3 Mach numbers and densities for a spherical wind problem --
The solution corresponds to H "" .75,y "" 1.1. Note the rapid drop in 
density near the base. 
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that while the mach number changes slowly near the base, the density 

drops rapidly at a rate near s-2.2. 

4.2 Extension 1£ 2-D Axisymmetric Flows 

Now we present the major thrust of our use of the stream 

function. The results of chapter 2 can be used to reformulate the one-

dimensional problem discussed in the last section. In terms of the 

stream'function we can note several features of the general wind 

problem not evident in the Euler equations (2.1) '- (2.3). We point 

out these features here and in the next section present sample 

solutions which show them. Throughout this section we will work in a 

fixed spherical coordinate system (s, 6,rp) where, as before, s = r/ro 

is the radial coordinate, e is the latitude and rp is the azimuthal 

angle. 

Suppose that the sun rotates as a solid body with angular 

frequency rl and that the gas which is ejected rotates with the 

surtace. Then the angular velocity is w = rlco s( e). Thus, from eqn. 

(2.26) c(1jJ) is known. Suppose also that H is specified at the base so 

that H(W is known. Computationally, these functions are represented 

with a cubic spline of the values at the base. The stream function 

equation in this case is 



(a2 - u2)~ss - ~s8 + (a2 - v 2) ~88 
s s2 

+ pvcos(8)(2u2 + v2) + pua2sin(8) 

The vorticity is 

~3 = -P[HISCOS(8) - cc l 1 
scos(8) 
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(4.19) 

(4.20) 

This is a much more informative form than the Euler equations, 

(2.9), for without solving these equations some interesting 

qualitative results can be obtained. We see that the effect of 

rotation is two-fold. First, the rotation modifies the gravity 

field. The effective radial gravitational force becomes 

while an effective latitudinal force is introduced 

g8 = - c2sin(8) 
s2cos 3(8 ) 

(4.21) 

(4.22) 

In addition to modifying the gravity field, the rotation 

introduces vorticity. The contribution from the rotation is 

~rot = P cc l 

scos(8 ) 
(4.23) 
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The most interesting fact here is that this contribution to the 

vorticity lies only in a small "boundary layer" beyond the base. To 

prove this, remember that both c and c' are specified along the 

boundary and hence are bounded by the maximum and minimum values 

there. In the last section we indicated that the density drops as 

Thus, the vorticity must drop rapidly as s-3.2. This is much 

slower than the decay in viscous boundary layers at a wall, 

nevertheless the vorticity drops off on a scale much smaller than, 

say, the distance to the sonic surface. 

The effect of Bernoulli's function in determining the position 

of the streamlines is also two-fold. First, its magnitude along a 

streamline determines the coefficients p and a2• It also introduces a 

vorticity. The rate of decay, however, is much less than that due to 

rotation; the vorticity drops as s-1.2. An interesting consequence 

is that the vorticity may change sign within the boundary layer 

determined by s-1.2 depending on the magnitude of H'(tjJ) and c(tjJ). 

Finally, the condition of radial flow at infinity is 

consistent with this the behavior of the vorticity. Far from the 

base the irrotationa1 solution is just the spherically symmetric 

radial flow. To see this, examine the limit of eqn. (4.19) as s+oo • 

Through Bernoulli's equation u and v are bounded and p+O. The stream 

funct~on will be smooth so its derivatives are bounded. Then the only 

remaining term far from the base is 

=> tjJss = 0 => tjJs = constant in e 
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Since the symmetry boundaries are streamlines, ~s = 0 so that far from 

the base it is zero everywhere and the streamlinea are effectively 

radial. This result al~o shows that it is difficult to infer the 

conditions at the base from the properties of the flow far from the 

base. In the next section we will present examples of the behavior 

derived qualitatively from eqn. (4.19). 

4.3 Solar Wind ~ Solutions 

Now that basic properties of wind solutions have been 

discussed we show solutions obtained from the algorithm described in 

chapter 3. Th~s section not only provides examples of solutions but 

also examines the behavior of the numerical scheme. We will study 

radial, two-dimen siona 1 irro tational and two-dimensional rotational 

cases. 

Radial Flow 

To start, the example of section 4.1 is solved with the two-

d imens ional code for 1/1. I t is easy to see tha t for H = con st ant and 

c = 0 the solution to eqn. (4.19) is 1/1 = Pusin(e) where pu is the 

normal mass flux. The solution shown in fig. 4.4 was computed with a 

16x16 point grid with an initial guess 

15 15 

1/1 = pusin(e)(l -E~ (cos«2n-l)e) + cos«2n+l)e»~sin(rrmi/I) (4.24) 
n=l 2(2n-l) 2(2n+1) m=l 

where E: was chosen to be 0.2. Not too much latitude is possible in 

the choice of an initial guess. From figure 2.2, remember, if the 

gradient of 1/1 is too large there are not values 6f p which satisfy 
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Streamlines 

--- - Canst. Mach No. 

_.- Sonic Line 

9 

Fig. 4.4 The spherically symmetric solar wind example of fig. 4.3 
solved with the two-dimensional code for tJ! --- The circle s = 1 
corresponds to the base through which the gas flows outward along the 
streamlines. 
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Bernoulli's eq~ation. Also, for the relaxation scheme to be stable 

the component u must be positive. The choice of eqn. (4.24) includes 

all the frequency information on the mesh yet satisfies these 

requirements. 

On figure 4.5 are plotted the absolute percentage errors of 

the computed solution taken along a streamline of fig. 4.4 from the 

so lut ion shown in fig. 4.3. It is not surprising that the largest 

errors occur at the sonic point. The results proba~ly indicate a 

small expansion shock could still exist in the solution. An 

advantage in accuracy of using the stream function can also be seen in 

fig. 4.4b. Because the density is computed from an algebraic 

relationship, even though the mesh interval is ~s = 0.5 the density is 

accurate to less than 0.05% in the region near s = 1. 

Figures 4.6 - 4.8 show the convergence behavior for the 

algorithm for a linear, and elliptic, and a mixed spherical problem. 

The linear problem is that of the previous example with the density 

fixed at a high value GO that the Mach numbers were less than 0.01. 

The non-linear elliptic problem is that of the pu = .009 curve of fig. 

4.2. Finally, the mixed problem is that of the transonic flow shown 

in figures 4.4 and 4.5. Figure 4.6 shows the convergence of the 

linear problem for three values of the over-relaxation parameter, w • 

The convergence is measured in terms of the root-mean-square residual 

which is related to the discrete L2 norm. The curves show the 

characteristic "knee" and leveling off of convergence rate after the 

high frequency errors are eliminated. 
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coordinates formed by a low Mach number limit of the stream function 
equation. Convergence behavior for three values of the relaxation 
parameter w is shown. 
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The convergence behavior for a non-linear elliptic problem is 

shown in fig. 4.7. The convergence rate is oscillatory and the 

oscillations continue longer as the solution is over-relaxed more and 

more. For the non-linear problems remember that the density is also 

solved by an iterative procedure. How tight 1y the dens ity is 

converged will affect the convergence behavior of the stream function 

too. We have used a convergence criterion on pof t:,p /p = 10-4 

Finally, the convergence histories in figure 4.8 are for the 

transonic solution shown in figures 4.4 and 4.5 with the initial 

condition eqn. (4.24). For the transonic flows two criteria must be 

used to judge convergence. In addition to the RMS residual, the 

number of supersonic points must be monitored. For irrotationa1 flows 

we find that a constant number of supersonic points is quickly 

est ab1i shed on th e coars e me she s. The behavior of the residual is 

quite different than that for the purely subsonic and linear problems 

but similar to mixed flow convergence behaviors shown by Ba1lhaus et. 

ale (1978). The fact that the convergence is not accelerated greatly 

by vary~ng wis probably because for these problems the subsonic 

region is small and the convergence rate is determined by the behavior 

in the supersonic zones which are not over-relaxed. 

Two-dimensional Irrotationa1 Solutions 

For a special class of irrotationa1 two-dimensional problems 

we can easily find the angular behavior to study the code in more than 

one dimension. Thus we can study,the behavior of varying the mass 

flux along the inflow boundary and test the code at the same time. 



£21 

-1 
~ 

...- -2 
to 
:J 

-0 -3 
or-

&1 
Ql -4 
'-

(f) -5 :L 
~ 
'-' -6 

IS) -m -7 
0 

-8 

-9 

-1£21 
£21 10 20 30 

Iteration 

70 

40 50 

Fig. 4.7 Convergence history for the nonlinear subsonic problem --
The subsonic problem is that of the spherically symmetric pu = .009 
solution shown in fig. 4.2 solved with the stream function code. 
Behavior for three values of w is shown. 
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Fig. 4.8 Convergence history of the mixed flow wind problem --- The 
wind problem is that of fig. 4.3 with initial guess of eqn. (4.24). 
The number of supersonic points rapidly rises to a fixed value. The 
convergence for the two values of w is quite similar. 



It turns out that if the velocities u and v are represented by 

u = a(s) + b(s)cos(2e) 

v = g(s)sin(2e) 

72 

(4.25) 

the problem is separable. For the vorticity equation in spherical 

coordinates is 

a( sv) = au as- as 
(4.26 ) 

The functions in eq. (4.25) satisfy (4.26) provided that 

g ( s) + sg' (s) -b(s) (4.27) 

With figures 4.9 - 4.11 we show the irrotational transonic 

flow from a sphere with the physical boundary condition 

pu = C(1 + ecos(2e» (4.28) 

where C and e are constants. The boundary condition is that the mass 

flux is higher at the equator than at the pole. This corresponds to a 

boundary condition on 1jJ of 

1jJ = C(sin(e)(l + e/2) + e/6sin(2S» (4.29) 

Notice that the streamlines bend more and more away from the regions 

of higher mass flux as e is increased. The angular variations of u 

and v for the e = .4 case are shown in figure 4.12 normalized to 

remove the radial variations. Plotted with the computed values are 

the exact relations of eqn. (4.25). The agreement is excellent. 
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Fig.4.9 Irrotational wind with a 10% variation in the normal mass 
flux --- The normal mass flux which varies from equator to pole as 
Pu ex: 1 + .lcos(2e) has a very small effect on the wind flow. 
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Fig •. 4.10 Irrotational wind with a 20% variation of the normal mass 
flux --- The normal mass flux varies as in fig. 4.9. The flow is 
bent toward the pole and away from the region of highest mass flux. 
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Fig. 4.11 Irrotational wind with a 40% variation in the normal mass 
flux --- The flow is bent strongly toward the pole but quickly 
straightens to the spherically symmetric solution. 



76 

.8 

0.0~--~----~--~----~--~----~--~-----

1.0r---------------~~~~------------_, 

.8 

x 
~.6 

> 
" > .4 

.2 

0.~~--~----~--~----~----~--~----~--~ 
1r/4 

e (r ad) 

Fig. 4.12 Angular variations of the velocity for the solution of fig. 
4.11 --- The exact relations given by eqns. (4.25) have been 
normalized to the maxima of the computed values of u and v to remove 
the radial variations and are represented by solid lines. The 
computed values are represented by *I S • 



77 

The initial values for the stream function for the two

dimensional irrotational solutions were formed by setting~ = constant 

along lines of constant e. The convergence behavior for these three 

cases is shown in fig. 4.13. The e = .4 solution was computed on a 

stretched mesh which concentrated the points near the base. This 

explains the difference in the number of supersonic points. The rapid 

rise of the number of supersonic points to a constant value is 

characteristic of the irrotational flows that we have computed. 

The convergence behavior is also dependent upon the mass flux 

chosen. As discussed in section 4.1 the wind problem is ill-posed and 

numerically the sonic line can be crossed if a small expansion shock 

corresponding to a jump from the subsonic to supersonic branches is 

allowed between two mesh points. With such a jump the convergence 

rate suffers. We have found that the frequency of the oscillations of 

the residuals increases and the convergence rate slows as the 

expansion shock grows; the best convergence behavior occurs when the 

solution is smoothest. Since "smooth" is a subjective quantity this 

fact helps to determine how close the mass flux is to its correct 

value. For two dimensional flows the fact that the discretization 

errors will not in general be uniform means that it is difficult to 

get a uniformly smooth sonic transition. Thus, even the "best" 

choice of parameters may not give the best convergence rate. The 

curves on figure 4.13 for e = .4 show this effect. 
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Fig. 4.13 The convergence histories for the irrotational flows with 
varying mass fluxes --- Shown are the residual behavior and the 
number of supersonic points for the solutions shown in figs. 9 - II. 
The supersonic zone sets up quickly for these problems. The e :: .4 
case was computed on a stretched mesh which concentrated points near 
the base. This accounts for the difference in the number of 
supersonic points and the rate of convergence. 
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Two-dimensional Rotational Solutions 

The reason for using the stream function was to be able to 

compute rotational flows. We now give examples of such solutions. As 

expected from the discussion of the last section, the effects of 

vorticity should occur within a small region beyond the base. Beyond 

that region the solution should look very similar to the spherically 

symmetric one. 

The type of solution we show is that of a "star" which rotates 

as a solid body. We use a uniform normal mass flux across the base 

just as in the spherically symmetric problem. Bernoulli's function is 

chosen to be the irrotational value plus the rotational energy. These 

conditions are reflected by 

1jJ = bsin(e) 

c = ncos 2( e) 

H = H + ln2cos 2(e) 
o '2 

(4.30) 

where Ho = .75 is the value of the spherically symmetric case that was 

used previously and b is a constant. The vorticity introduced at the 

base s = 1 

- pon2sin(2e)cos(e) 
2b 

(4.31) 

is negative. Solutions forn = 0.05 and 0.1 are shown in figures 4.14 

and 4.15. In terms of rotational kinetic energy compared to the 

gravitational potential energy these are about 100 and 400 times the 



80 

10 

9 ---
8 1 .3S -----7 

6 

5 

4 

Fig. 4.14 An n = 0.05 rotating Bolar wind model --- The rotation 
causes the flow to bend towards the pole causing a "kink" to form. 
Low resolution is the reason for the apparent discontinuity. 
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Fig. 4.15 An 11= 0.1 rotating solar wind model --- a) The full flow. 
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Fig. 4.15 An Q= 0.1 rotating solar wind model --- b) The "kink" 
better resolved. 
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solar values at the equator. Solutions with the solar values differ 

little from radial flow. 

As expected, most of the variations occur near the base. 

Contour plots of the vorticity show that by s = loS the vorticity is 

negligible in both cases. The decrease in the Hach number evident 

near the base is due to the fact that the velocity is dominated by the 

azimuthal component which drops as s-l. Finally, the vorticity does 

change sign around s = 1.S but the effects are small by that distance. 

The apparent discontinuity in the flow in figures 4.14 and 4.1Sa are 

due to poor resolution near the base. Figure 4.1Sb is a better 

resolved case of fig. 4.1Sa. 

The "kink" of the flow in the poleward direction apparent in 

figs. 4.14 and 4.1S is due to the vorticity term in eqn. (4.19) and 

not to the centrifugal force terms. If the vorticity term is 

artificially turned off the solution still remains effectively radial; 

For n= .1 the perturbation in eq. (4.21) due to the rotation is at 

most 1%. In fact, the effect is due to the Coriolis force and it is 

most easy to study the problem in a coordinate system which rotates 

with the surface. In that coordinate system the streamlines of 

figures 4.4 and 4.S and the velocity components u and v are unchanged 

because of the axisymmetry. In the rotating coordinate frame the 

steady momentum equation is (Pedlosky, 1979 p. 45) 

.9..·V.!l. + 2R x q -VR. + V<!> 
p 

(4.32) 

where n (cos(e),siu(e),O) is the angular velocity vector. The 
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local Rossby number, which is a measure of the importance of rotation 

to convection is, from Pedlosky0979 p. 24) 

u (4.33) 
U2Lsin(e) 

where U is a characteristic velocity and L is a characteristic 

distance over which that velocity changes. For the model shown in 

fig. 4.5 this quantity is about .25 for e >_ 1T/8. For small Rossby 

number the geostrophic approximation can be made which claims that the 

convect~ve term can be ignored when compared to the Coriolis term. 

Then 

2J] x £1. - R. + 'Vep 
p 

The azimuthal component of this is 

2Q(-vsin(e) + ucos(e» = 0 

(4.34) 

(4.35) 

since the problem is axisymmetric. From this form, the e component 

must have the same sign as the radial component, u, which is positive. 

The equation (4.35) can also be derived from the equations in the 

inertial frame. Thus, the Corio lis term causes the flow to bend up 

toward the pole near s = 1 where the effects of rotation are most 

important. 

As for the irrotational solutions, the initial values of 1jJ 

were set to be constant along lines of constant e. The convergence 

behavior for these two solutions is very similar to that of the 
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irrotational ones. The supersonic zones set up almo st immed iate ly 

because the solutions differ little over most of the mesh from the 

initial guess. 

4.4 Galaxy Models 

As models of highly idealized galaxies we will use uniform 

density oblate spheroids. Flows for spheroids with two different 

eccentricities will be computed. Such models are particularly easy to 

work with because both the coordinate transformation and gravitational 

potential can be expressed analytically. 

The oblate spheroidal coordinates which are used are related 

to a cylindrical coordinate system (z,r,~) by 

r = cos(T(Y))(F(X)2 + E2)1/2 

z = sin(T(Y))F(X) 
(4.36) 

where T(y)E[O,1T /2] and F(X) 2 1 are stretching functions. The scale 

factors for such a system are 

hI = F'[F2 + E2sin2 T 1/2 
F2 + E2 

h2 = T'(F2 + E2sin2(T))1/2 

h3 = cos(T)(F2 + E2)1/2 

(4.37) 

The two cases for which solutions will be shown are for E = 2 and E = 

4. The grids used are pictured in figure 4.16a,b. The boundary of 

both spheroids corresponds to F = 1 and the particular grids shown are 

for F(X) = 1 + .5X and T(Y) = (.51T /16)Y. 



Fig. ' •• 16 
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Coordinate systems for the oblate spheroidal galaxies --
b) E" 4. 
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The gravitational potential has been adapted to this 

coordinate representation from Perek(1962, p.192) and is 

<I>(X,Y) 

(4.38) 

The scaling is chosen so that the semi-minor axis is unity and GM= 1. 

Equipotential surfaces for both/E = 2 and E = 4 are shown in fig. 

4.17a,b. The base no longer corresponds to an equipotential surface 

as it does for the spherical models. 

The boundary condition at the base will be that of a uniform 

mass flux, pu = constant. The condition on1jJ is, for T' = constant, 

1jJ(T) = bT'(1+E2)1/2~:S(T(Y))(l + E2 s in2(T(y))1/2dy 

o 
= ~(l+E2)1/2{sin(T)(1+E2sin2(T))1/2 + 

2 

1 log(sin(T) + 1 (1+E2sin2(T)) + 1 logE} 
E E E 

(4.39) 

where b is a constant which determines the total mass flux. Clearly 

the equations for flow from an oblate spheroid are more complex than 

for the solar models. Nevertheless the ideas of the last section 

should extend to these cases. 
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Fig. 4.17 Gravitational potentials for the oblate spheroidal galaxies 
.. - The e.quipotential curves are constant contour level differences 
of the potential eqn. (4.38) for a) E = 2. b) E = 4. 
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Irrotational Solutions 

For the irrotational solutions, c = 0 and H = constant. The 

parameters used for the probl ems were cho sen for convenience. For 

both the E = 2 and E = 4 models, Po = Po = 1 were used. ,Practical 

considerations influenced the choice of'Y = 1.4. Because the initial 

values of ~are not necessarily good approximations to the exact 

values, the. mass fluxes at a given point computed from the derivatives 

of ~could be out of the ranges for which values of the density exist. 

(See fig. 2.2.) A larger value of'Y insures a larger range of flux 

for which the density is defined. 

The choice of H = .1 for the E = 2 and H = .17 for the E = 4 

models was also motivated by practical factors. The outer boundary 

must be placed far enough away so that one can reasonably expect the 

flow to be radial. These choices approximately place the sonic line 

near the middle of the grids shown in fig. 4.17a,b yet - without 

needing a highly stretched mesh - the outer boundary is far enough 

from the base. As with the spherical solutions, increasing H moves 

the sonic line in and lowering H moves it out. This fact was used in 

choosing these values of H. 

Figures 4.18 and 4.19 show the solutions to the two 

irrotational galactic wind problems. The flows are basically the same 

so they will be discussed together. In both cases the streamlines are 

bent toward the equator. The effect is more pronounced on the E = 4 

solution. At the base the largest Mach number (and lowest density) 

occurs at the equator and decreases toward the pole. O'n fig. 4.18, M 
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Fig. 4.18 An irrotational wind for the E = 2 model The flow, 
which has a uniform normal mass flux at the base, is bent toward th~ 
equator and the sonic line is nearly circular. 
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Fig. 4.19 An irrotational wind for the E = 4 model --- As with the 
solution of fig. 4.18, the sonic line is nearly circular. The normal 
mass flux at the base is constant. 
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ranges from 0.35 to 0.15 while for E = 4 the range is 0.7 to 0.16. 

The difference in these is due to the fact that the gravitational 

potential varies by a larger amount along the base for the E = 4 

problem. Nevertheless, the flows are accelerated so that the sonic 

line in both cases is nearly circular. 

An important difference between these models and the spherical 

model used in the last two sections is that the density does not vary 

as rapidly near the base. For instance, dPI-dz < .1 for the E = 4 

solution along the polar axis. This is a far different behavior than 

that seen in fig. 4.4. Thus we expect that for the rotational flows 

the effects of vorticity will be s'pread over a larger area than in the 

solar models. Furthermore, the density values at the base for the 

galaxy models are much lower than the base density in the spherical 

models. For the E; 2 model the density at the base varies from 0.07 

at the equator to 0.14 at the pole and for E = 4 the variation is from. 

0.07 to .23. Then Sl.nce sCX:p we would also expect the effects of the 

vorticity introduced, say, by the rotating body to be not as violent 

as are seen in the solar models. 

The initial values of 1jJ for these computations were that 1jJ= 

constant along lines of constant Y. The convergence behavior was very 

similar to that of the two-dimensional irrotational solutions for the 

solar wind models shown in fig. 4.13. 



Rotational Flows 

For the rotational flows we use 

H = Ho + 1/2 w2 

c = Qh32 
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where Ho is the value used for the irrotational solutions. The values 

of Qused were 0.05 for E = 4 and 0.1 for E = 2. This sets up the 

flow with approximately the same amount of rotational kinetic energy 

at the equator for both problems. 

Before discussing the solutions themselves, we note that 

rotational flows are much harder to compute than the irrotational 

ones. First, since Hand c depend on 1jI, the initial guess forljl must 

be good. Most often the same values used for the irrotational 

problems would produce density values so unrealistic that the 

residuals would "blow up" within one to four iterations. We have had 

the best success by using the converged irrotational solution as the 

starting values of the rotational flows. Next, the convergence rates 

and solutions are much more sensitive to the mass flux in rotational 

problems than they are for irrotational ones. One reason is that H, 

which is now a function of .1jI, determines the position of the sonic 

line. The reason no difficulties showed up in the rotational flows of 

the last section was because the variation of H withS was only 0.7% 

over the base while for these problems it is 25% for the E = 2 and 12 

1/2% for the E = 4. Not surprisingly. the E = 2 solution was the 

hardest to obtain. Finally, because of the sensitivity to the mass 
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flux the sonic lines for the rotational flows are not as smooth as for 

the irrotational ones. 

The solutions for the rotating galaxy models are shown in 

figures 4.20 and 4.21. The streamlines look very similar to those of 

the irrotational flows. Close examination shows that, like in the 

rotating spherical winds, the streamlines are bent toward the pole. 

The reason for the less drastic behavior has already been discussed. 

The effects on the Mach number curves are more obvious, though. The 

perturbation of H is largest at the equator and goes to zero at the 

pole. As one might expect form previous discussions, the sonic line 

is moved in toward the body mostly near the equator causing it to look 

like a prolate ellipse rather than a circle. The effect is mostly due 

to the v~riation of H rather than to the contribution to M of the 

azimuthal velocity component, w, because at that radial distance w is 

small. 
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Fig 4.20 A rotational wind with H = Ho + 1/2w2 for the E=2 model --
The angular frequency is Q= 0.05. The effect of the variation in H 
is that the sonic line moves in more toward the equator. 
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Fig 4.21 A rotational wind with H = Ho + 1/2w 2 for the E = 4 model 
--- The angular frequency n= 0.1. The sonic line is again moved 
inwards predominantly near the equator to create a prolate sonic line. 



CHAPTER 5 

SUMMARY AND CONCLUSIONS 

The introduction of a stream function to reduce the continuity 

and momentum equations to a single second order partial differential 

equation is a completely general procedure for two-dimensional 

axisymmetric problems. We have shown how to apply this technique to a 

class of problems motivated by the theory of the steady solar wind. 

The stream function equation itself can be solved by applying ideas 

developed for the transonic potential equation and we have presented a 

method for computing the density through Bernoulli's equation. 

In the Introduction we mentioned the advantages of reducing 

the steady flow problem to a single PDE coupled with an algebraic 

equation for the density. First, the numerical procedure is fast. 

For example, 30 iterations on a 32xl8 mesh for the rotational E = 4 

galactic wind takes 10 seconds on a CDC Cyber 175. The method.is 

slower than a similar potential formulation would be only because the 

density must be solved for iteratively. 

For the wind problems, the stream function formulation allows 

the extension of the ideas from one dimensional theory. Al so, 

qualitative analysis of the equations is far simpler than when using 

the primitive variables. The effects of rotation and the variation of 

the total enthalpy of the inflowing gas, for instance, are explicit in 
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the equations. Perturbation techniques should be easier to apply on 

this equation, too. 

Accurate solutions of solar wind-type problems can be computed 

with few grid points because the density is determined from an 

algebraic equation rather than a differential equation. Also, though 

the velocities may vary greatly over the mesh, the stream function is 

bounded by the values on the boundaries and hence can be more 

accurately approximated. 

There are, however, some operational difficulties with the 

technique we have used here. The greatest difficulty is that of 

finding the proper mass flux to obtain the transonic solution for a 

particular problem. Our procedure of computing a solution, examining 

it, and changing the mass flux requires too much user interaction. 

What would be desirable is an automatic way of computing the needed 

mass flux as part of the solution process. Also, the algorithm is not 

robust in the sense that for some initial values of the stream 

function the relaxation procedure blows up because reasonable density 

values cannot be found. The problem shows up particularly when 

rotational flows are solved. 

Another difficulty with the technique as described here is 

that the initial conditions must be chosen carefully. There do not 

exist values of the density for all values of the stream function and 

its derivatives. This is especially true for rotational flows where c 

and H are both functions of 1jJ. One approach which we have used to 
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avoid this problem is to use the solution to another problem such as 

an incompressible flow as the initial guess for a compressible one. 

Finally, though the boundary conditions are useful for 

theoretical studies they are not necessarily the most convenient. In 

this formulation either the stream function or its normal derivative 

corresponding to the normal or tangential mass flux must be specified 

along the inflow boundary. In addition, Hand c are specified there. 

The pressure and density are then computed as part of the solution. 

In many ways it is more natural to specify P and p and let the mass 

flux be adjusted as part of the solution. This would require a time 

dependent approach. 

Because this is the first time the steady two-dimensional wind 

type flows have been looked at directly with a stream function 

technique, we have only explored some simple model problems. In 

addition to the radial flow problem for the solar wind we have also 

presented irrotational solutions which show the effect of regions 

having higher and lower mass flux. To further test the code the test 

cases were ones where the behavior in latitude cou ld be determ ined. 

The most interesting solutions were those of the rapidly rotating 

solar type problems~ Contrary to intuition the flow is bent toward 

the pole because the coriolis force is more important than the 

centrifugal force. 

For galactic wind problems we examined the flow from two 

oblate spheroidal bodies. Both rotational and irrotational flows were 

computed. It is interesting to note that even for the non-rotating 

problems the flow is bent towards the equator. The effect is greater 
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for the more flattened spheroid. Also, the sonic surface is basically 

spherical even though the flow is not. 

In the context of these simple models there is much left to 

do. For example, with the presence of vorticity the possibility of 

separated flows arises. We have computed examples where H only was 

varied that had a recirculation region near the base of a spherical 

model. From the discussion of section 2.3 it is difficult to define 

the vorticity in a circulation region where streamlines do not cross 

the boundaries. It would be interesting to see under what situations 

- realistic or not - that such flows can develop. Also, for galaxy 

models we have not presented solutions of very flattened oblate 

spheroids. From figures 4.18 and 4.19 we commented that the inflow 

mach number at the equator is larger for the more flattened of the 

two. It appears that this is a trend and that for very flat cases the 

flow would have to be supersonic near the equator as it exits the 

base. We only mention the observation because exactly what is causing 

the behavior is not yet known. 

Because the models used were so simple it is impossible to say 

if the solutions presented correspond to any real flows. The kink 

effect for the rotating solar models, for instance is the result of an 

extremely fast rotation. Even so, the presence of magnetic fields 

would probably change the results substantially. For the galaxy 

models one would have to decide whether a uniform density oblate 

spheroid with a uniform outward mass flux adequately represents the 

flow from a galaxy. Certainly more realistic sources and gas-dynamics 
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must be used before too much can be said about the relevance of our 

solutions. 

The study of winds, then, is certainly not complete. We have 

presented an approach and a technique which might be used by others to 

study in more detail the types of problems covered by the simple 

theory. We hope some of our results will motivate further and more 

detailed studies of these problems. 
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